Skip to main content
Log in

Transistor-based immunosensor using AuNPs-Ab2-HRP enzyme nanoprobe for the detection of antigen biomarker in human blood

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Alpha-fetoprotein (AFP) is inextricably linked to various diseases, including liver cancer. Thus, detecting the content of AFP in biology has great significance in diagnosis, treatment, and intervention. Motivated by the urgent need for affordable and convenient electronic sensors in the analysis and detection of aqueous biological samples, we combined the solution-gated graphene transistor (SGGT) with the catalytic reaction of enzyme nanoprobes (HRP-AuNPs-Ab2) to accurately sense AFP. The SGGT immunosensor demonstrated high specificity and stability, excellent selectivity, and excessive linearity over a range of 4 ng/mL to 500 ng/mL, with the lower detection limit down to 1.03 ng/mL. Finally, clinical samples were successfully detected by the SGGT immunosensor, and the results were consistent with chemiluminescence methods that are popular in hospitals for detecting AFP. Notably, the SGGT immunosensor is also recyclable, so it has excellent potential for use in high-throughput detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sauzay C, Petit A, Bourgeois AM, Barbare JC, Chauffert B, Galmiche A, et al. Alpha-foetoprotein (AFP): A multi-purpose marker in hepatocellular carcinoma. Clin Chim Acta. 2016;463:39–44.

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Luo X, Liang Y, Kaneko K, Li H, Fu X-D, et al. A tumorigenic index for quantitative analysis of liver cancer initiation and progression. Proc Natl Acad Sci USA. 2019;116(52):26873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vivekanandarajah A, Atallah JP, Gupta S. Alpha-fetoprotein-producing nonmetastatic gastric adenocarcinoma: a rare entity. J Gastrointest Cancer. 2014;45(2):225–7.

    Article  CAS  PubMed  Google Scholar 

  4. Simon SM. Fighting rare cancers: lessons from fibrolamellar hepatocellular carcinoma. Nat Rev Cancer. 2023:1-12.

  5. Flick A, Krakow D, Martirosian A, Silverman N, Platt LD. Routine measurement of amniotic fluid alpha-fetoprotein and acetylcholinesterase: the need for a reevaluation. Am J Obstet Gynecol. 2014;211(2):139 e1–6.

    Article  PubMed  Google Scholar 

  6. Shao F, Jiao L, Miao L, Wei Q, Li H. A pH Indicator-linked Immunosorbent assay following direct amplification strategy for colorimetric detection of protein biomarkers. Biosens Bioelectron. 2017;90:1–5.

    Article  CAS  PubMed  Google Scholar 

  7. Maiolini E, Ferri E, Pitasi AL, Montoya A, Di Giovanni M, Errani E, et al. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst. 2014;139(1):318–24.

    Article  CAS  PubMed  Google Scholar 

  8. Liang J, Liu H, Huang C, Yao C, Fu Q, Li X, et al. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Anal Chem. 2015;87(11):5790–6.

    Article  CAS  PubMed  Google Scholar 

  9. Kuretake T, Kawahara S, Motooka M, Uno S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. Sensors (Basel). 2017;17(2):281.

    Article  PubMed  Google Scholar 

  10. Bao T, Fu R, Wen W, Zhang X, Wang S. Target-Driven Cascade-Amplified Release of Loads from DNA-Gated Metal-Organic Frameworks for Electrochemical Detection of Cancer Biomarker. ACS Appl Mater Interfaces. 2020;12(2):2087–94.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Liu B, Chen Z, Zuo X. Innovative Electrochemical Sensor Using TiO2 Nanomaterials to Detect Phosphopeptides. Anal Chem. 2021;93(30):10635–43.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao J, He Y, Tan K, Yang J, Chen S, Yuan R. Novel Ratiometric Electrochemiluminescence Biosensor Based on BP-CdTe QDs with Dual Emission for Detecting MicroRNA-126. Anal Chem. 2021;93(36):12400–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Dong T, Wei X, Yang Z, Matos Pires NM, Ren J, et al. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva. Biosens Bioelectron. 2019;142:111453.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Wang X, Cheng S, Ye M, Zhang C, Xian Y. Near-Infrared Light-Switched MoS2 Nanoflakes@Gelatin Bioplatform for Capture, Detection, and Nondestructive Release of Circulating Tumor Cells. Anal Chem. 2020;92(4):3111–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  16. Huang R, He L, Xia Y, Xu H, Liu C, Xie H, et al. A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-Assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes. Small. 2019;15(19):e1900735.

