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Abstract
In bioprocesses, the pH value is a critical process parameter that requires monitoring and control. For pH monitoring, poten-
tiometric methods such as pH electrodes are state of the art. However, they are invasive and show measurement value drift. 
Spectroscopic pH monitoring is a non-invasive alternative to potentiometric methods avoiding this measurement value drift. 
In this study, we developed the Good pH probe, which is an approach for spectroscopic pH monitoring in bioprocesses with 
an effective working range between pH 6 and pH 8 that does not require the estimation of activity coefficients. The Good 
pH probe combines for the first time the Good buffer 3-(N-morpholino)propanesulfonic acid (MOPS) as pH indicator with 
Raman spectroscopy as spectroscopic technique, and Indirect Hard Modeling (IHM) for the spectral evaluation. During a 
detailed characterization, we proved that the Good pH probe is reversible, exhibits no temperature dependence between 15 
and 40 °C, has low sensitivity to the ionic strength up to 1100 mM, and is applicable in more complex systems, in which other 
components significantly superimpose the spectral features of MOPS. Finally, the Good pH probe was successfully used for 
non-invasive pH in-line monitoring during an industrially relevant enzyme-catalyzed reaction with a root mean square error 
of prediction (RMSEP) of 0.04 pH levels. Thus, the Good pH probe extends the list of critical process parameters monitor-
able using Raman spectroscopy and IHM by the pH value.

Keywords Raman spectroscopy · pH value · In-line monitoring · Good buffers · 3-(N-Morpholino)propanesulfonic acid 
(MOPS) · Indirect Hard Modeling (IHM)

Introduction

In bioprocesses, the pH value is a crucial operating parame-
ter [1]. A pH optimum is given for both enzymes and micro-
organisms, at which they work most productively [2–4]. The 
pH value is the negative common logarithm of the hydro-
nium ion activity aH3O

+:

To monitor the pH value, potentiometric methods such 
as pH electrodes and ion-sensitive field-effect transistors 
(ISFETs) are the state of the art [5]. However, classical pH 
electrodes show several disadvantages. First, pH electrodes 
are invasive, since they must be immersed into the moni-
tored system. Second, pH electrodes show measurement 
value drift, resulting in the need for frequent recalibration 
or, in the case of bioreactors, pH off-line measurements for 
verification [6–10]. Third, pH electrodes cannot be applied 
in small-scale systems such as mini-bioreactors [11]. Unlike 
pH electrodes, ISFETs are applicable in mini-bioreactors, 
but still show measurement value drift [12].

An alternative to potentiometric methods for pH moni-
toring is the use of spectroscopic techniques [13]. These 
techniques are potentially non-invasive, are not expected 
to show measurement value drift, and are suitable for the 
application in mini-bioreactors [13–15]. To determine the 
pH value, spectroscopic techniques must be combined with 

(1)pH = −log10
(

aH3O
+

)

.
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a pH indicator, which is usually a weak acid or base that 
protonates or deprotonates as a function of the pH value [6, 
13]. Spectroscopic techniques can be used to determine the 
concentrations of the protonated and the deprotonated pH 
indicator species, which are then typically correlated with 
the pH value [6, 13, 16].

If the pH indicator is not already part of the investigated 
system and must be integrated additionally, interactions with 
other components may occur. Therefore, pH indicators are 
often immobilized in a solid matrix to minimize indicator 
leaching into the investigated system [6, 13]. An immobi-
lized pH indicator can be integrated into a system as sensor 
spot or coating [6, 13, 17]. State-of-the-art immobilization 
approaches can nearly completely prevent pH indicator 
leaching [13]. However, even an immobilized pH indicator 
can perturb the investigated system if the pH indicator acts 
as a pH buffer [13]. This effect is referred to as indicator 
error and is especially relevant in small-scale applications 
such as mini-bioreactors [13].

If the pH indicator is already part of the system, leaching 
effects, additional immobilization effort, and the indicator 
error can be excluded. In most bioprocesses, pH buffers are 
applied to compensate minor pH changes [18, 19]. Usually, 
pH buffers are weak acids or bases just like pH indicators 
[13, 18, 20]. Therefore, the use of pH buffers as pH indi-
cators in bioprocesses enables completely non-invasive pH 
monitoring [20–24].

To use pH buffers as pH indicators, these buffers must 
be combined with an appropriate spectroscopic technique. 
Raman spectroscopy is a widely used process analytical 
technology (PAT) tool in bioprocesses, but its applica-
tion for pH monitoring remains to be extensively explored 
[13, 25]. It is a spectroscopic technique that evaluates the 
inelastic light scattering [26]. Raman spectroscopy shows 
high specificity and can provide quantitative information 
about the sample composition [27]. The latter is due to the 
fact that the Raman scattering intensity IRaman,i of a com-
ponent i correlates linearly with the component’s number 
of molecules Ni in the measurement volume and therefore 
also with its concentration ci [26, 28]:

Thus, Raman spectroscopy cannot only be combined 
with a pH buffer for pH monitoring, but can also be used 
for simultaneous monitoring of multiple process parameters 
of a bioprocess such as substrate, metabolite, and product 
concentrations.

A common challenge for spectroscopic pH monitoring 
is its sensitivity to the ionic strength [13]. In contrast to 
potentiometric methods, which provide information on the 
hydronium ion activity, spectroscopic techniques can only 

(2)IRaman,i ∝ Ni ∝ ci.

measure concentration-based information, as stated above 
[6]. The hydronium ion activity aH3O

+ is defined as

where cH3O
+ is the hydronium ion concentration, c0 the stand-

ard concentration (1 mol/L), and �H3O
+ the hydronium ion 

activity coefficient [29]. Activity coefficients are a function 
of the ionic strength [6, 13]. Therefore, spectroscopic pH 
monitoring is sensitive to this parameter and is limited in 
its accuracy if activity coefficients are not estimated [6, 13].

Metcalfe et al. [22] used Raman spectroscopy as spectro-
scopic technique and combined it with phosphate buffer as 
pH indicator for non-invasive on-line monitoring of the pH 
value during a mixed acid fermentation of Escherichia coli 
(E. coli). They were able to monitor the pH value between 
pH 6 and pH 8 with an accuracy of better than 0.1 pH levels. 
To address the sensitivity of phosphate buffer to the ionic 
strength and improve the prediction quality, Metcalfe et al. 
[22] estimated the activity coefficients for their experiments. 
In their estimation, the activity coefficients were computed 
as a function of the ionic strength [22–24]. The ionic strength 
can be determined either by calculation, which may be effort-
ful and requires much process knowledge, or by additional 
measurement techniques such as conductometry [13].

In contrast to phosphate buffer, the Good buffer 3-(N-mor-
pholino)propanesulfonic acid (MOPS) has only one degree of 
dissociation, making it less sensitive to the ionic strength than 
pH indicators with higher degrees of dissociation [13, 24]. 
The frequently used Good buffers were specifically developed 
for application in bioprocesses by Good et al. [30] and have 
many advantages in this field. These advantages include effec-
tive buffering in the physiological range between pH 6 and 
pH 8, no participation in biological reactions, low biological 
membrane permeability, low toxicity, high water solubility, 
and high resistance to both enzymatic and non-enzymatic deg-
radation [30–32]. Further advantages are little influences of 
the temperature, buffer concentration, and ionic strength on 
the dissociation of the buffer [30, 32].

In this study, we show that the Good buffer MOPS can be 
used as pH indicator for non-invasive pH in-line monitoring 
in bioprocesses without requiring the estimation of activity 
coefficients. For this purpose, we combined MOPS as pH 
indicator with Raman spectroscopy as spectroscopic tech-
nique and with Indirect Hard Modeling (IHM) as spectral 
evaluation model. Since IHM is physics-based, it can pro-
vide robust models for evaluating bioprocess Raman spectra 
with significantly reduced calibration effort compared with 
state-of-the-art statistical models [33, 34].

We call this approach “the Good pH probe”. To the best of 
our knowledge, this is the first application of a Good buffer 

(3)aH3O
+ =

cH3O
+

c0
⋅ �H3O

+ ,
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as pH indicator, and the first use of IHM to evaluate Raman 
spectra for spectroscopic pH monitoring. With respect to our 
previous study, in which we in-line monitored the substrate 
and product mass fractions in a bioprocess by combining 
Raman spectroscopy with IHM, the Good pH probe adds the 
pH value to the list of critical process parameters that can 
be monitored using this combination [34]. We thoroughly 
characterized the Good pH probe in regard to its reversibil-
ity, temperature dependence, sensitivity to ionic strength, 
and applicability in systems with components whose Raman 
spectra strongly superimpose the spectral features of MOPS. 
Finally, to demonstrate the Good pH probe’s applicability in 
bioprocesses, we used it to non-invasively in-line monitore 
the pH value during the industrially relevant enzyme-cata-
lyzed hydrolysis of penicillin G to 6-aminopenicillanic acid 
and phenylacetic acid by penicillin amidase.

Materials and methods

Materials and reagents

Water  (SupraSolv®,  Supelco®) and 30 wt% hydrochloric 
acid (HCl) solution  (Suprapur®,  Supelco®) were purchased 
from Merck KGaA. Sodium hydroxide (NaOH) solution 
(38.5 wt%) was prepared from NaOH platelets  (EMSURE®, 
 Supelco®) acquired from Merck KGaA. MOPS (Ultrapure) 
and sodium chloride (NaCl) were obtained from VWR. Peni-
cillin amidase from E. coli with enzyme activity of 711 U/
mL was purchased from Sigma-Aldrich Chemie GmbH, and 
penicillin G potassium salt  (CELLPURE®) from Carl Roth 
GmbH & Co. KG.

Measurement setup

To enable the use of a reference pH electrode, all experi-
ments were performed in a customized measurement cell, 
which is part of the measurement setup shown in Fig. 1. 
The customized measurement cell includes a glass cuvette 
with an inner diameter of 30 mm, a height of 75 mm, and 
a volume of 53 mL. The glass cuvette is surrounded by a 
tempering jacket. Through this tempering jacket, water from 
an external thermostat (CC-K15 with Pilot ONE; Huber) 
was cycled to achieve temperature control. The bottom of 
the cuvette is flat and accessible by the laser of an inverse 
confocal Raman microscope (InVia; Renishaw). We used 
a laser with a wavelength of 532 nm and a laser power of 
100 mW in combination with an 1800 l/mm grating. The 
laser light was focused in the sample with a microscope 
objective (LmPlanFL N, 20x, NA = 0.4; Olympus).