    Article  PubMed  Google Scholar 

  17. Shen C, Liu S, Li X, Yang M. Electrochemical Detection of Circulating Tumor Cells Based on DNA Generated Electrochemical Current and Rolling Circle Amplification. Anal Chem. 2019;91(18):11614–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Wei Z, Sun C, Long Y, Zheng H. Bifunctional antibody and copper-based metal-organic framework nanocomposites for colorimetric alpha-fetoprotein sensing. Mikrochim Acta. 2020;187(8):465.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao LZ, Fu YZ, Ren SW, Cao JT, Liu YM. A novel chemiluminescence imaging immunosensor for prostate specific antigen detection based on a multiple signal amplification strategy. Biosens Bioelectron. 2021;171:112729.

    Article  CAS  PubMed  Google Scholar 

  20. Khan U, Kim TH, Ryu H, Seung W, Kim SW. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv Mater. 2017;29(1):1603544.

    Article  Google Scholar 

  21. Oh J, Yang H, Jeong GE, Moon D, Kwon OS, Phyo S, et al. Ultrasensitive, Selective, and Highly Stable Bioelectronic Nose That Detects the Liquid and Gaseous Cadaverine. Anal Chem. 2019;91(19):12181–90.

    Article  CAS  PubMed  Google Scholar 

  22. Hwang MT, Park I, Heiranian M, Taqieddin A, You S, Faramarzi V, et al. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. Adv Mater Technol. 2021;6(11):2100712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Liu T, Yang M, Wu C, Zhang W, Chu Z, et al. A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosens Bioelectron. 2021;193:113554.

    Article  CAS  PubMed  Google Scholar 

  24. Chen TY, Loan PT, Hsu CL, Lee YH, Tse-Wei Wang J, Wei KH, et al. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron. 2013;41:103–9.

    Article  PubMed  Google Scholar 

  25. Wang B, Zhao CZ, Wang ZQ, Yang KA, Cheng XB, Liu WF, et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv. 2022;8(1):eabk0967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun C, Li R, Song Y, Jiang X, Zhang C, Cheng S, et al. Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. Anal Chem. 2021;93(15):6188–94.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu K, Zhang Y, Li Z, Zhou F, Feng K, Dou H, et al. Simultaneous Detection of alpha-Fetoprotein and Carcinoembryonic Antigen Based on Si Nanowire Field-Effect Transistors. Sensors (Basel). 2015;15(8):19225–36.

    Article  CAS  PubMed  Google Scholar 

  28. Ding K, Wang C, Zhang B, Zhang Y, Guan M, Cui L, et al. Specific Detection of Alpha-Fetoprotein Using AlGaAs/GaAs High Electron Mobility Transistors. IEEE Electron Device Lett. 2014;35(3):333–5.

    Article  CAS  Google Scholar 

  29. Si K, Cheng S, Hideshima S, Kuroiwa S, Nakanishi T, Osaka T. Multianalyte Detection of Cancer Biomarkers in Human Serum Using a Label-Free Field Effect Transistor Biosensor. Sensor Mater. 2018;30(5):991–9.

    CAS  Google Scholar 

  30. Wang Y, Bi Y, Wang R, Wang L, Qu H, Zheng L. DNA-Gated Graphene Field-Effect Transistors for Specific Detection of Arsenic(III) in Rice. J Agric Food Chem. 2021;69(4):1398–404.

    Article  CAS  PubMed  Google Scholar 

  31. Fu Y, Wang N, Yang A, Law HK, Li L, Yan F. Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. Adv Mater. 2017;29(41):1703787.

    Article  Google Scholar 

  32. Chen X, Hao S, Zong B, Liu C, Mao S. Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens Bioelectron. 2019;145:111711.

    Article  CAS  PubMed  Google Scholar 

  33. Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol. 2008;3(8):491–5.

    Article  CAS  PubMed  Google Scholar 

  34. Wu B, Wang X, Tang H, Jiang W, Chen Y, Wang Z, et al. Multifunctional MoS2 Transistors with Electrolyte Gel Gating. Small. 2020;16(22):e2000420.