For pH reference measurements, the top of the measure-
ment cell enables the integration of a pH electrode (InLab 

Micro Pro-ISM; Mettler-Toledo), which is coupled to a 
pH meter (SevenCompact S210; Mettler-Toledo). The pH 
electrode was calibrated prior to each experiment, and the 
manufacturer reported a measurement error of approxi-
mately ± 0.05 pH levels. Moreover, the pH electrode con-
tains a temperature sensor that was used for temperature 
compensation by the pH meter as well as for temperature 
monitoring of the sample in the cuvette. Solutions for adjust-
ing the pH value or the ionic strength in the sample were 
added through an aperture in the top of the measurement 
cell using a pipette  (Transferpette® S; Brand). After these 
additions, a built-in motorized stirrer was used to quickly 
homogenize the sample inside the cuvette.

Experimental procedure

Our experimental procedure encompassed the experiments 
regarding the Good pH probe’s calibration, its characteri-
zation, and an experiment to prove its applicability in bio-
processes. For the calibration and characterization experi-
ments, we followed the experimental procedure of a standard 
experiment and modified it with respect to parameters such 
as temperature or sample composition. The specific modifica-
tions made are described in the “Calibration of the Good pH 
probe” and “Characterization of the Good pH probe” sections.

To perform a standard experiment, we prepared 30 mL 
of an aqueous sample containing 50 mM MOPS, placed it 
inside the cuvette of the measurement cell, and tempered 
it. Next, we repeatedly added a solution to the sample to 
gradually change either its pH value or ionic strength. After 
each addition, we first stirred the sample for 1 min and then 

Raman microscope

Cuvette

Stirrer

Pipette for adjusting the
pH value or ionic strength

pH electrode

Tempering jacket

Sample

Measurement
cell

Fig. 1  Schematic representation of the measurement setup. The setup 
consists of the following components: measurement cell, Raman 
microscope, pH electrode, and a pipette to add solutions for adjusting 
the pH value or the ionic strength of the sample. The measurement 
cell includes the cuvette, the tempering jacket, and the stirrer
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waited for another minute before we recorded the reference 
pH value and the Raman spectra.

For the Good pH probe’s application experiment, the pH 
in-line monitoring during an enzyme-catalyzed reaction, we 
prepared an aqueous solution containing 50 mM MOPS and 
50 mM penicillin G. This solution was tempered to 25 °C and 
its pH value was adjusted to approximately pH 8.2 by adding 
NaOH solution. The enzyme-catalyzed reaction was initiated 
by introducing penicillin amidase from E. coli, leading to an 
enzyme activity of 0.44 U/mL in the sample. Throughout the 
reaction, the reference pH value was monitored each minute 
and Raman spectra were recorded continuously. In contrast to 
the calibration and characterization experiments, during the 
Good pH probe’s application experiment, no solutions were 
added to the sample and the sample was not stirred.

Raman spectra

For all experiments, the Good pH probe’s Raman spectra 
were recorded as single point acquisitions in the spectral 
range from 2505 to 3825  cm−1. In the calibration and charac-
terization experiments, for every Raman spectrum, 45 acqui-
sitions with an excitation time of 4 s each were recorded 
and integrated, resulting in an accumulated excitation time 
of 180 s. To increase the temporal resolution during the 
enzyme-catalyzed reaction, we recorded and integrated only 
15 acquisitions for each Raman spectrum to obtain an accu-
mulated excitation time of 60 s. None of these Raman spec-
tra was pretreated before the spectral evaluation using IHM.

Calculation of the pH value

The dissociation reaction of MOPS

where MOPSH represents the protonated and MOPS− the 
deprotonated MOPS species, is described by the law of mass 
action:

The thermodynamic acid dissociation constant Ka,MOPS 
includes the water activity, which is commonly assumed to 
be constant. Using the definition of the pH value [Eq. (1)], the 
definition of the activity [Eq. (3)], Eq. (5), and the negative 
common logarithm, the pH value can be calculated as follows:

(4)MOPSH + H2O ⇌ MOPS− + H3O
+,

(5)Ka,MOPS =
aMOPS− ⋅ aH3O

+

aMOPSH

.

(6)
pH = pKa,MOPS + log10

(

aMOPS−

aMOPSH

)

= pKa,MOPS + log10

(

�MOPS−

�MOPSH

)

+ log10

(

cMOPS−

cMOPSH

)

.

Here, pKa,MOPS is the negative common logarithm of 
Ka,MOPS.

For the prediction of components’ activity coefficients, 
an empirical extension of the Debye–Hückel theory is 
often used:

In this equation, A is a temperature-dependent param-
eter, z is the component’s charge, I is the ionic strength, B 
is a parameter dependent on the component’s ion radius, 
and b is an empirical parameter that is also specific to 
the component [20, 29]. According to Eq. (7), the activ-
ity coefficient of a component at a given temperature is 
solely a function of the ionic strength [18, 20, 24, 29]. 
Furthermore, it can be concluded from Eq. (7) that a pH 
indicator’s sensitivity to the ionic strength strongly corre-
lates with its charge. As MOPS is either neutrally charged 
(protonated) or simply negatively charged (deprotonated), 
it is less sensitive to the ionic strength than more strongly 
charged pH indicators such as phosphate buffer [13]. 
Therefore, for the Good pH probe, we assumed the com-
mon logarithm of the ratio between �MOPS− and �MOPSH to 
equal 0:

This assumption potentially deteriorated the Good pH 
probe’s prediction quality. However, by investigating the 
Good pH probe’s sensitivity to the ionic strength, we will 
finally validate this assumption and show that the predic-
tion error resulting from Eq. (8) is within the range of 
the inherent measurement error of the reference pH elec-
trode used in our study (“Characterization of the Good 
pH probe” section). For the Good pH probe, this assump-
tion eliminated the need to estimate activity coefficients 
as a function of the ionic strength, whose calculation may 
be effortful or may require additional measurement tech-
niques, as we explained in the introduction [13]. Thus, this 
assumption simplifies the Good pH probe’s use and makes 
it accessible to more applications.

For the calculation of the pH value with the Good pH 
probe ( pHGood pHprobe ), we combined Eq. (6) and Eq. (8):

To enable the application of the Good pH probe at dif-
ferent temperatures, pKa,MOPS was calculated as a function 
of the temperature T  according to the empirical equation 
of Roy et al. [35]:

(7)log10(�) =
−A ⋅ z2 ⋅

√

I

1 + B ⋅

√

I

+ b ⋅ I.

(8)log10

(

�MOPS−

�MOPSH

)

= 0.

(9)pHGood pHprobe = pKa,MOPS + log

(

cMOPS−

cMOPSH

)

.
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The concentration ratio between cMOPS− and cMOPSH was 
determined by Raman measurements in combination with 
IHM for the spectral evaluation.

All experiments on the calibration, characterization, and 
application of the Good pH probe were evaluated on the 
basis of the root mean square error (RMSE)

where pHpHelectrode is the pH value measured with the refer-
ence pH electrode, n is the number of data points, and k is the 
running index. To be more precise, we evaluated the Good 
pH probe’s calibration with the RMSE of cross-validation 
(RMSECV). The RMSECV was calculated using a leave-
one-out cross-validation approach, in which we determined 
the pHGood pHprobe for each data point in the calibration data-
set, while we used the remaining dataset for the calibration 
of the Good pH probe [34, 36]. To evaluate the characteriza-
tion and application of the Good pH probe, we determined 
the RMSE of prediction (RMSEP). Both the RMSECV and 
the RMSEP were calculated according to Eq. (11).

Spectral evaluation using IHM

In the IHM method, a mixture spectrum is interpreted as 
the weighted sum of the respective pure component spectra 
[33]. The results of a spectral evaluation using IHM are the 
IHM model weights �i , which correlate linearly with the cor-
responding concentrations ci:

For the application of IHM, a pure component spectrum 
is modeled as a sum of pseudo-Voigt functions, which are 
defined by four peak parameters: height, position, linewidth, 
and Gaussian fraction. These parameterized peak functions 
allow us to consider nonlinear mixture effects such as peak 
broadening or peak shifts by implementing specific peak 
parameters as degrees of freedom in the model.

To apply IHM in this study, an in-house MATLAB 
script was used. We developed an IHM pH prediction 
model for the evaluation of Raman spectra in the spectral 
range from 2700 to 3100  cm−1. This IHM pH prediction 
model consisted of a pure component model for water 
(2 peaks), a pure component model for MOPSH (10 peaks), 
and a pure component model for MOPS− (14 peaks). The 
pure component models of water, MOPSH , and MOPS− 
including all peak functions are shown in Fig. 2a, b, and 
c. Since the Raman signal of water changes its shape 

(10)pKa,MOPS =
814.077K−1

T
+ 9.865 − 0.9501 ⋅ ln(T).

(11)RMSE =

√

√

√

√

1

n

n
∑

k=1

(

pHGood pHprobe,k − pHpHelectrode,k

)2
,

(12)�i ∝ ci.

as a function of the temperature and the ionic strength, 
we implemented the position and the linewidth of both 
water peaks as degrees of freedom in the IHM pH predic-
tion model. For evaluating Raman spectra of penicillin 
G-containing samples, the IHM pH prediction model was 
extended with a pure component model for penicillin G 
(14 peaks) (Fig. 2d). Furthermore, the IHM pH predic-
tion model included a linear baseline. An exemplary fit of 
the IHM pH prediction model to a Raman spectrum of an 
aqueous solution at 35 °C and pH 6.99 containing 50 mM 
MOPS and 50 mM penicillin G is shown in Fig. 3.

To develop these four pure component models, their 
respective pure component spectra were required. All spectra 
used for the development of the IHM pH prediction model 
were recorded at 35 °C. Although the IHM pH prediction 
model was developed at a specific temperature (35 °C), its 
application at other temperatures did not require any addi-
tional adjustments. Unlike water, MOPSH , MOPS− , and 
penicillin G are no liquids in their pure form. Therefore, for 
these three components, spectra of aqueous 50 mM MOPS 
or 50 mM penicillin G solutions were used in combination 
with Complemental Hard Modeling (CHM) [37]. CHM 
allowed us to subtract the water model from these binary 
Raman spectra during the development of the respective 
pure component models. To record aqueous Raman spectra 
of almost completely protonated or deprotonated MOPS, we 
adjusted the pH value to either pH 2 or pH 12 by adding HCl 
or NaOH solution.

For the calibration of the IHM pH prediction model, 
we correlated the concentration ratio between cMOPS− and 
cMOPSH with the IHM model weight ratio between �MOPS− 
and �MOPSH via the calibration factor k:
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Fig. 2  The pure component models of water (a), protonated MOPS 
( MOPSH ) (b), deprotonated MOPS ( MOPS− ) (c), and penicillin G 
(d)
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As the concentrations of the two MOPS species were 
not known by weighing, this concentration ratio was cal-
culated from the reference pH value according to Eq. (9). 
A ratiometric calibration, as we used in this study, has the 
additional advantage that it compensates for effects such 
as a fluctuating laser power. The calibration factor k ena-
bled the determination of the concentration ratio between 
cMOPS− and cMOPSH of an unknown sample via the IHM 
model weights �MOPS− and �MOPSH.