    Article  PubMed  Google Scholar 

  35. Kumar N, Wang W, Ortiz-Marquez JC, Catalano M, Gray M, Biglari N, et al. Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosens Bioelectron. 2020;156:112123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanai Y, Ohmuro-Matsuyama Y, Tanioku M, Ushiba S, Ono T, Inoue K, et al. Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens. ACS Sens. 2020;5(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lei YM, Xiao MM, Li YT, Xu L, Zhang H, Zhang ZY, et al. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron. 2017;91:1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lee E, Lim H, Lee N-S, Kim HH. Improved moisture stability of graphene transistors by controlling water molecule adsorption. Sens. Actuators B Chem. 2021;347:130579.

    Article  CAS  Google Scholar 

  39. Gobbi M, Galanti A, Stoeckel MA, Zyska B, Bonacchi S, Hecht S, et al. Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nat Commun. 2020;11(1):4731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hao Z, Luo Y, Huang C, Wang Z, Song G, Pan Y, et al. An Intelligent Graphene-Based Biosensing Device for Cytokine Storm Syndrome Biomarkers Detection in Human Biofluids. Small. 2021;17(29):e2101508.

    Article  PubMed  Google Scholar 

  41. Wu D, Yu Y, Jin D, Xiao MM, Zhang ZY, Zhang GJ. Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Anal Chem. 2020;92(5):4006–15.

    Article  CAS  PubMed  Google Scholar 

  42. Mattioli IA, Hassan A, Sanches NM, Vieira NCS, Crespilho FN. Highly sensitive interfaces of graphene electrical-electrochemical vertical devices for on drop atto-molar DNA detection. Biosens Bioelectron. 2021;175:112851.

    Article  CAS  PubMed  Google Scholar 

  43. Ge Z, Ma M, Chang G, Chen M, He H, Zhang X, et al. A novel solution-gated graphene transistor biosensor for ultrasensitive detection of trinucleotide repeats. Analyst. 2020;145(14):4795–805.

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Hossain MZ, Shinozuka K, Shimizu N, Kitada S, Suzuki T, et al. Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens Bioelectron. 2020;165:112363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao T, Zhou Y, He C, He H, Ma M, Cai Z, et al. Highly sensitive methyl parathion sensor based on Au-ZrO2 nanocomposites modified graphene electrochemical transistor. Electrochim Acta. 2020;357:136836.

    Article  CAS  Google Scholar 

  46. Fan Q, Li J, Zhu Y, Yang Z, Shen T, Guo Y, et al. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu2+ Ion Detection. ACS Appl Mater Interfaces. 2020;12(4):4797–803.

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Zhao M, Liu W, Chu W, Guo Y. Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G. Talanta. 2016;147:430–6.

    Article  CAS  PubMed  Google Scholar 

  48. Cruz SM, Girao AF, Goncalves G, Marques PA. Graphene: The Missing Piece for Cancer Diagnosis? Sensors (Basel). 2016;16(1):137.

    Article  PubMed  Google Scholar 

  49. Ma M, Zhou Y, Li J, Ge Z, He H, Tao T, et al. Non-invasive detection of glucose via a solution-gated graphene transistor. Analyst. 2020;145(3):887–96.

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem. 2011;21(10):3335–45.

    Article  CAS  Google Scholar 

  51. Lin P, Luo X, Hsing IM, Yan F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv Mater. 2011;23(35):4035–40.

    Article  CAS  PubMed  Google Scholar 

  52. Qiang Z, Yuan R, Chai Y, Wang N, Zhuo Y, Zhang Y, et al. A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin-silver complex film. Electrochim Acta. 2006;51(18):3763–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (SKLBEE2020016) and the National Natural Science Foundation of China (Grants 52171177 and 52272106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang, Yaping Wang or Hanping He.

Ethics declarations

Statements

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

In our work, the study of clinical blood samples obtained approval from the Medical Ethics Committee of Huazhong University of Science and Technology.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 866 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, R., Cao, L., Wu, N. et al. Transistor-based immunosensor using AuNPs-Ab2-HRP enzyme nanoprobe for the detection of antigen biomarker in human blood. Anal Bioanal Chem 416, 163–173 (2024). https://doi.org/10.1007/s00216-023-05002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05002-0

Keywords

Navigation