(13)
cMOPS−

cMOPSH

= k
�MOPS−

�MOPSH

.

Results and discussion

In this study, the Good pH probe was calibrated, character-
ized, and proven to be applicable for non-invasive pH in-
line monitoring in bioprocesses during an enzyme-catalyzed 
reaction.

Calibration of the Good pH probe

To calibrate the Good pH probe, three identical standard 
experiments (“Experimental procedure” section) were per-
formed at 35 °C. In these experiments, the pH value of aque-
ous 50 mM MOPS solutions was gradually increased within 
the effective working range of MOPS (pH 6 to pH 8) by 
adding NaOH solution. In total, the calibration dataset of 
the Good pH probe consisted of 60 data points.

Figure 4 presents three exemplary calibration spectra 
measured at pH 6.01, pH 6.99, and pH 7.91. Although the 
IHM pH prediction model was developed and applied in 
the spectral range from 2700 to 3100  cm−1, we visualized 
these calibration spectra in the spectral range from 2700 to 
3040  cm−1 to highlight the MOPS-specific peaks. As the pH 
value rose, the Raman intensity of the MOPS-specific peaks 
increased in the spectral ranges from 2718 to 2738  cm−1, 
from 2765 to 2938  cm−1, and from 2950 to 2965  cm−1 (1, 
2, and 4 in Fig. 4). Conversely, the Raman intensity of the 
MOPS-specific peaks decreased in the spectral ranges from 
2938 to 2950  cm−1, from 2965 to 2982  cm−1, and from 2990 
to 3030  cm−1 (3, 5, and 6 in Fig. 4). Changes in the MOPS-
specific peaks were expected because MOPS deprotonates 
as the pH value rises, and thus the concentration of MOPS− 
increases while the concentration of MOPSH decreases. Our 
IHM pH prediction model took these changes into consid-
eration by superimposing the pure component models of 
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Fig. 4  Exemplary calibration 
spectra of the Good pH probe. 
To emphasize the MOPS-
specific peaks in the calibra-
tion spectra, the spectral range 
from 2700 to 3040  cm−1 is 
shown. The numbers 1 to 6 
denote spectral ranges in which 
MOPS-specific peaks change 
as a function of the pH value. 
All spectra were normalized 
after a constant background was 
subtracted
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MOPS− and MOPSH . In Table 1, the effect of the pH value 
on the MOPS-specific peaks is summarized.

The calibration curve of the Good pH probe, described by 
Eq. (13), is depicted in Fig. 5. This calibration curve allowed 
us to determine the calibration factor, which was 0.996. The 
proximity of this calibration factor to 1 matched our expec-
tations, since the calibration factor of a ratiometrically cali-
brated IHM model [Eq. (13)] is basically the ratio of the 
respective component’s scattering cross sections, which in 
turn are supposed to be similar if the molecular structures of 
these components are similar [28, 38].

The calibration data showed a strong linear correlation 
(Fig. 5). This conclusion is supported by the RMSECV of 
0.05 pH levels, which was within the range of the reference 
pH electrode’s measurement error. However, the fluctuation 
of the calibration data points increased with higher pH val-
ues. This increase in fluctuation was due to the calculation 
of the concentration ratio between cMOPS− and cMOPSH . As 
this ratio was calculated according to Eq. (9) from the refer-
ence pH value, the measurement error of the reference pH 

electrode led to an exponential increase in the fluctuation, 
indicated by exemplary error bars in Fig. 5.

Characterization of the Good pH probe

The characterization of the Good pH probe included four 
aspects.

Reversibility

First, we investigated the reversibility of the Good pH probe. 
The reversibility of a measurement technique describes its 
ability to provide the same measured value for a certain pro-
cess state regardless of the previous condition of the system. 
Therefore, an extended standard experiment (“Experimental 
procedure” section) at 35 °C was performed: after increasing 
the pH value of an aqueous 50 mM MOPS solution from 
pH 6 to pH 8 by adding NaOH solution, the pH value was 
decreased again to pH 6 by the addition of HCl solution.

Figure 6 shows that the Good pH probe’s pH prediction 
for this extended standard experiment was not affected by 
the previous condition of the system, in this case the previ-
ous pH value. The RMSEP for increasing the pH value was 
0.04 pH levels and the RMSEP for decreasing the pH value 
was 0.05 pH levels. These RMSEPs were within the meas-
urement error of the reference pH electrode. Consequently, 
the Good pH probe proved to be reversible.

Temperature dependence

Second, we assessed whether the pH prediction of the Good 
pH probe showed temperature dependence. The tempera-
ture is one of the main influencing factors and a source of 

Table 1  Effect of the pH value on the MOPS-specific peaks in the 
calibration spectra of the Good pH probe. This effect is defined as 
either "increase" or "decrease" depending on how the MOPS-specific 
peaks change with rising pH value

No. Spectral range in  cm−1 Effect

1 2718 to 2738 Increase
2 2765 to 2938 Increase
3 2938 to 2950 Decrease
4 2950 to 2965 Increase
5 2965 to 2982 Decrease
6 2990 to 3030 Decrease

0 3 6 9
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t = 35 °C

Fig. 5  Calibration curve of the Good pH probe. The ratio between the 
concentration of deprotonated cMOPS− and protonated MOPS cMOPSH 
is plotted against the corresponding ratio between the Indirect Hard 
Modeling (IHM) model weights of deprotonated �MOPS− and proto-
nated MOPS �MOPSH . The ratio between cMOPS− and cMOPSH was cal-
culated from the reference pH value
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Fig. 6  Reversibility of the Good pH probe. The prediction quality of 
the Good pH probe was evaluated for both increasing (NaOH) and 
decreasing (HCl) pH values. The pH prediction of the Good pH probe 
is plotted against the pH value measured with the reference pH elec-
trode. The area in gray highlights the measurement error of the refer-
ence pH electrode
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inaccuracy for spectroscopic pH monitoring, since this kind 
of pH monitoring is based on pH indicators that protonate 
or deprotonate as a function of the pH value. Besides the 
pH value, the temperature also influences the pH indica-
tor’s state of protonation, as the acid dissociation constant 
is temperature-dependent. We investigated the temperature 
dependence of the Good pH probe in the temperature range 
between 15 and 40 °C, which is the relevant range for the 
majority of bioprocesses. For this purpose, we performed 
additional standard experiments (“Experimental procedure” 
section) at 15, 20, 25, 30, 35, and 40 °C, in which the pH 
value of aqueous 50 mM MOPS solutions was increased 
from pH 6 to pH 8 by the addition of NaOH solution.

Figure 7 shows the prediction quality of the Good pH 
probe at these temperatures. The RMSEPs of the Good 
pH probe at 15 °C (0.03 pH levels), 20 °C (0.02 pH lev-
els), 25 °C (0.02 pH levels), 30 °C (0.03 pH levels), 35 °C 
(0.04 pH levels), and 40 °C (0.04 pH levels) were all within 
the range of the reference pH electrode’s measurement error, 
and Fig. 7 shows no systematic deviations in the prediction 
quality depending on the temperature. However, we must 
emphasize that the Good pH probe requires the temperature 
associated with each measurement point, since the calcula-
tion of the pH value according to Eqs. (9) and (10) involves 
the negative common logarithm of MOPS’s acid dissocia-
tion constant pKa,MOPS as a function of temperature. As the 
temperature is known for most bioprocesses, this require-
ment will not limit the scope of application for the Good 
pH probe.

Sensitivity to the ionic strength

Third, we investigated the sensitivity of the Good pH probe 
to the ionic strength. As stated in the introduction, the 
ionic strength is a common challenge for spectroscopic pH 

monitoring, which potentially limits its accuracy if activity 
coefficients are not estimated. For the Good pH probe, we 
assumed in the “Calculation of the pH value” section that the 
common logarithm of the ratio between �MOPS− and �MOPSH 
was equal to 0 [Eq. (8)] and thus eliminated the need to esti-
mate activity coefficients for the Good pH probe.

To classify to what extent this assumption influences the 
prediction quality of the Good pH probe, we conducted three 
standard experiments (“Experimental procedure” section) at 
35 °C, in which we gradually increased the ionic strength of 
aqueous 50 mM MOPS solutions to approximately 1100 mM 
by the addition of NaCl. These three experiments differed only 
in their initial pH value, which we set to either pH 6.3, pH 7.0, 
or pH 7.7 by adding NaOH solution to cover the effective work-
ing range of the Good pH probe. Each of these experiments 
comprised 31 NaCl additions. The first 12 NaCl additions 
were five times smaller than the subsequent 19 NaCl additions 
because we wanted to more closely examine the range of ionic 
strengths in which the other experiments of this study were 
performed.

In Fig. 8, the pH prediction of the Good pH probe at these 
different ionic strengths is compared with the measurement 
data of the reference pH electrode. Besides the Good pH 
probe’s pH prediction and the reference pH value, Fig. 8 
also shows the measurement error of the Good pH probe, 
defined as the RMSEP at 35 °C, and the measurement error 
of the reference pH electrode. Figure 8 demonstrates that the 
Good pH probe’s pH predictions are either within the refer-
ence error or that the probe’s error at least overlaps with the 
reference error, indicating an accurate pH prediction over a 
wide range of ionic strengths. This observation was further 
supported by the corresponding RMSEPs of the Good pH 
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Fig. 7  Temperature dependence of the Good pH probe. The pH pre-
diction of the Good pH probe at six different temperatures between 
15 and 40 °C is plotted against the pH value measured with the refer-
ence pH electrode. The area in gray highlights the measurement error 
of the reference pH electrode
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Fig. 8  The Good pH probe’s sensitivity to the ionic strength. For 
three experiments, each differing in preset pH value (pH 6.3, pH 7.0, 
pH 7.7), the ionic strength was increased to approximately 1100 mM 
by the addition of NaCl. The pH prediction of the Good pH probe 
and the pH value measured with the reference pH electrode are plot-
ted against the ionic strength in mM for these three experiments. The 
area in gray indicates the Good pH probe’s measurement error, and 
the area in light red highlights the reference pH electrode’s measure-
ment error
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probe at pH 6.3, pH 7.0, and pH 7.7, which were 0.05 pH 
levels, 0.05 pH levels, and 0.06 pH levels, respectively. All 
RMSEPs were within the measurement error of the refer-
ence pH electrode, except for the RMSEP at pH 7.7, which 
only slightly exceeded this error. These results indicated low 
sensitivity of the Good pH probe to the ionic strength and 
therefore supported the assumption we made in Eq. (8).

Applicability in more complex systems

Fourth, we investigated the applicability of the Good pH 
probe in systems where the spectral features of MOPS are 
strongly superimposed by additional components. Spectral 
superimposition is a scenario commonly encountered in the 
Good pH probe’s intended scope of application: non-invasive 
pH in-line monitoring in bioprocesses. We, therefore, added 
penicillin G, which strongly superimposes the spectral fea-
tures of MOPS (Fig. 3) and is a commonly used component 
in bioprocesses, to the aqueous 50 mM MOPS solution that 
was used so far for calibration and characterization. We con-
ducted three standard experiments (“Experimental proce-
dure” section) at 35 °C, in which we increased the pH from 
pH 6 to pH 8 in aqueous solutions containing 50 mM MOPS 
and 50 mM penicillin G by the addition of NaOH solution.

Figure 9 illustrates the prediction quality of the Good pH 
probe in these solutions. For the spectral evaluation of this 

system, the IHM pH prediction model of the Good pH probe 
was extended with a pure component model for penicillin G. 
The RMSEP of all three penicillin G-containing experiments 
was 0.02 pH levels. Consequently, the Good pH probe is also 
applicable in more complex systems with significant spectral 
superimposition.

The prediction quality of the Good pH probe was not 
degraded by the additional spectral superimposing compo-
nent, since it uses the physics-based IHM for spectral evalu-
ation. A calibrated IHM prediction model can be transferred 
to a more complex system by extending the model with the 
respective pure component models [34]. This transfer does 
not affect the recently determined calibration factors as long 
as potential newly occurring nonlinear mixture effects are 
covered by additional adjustable peak parameters in the 
model. Transferability by extendibility is a feature of IHM 
and makes the Good pH probe extremely versatile.

During the characterization, we demonstrated that the 
Good pH probe is reversible, does not show any temperature 
dependence between 15 and 40 °C, exhibits low sensitivity 
to the ionic strength up to 1100 mM, and is applicable in 
more complex systems despite significant spectral super-
imposition. All RMSEPs of the characterization are sum-
marized in Table 2.

pH in‑line monitoring during an enzyme‑catalyzed 
reaction

To prove the applicability of the Good pH probe in bio-
processes, we used the probe for non-invasive pH in-line 
monitoring during an industrially relevant enzyme-catalyzed 
reaction [3]. This reaction was the hydrolysis of penicillin G 
to 6-aminopenicillanic acid and phenylacetic acid catalyzed 
by penicillin amidase (Fig. 10). During this reaction, the pH 
value decreases, since for each molecule of penicillin G that 
reacts, two new acid molecules, 6-aminopenicillanic acid 
and phenylacetic acid, are formed. As illustrated in Fig. 10, 
the carboxyl group of 6-aminopenicillanic acid is the for-
mer carboxyl group of penicillin G. Since penicillin G is a 
strong acid, it is deprotonated between pH 6 and pH 8, which 
corresponds to the effective working range of the Good pH 
probe [39]. Therefore, the carboxyl group of 6-aminopenicil-
lanic acid was already deprotonated and did not affect the pH 
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Fig. 9  Applicability of the Good pH probe in a more complex system 
in which penicillin G significantly superimposes the spectral features 
of MOPS. The pH prediction of the Good pH probe is plotted against 
the pH value measured with the reference pH electrode. The area in 
gray highlights the measurement error of the reference pH electrode

Table 2  Characterization of the 
Good pH probe

Characteristic RMSEP in pH levels

Reversibility 0.04 (pH increase), 0.05 (pH decrease)
Temperature dependence 0.03 (15 °C), 0.02 (20 °C), 0.02 (25 °C),

0.03 (30 °C), 0.04 (35 °C), 0.04 (40 °C)
Influence of ionic strength 0.05 (pH 6.3), 0.05 (pH 7.0), 0.06 (pH 7.7)
Applicability in case of spectral superimposition 0.03 (experiment 1), 0.02 (experiment 2),

0.02 (experiment 3)
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value. However, the carboxyl group of phenylacetic acid was 
newly formed during the enzyme-catalyzed reaction and led 
to a decrease in the pH value.

The pH in-line monitoring results for the Good pH probe are 
shown in Fig. 11. As soon as the pH value decreased to pH 8, 
the Good pH probe’s pH monitoring started, and after 4.23 h, 
the final pH value was pH 6.83. The Good pH probe accu-
rately predicted the trend in the pH value during the enzyme-
catalyzed reaction, and no systematic deviations were observed 
within the measurement error of the reference pH electrode. 
This conclusion is supported by the RMSEP of 0.04 pH levels.

The response time for the Good pH probe during the in-line 
monitoring of this enzyme-catalyzed reaction was approxi-
mately 68 s. This response time is comparable to that of com-
mercial pH electrodes [40]. As the response time of the Good 
pH probe was mainly subject to the excitation time of one accu-
mulated Raman spectrum (“Raman spectra” section), it can be 
further improved by shortening the excitation time. Finally, we 
proved the applicability of the Good pH probe for non-invasive 
pH in-line monitoring in an enzyme-catalyzed reaction.

Evaluation of the Good pH probe

Using the Good pH probe for spectroscopic pH in-line moni-
toring in bioprocesses offers many advantages: As described 
in the introduction, it is completely non-invasive, since it 

utilizes the Good buffer MOPS, a pH buffer that is already 
part of many bioprocesses, as pH indicator. The Good pH 
probe does not require the estimation of activity coefficients, 
because MOPS exhibits the lowest possible charge for a pH 
indicator, as we explained in the “Calculation of the pH 
value” section and validated in the “Characterization of the 
Good pH probe” section. Moreover, the Good pH probe is 
reversible and temperature-independent between 15 and 
40 °C (“Characterization of the Good pH probe” section). 
Although it was developed on a scale of several milliliters, it 
will also be applicable in small-scale systems such as micro-
titer plates or microchannels.

Despite all these advantages, the successful application 
of the Good pH probe is confronted with challenges. The 
evaluation of bioprocess Raman spectra is complex: While 
the IHM pH prediction model does not require recalibra-
tion for each new bioprocess to be monitored, because of 
transferability by extendibility (“Characterization of the 
Good pH probe” section), it does need to be extended and 
updated. Moreover, the Good pH probe is only applicable to 
bioprocesses that use a Good buffer to stabilize the process’s 
pH value. Lastly, as Good buffers are designed to effectively 
buffer in the physiological pH range, the effective working 
range of the Good pH probe is limited to approximately two 
pH levels in this pH range.

Commercially available systems for spectroscopic pH 
monitoring such as those from Ocean Insight or PreSens 
Precision Sensing combine pH indicators immobilized in 
sensor spots with absorption or fluorescence spectroscopy 
[6, 13]. Compared with the Good pH probe, these systems 
offer a wider effective working range, while their perfor-
mance in terms of accuracy and response time is similar. 
However, unlike the Good pH probe, which uses Raman 
spectroscopy, these approaches cannot simultaneously moni-
tor additional critical process parameters (e.g., substrate, 
metabolite, and product concentrations), nor are they com-
pletely non-invasive.

Olaetxea et al. [21], Metcalfe et al. [22], and Schenk 
et al. [20] have contributed to spectroscopic pH monitoring 
in bioprocesses, each advocating completely non-invasive 
approaches. For instance, Olaetxea et al. [21] used hemo-
globin as pH indicator in combination with Raman spec-
troscopy to monitor the pH value in ex vivo pig blood sam-
ples, which demonstrated the potential of their approach for 
in vivo applications. Contrary to Olaetxea et al. [21], we 

Fig. 10  Hydrolysis of penicil-
lin G to 6-aminopenicillanic 
acid and phenylacetic acid by 
penicillin amidase N
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Fig. 11  Non-invasive pH in-line monitoring with the Good pH probe 
during the hydrolysis of penicillin G to 6-aminopenicillanic acid and 
phenylacetic acid catalyzed by penicillin amidase. The pH prediction 
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do not intend to apply the Good pH probe in vivo, since 
Good buffers are not already part of living organisms and 
are designed to have low biological membrane permeability. 
Metcalfe et al. [22] and Schenk et al. [20] both used phos-
phate buffer as pH indicator and combined it with Raman or 
mid-infrared spectroscopy to on-line monitor the pH value 
during E. coli fermentations. Their effective working range 
and the prediction quality are comparable to the Good pH 
probe. Unlike in our study, however, in these two studies, the 
estimation of the activity coefficients was required.

What remains to be shown is whether the Good pH probe 
can be successfully applied to more complex bioprocesses 
beyond enzyme reactions, such as E. coli fermentations. In 
this regard, our previous study has already demonstrated 
that the combination of Raman spectroscopy and IHM is 
capable of monitoring other critical process parameters in 
glucose to ethanol fermentations by Saccharomyces cerevi-
siae (S. cerevisiae) [34].

Conclusion

In this study, we successfully developed the Good pH probe, 
which is applicable in the effective working range from pH 6 
to pH 8 and does not require the estimation of activity coef-
ficients. The Good pH probe uses the Good buffer MOPS 
as pH indicator, Raman spectroscopy as spectroscopic tech-
nique, and IHM for the spectral evaluation. As MOPS is 
a frequently used pH buffer in bioprocesses, the Good pH 
probe is completely non-invasive.

To calibrate the Good pH probe, we used three calibration 
experiments, each comprising 20 Raman spectra. During 
characterization, we were able to prove that the Good pH 
probe is reversible, shows no temperature dependence in 
the biological relevant temperature range between 15 and 
40 °C, exhibits low sensitivity to the ionic strength up to 
approximately 1100 mM, and is applicable in systems that 
show massive spectral superimposition with the spectral 
features of MOPS. For all characterization experiments, 
the pH prediction quality of the Good pH probe was within 
the expected error of the reference pH electrode (± 0.05 pH 
levels). Finally, we successfully applied the Good pH probe 
for the non-invasive pH in-line monitoring of an industrially 
relevant enzyme-catalyzed reaction. This enzyme-catalyzed 
reaction was the hydrolysis of penicillin G to 6-aminopeni-
cillanic acid and phenylacetic acid by penicillin amidase, in 
which the pH value continuously decreased. In this enzyme-
catalyzed reaction, we obtained an RMSEP of 0.04 pH lev-
els, which was again within the expected error of the refer-
ence pH electrode.

The objectives of future studies will be to combine 
the Good pH probe with further Good buffers, to use the 
probe  for non-invasive pH  in-line monitoring of other 

bioprocesses (e.g., fermentations or cell cultures), and to 
apply the Good pH probe in small-scale systems, which 
may include microtiter plates or microchannels.

To conclude, we proved the Good pH probe to be an 
effective approach for non-invasive pH in-line monitor-
ing, offering accurate measurements and applicability 
in bioprocesses, while demonstrating robustness against 
influencing factors such as temperature and ionic strength. 
Furthermore, with the Good pH probe, we added the pH 
value to the list of critical process parameters that can be 
monitored using Raman spectroscopy and IHM.
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