Skip to main content
Log in

Target immobilization on glass microfiber membranes as a label-free strategy for hit identification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The discovery of novel chemical entities targeting G protein-coupled receptors (GPCRs) is usually guided by their receptor affinity. However, traditional affinity assay methods and hit identification procedures are usually laborious and expensive. In this work, the type-2 vasopressin receptor (V2R) was chosen as a prototypical GPCR. Membrane fragments from cells highly expressing SNAP-V2R were immobilized on the surface of a glass microfiber (GMF) coated with O6-benzylguanine (BG). This was achieved by transferring the benzyl group of BG to the active site of the SNAP-tag through a nucleophilic substitution reaction. As a result, a biofilm called SNAP-V2R@GMF-BG was produced that showed good specificity and stability. The adsorption ratio for each V2R ligand treated with SNAP-V2R@GMF-BG was determined by HPLC and exhibited a good linear correlation with the Ki value determined by displacement assays. Furthermore, a Ki prediction assay was performed by comparing the data with that generated by a homogeneous time-resolved fluorescence (HTRF) assay. SNAP-V2R@GMF-BG was also used to screen hit compounds from natural products. After SNAP-V2R@GMF-BG was incubated with the total extract, the ligand that binds to V2R could be separated and subjected to LC‒MS analysis for identification. Baicalein was screened from Clerodendranthus spicatus and verified as a potential V2R antagonist. This V2R-immobilized GMF platform can help determine the affinity of V2R-binding hit compounds and screen the compounds efficiently and accurately.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AVP:

Arginine vasopressin

GPCR:

G protein-coupled receptor

TR-FRET:

Time-resolved fluorescence resonance energy transfer

V2R:

Type-2 vasopressin receptor

GMF:

Glass microfiber filters

BG:

O6-Benzylguanine

CS:

Clerodendran thus spicatus

HTRF:

Homogeneous time-resolved fluorescence

References

  1. Maryanoff BE. Adventures in drug discovery: potent agents based on ligands for cell-surface receptors. Acc Chem Res. 2006;39(11):831–40. https://doi.org/10.1021/ar040112l.

    Article  CAS  PubMed  Google Scholar 

  2. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–42. https://doi.org/10.1038/nrd.2017.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rebbeck R, Ginsburg KS, Ko CY, Fasoli A, Rusch K, Cai GF, Dong X, Thomas DD, Bers DM, Cornea RL. Synergistic FRET assays for drug discovery targeting RyR2 channels. J Mol Cell Cardiol. 2022;168:13–23. https://doi.org/10.1016/j.yjmcc.2022.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang D, Zhao W, Zhang Z, Zhang Y, Li J, Huang W. Design, synthesis and biological evaluation of novel biphenylsulfonamide derivatives as selective AT(2) receptor antagonists. Front Chem Chin. 2022;10:984717. https://doi.org/10.3389/fchem.2022.984717.

    Article  CAS  Google Scholar 

  5. Fenton RA, Brond L, Nielsen S, Praetorius J. Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol. 2007;293(3):F748-760. https://doi.org/10.1152/ajprenal.00316.2006.

    Article  CAS  PubMed  Google Scholar 

  6. Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019;393(10174):919–35. https://doi.org/10.1016/s0140-6736(18)32782-x.

    Article  PubMed  Google Scholar 

  7. Zhang H, Yan W, Sun Y, Yuan H, Su L, Cao X, Wang P, Xu Z, Hu Y, Wang Z, Wang Y, Fu K, Sun Y, Chen Y, Cheng J, Guo D. Long residence time at the vasopressin V2 receptor translates into superior inhibitory effects in ex vivo and in vivo models of autosomal dominant polycystic kidney disease. J Med Chem. 2022;65(11):7717–28. https://doi.org/10.1021/acs.jmedchem.2c00011.

    Article  CAS  PubMed  Google Scholar 

  8. Yamamura YNS, Itoh S, Hirano T, Onogawa T, Yamashita T, Yamada Y, Tsujimae K, Aoyama M, Kotosai K, Ogawa H, Yamashita H, Kondo K, Tominaga M, Tsujimoto G, Mori T. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther. 1998;287:860–7.

    CAS  PubMed  Google Scholar 

  9. FDA Drug Safety Communication: FDA warns of serious liver injury risk with hepatitis C treatments Viekira Pak and Technivie. Drug Safety Communication. 2015. https://www.drugs.com/fda/hepatitis-c-treatments-viekira-pak-technivie-safety-communication-risk-serious-liver-injury-13781.html. Accessed 22 Oct 2015.

  10. Shar PA, Tao W, Gao S, Huang C, Li B, Zhang W, Shahen M, Zheng C, Bai Y, Wang Y. Pred-binding: large-scale protein-ligand binding affinity prediction. J Enzyme Inhib Med Chem. 2016;31(6):1443–50. https://doi.org/10.3109/14756366.2016.1144594.

    Article  CAS  PubMed  Google Scholar 

  11. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2003;21(1):86–9. https://doi.org/10.1038/nbt765.

    Article  CAS  PubMed  Google Scholar 

  12. Chidley C, Haruki H, Pedersen MG, Muller E, Johnsson K. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol. 2011;7(6):375–83. https://doi.org/10.1038/nchembio.557.

    Article  CAS  PubMed  Google Scholar 

  13. Fu J, Jia Q, Liang P, Wang S, Zhou H, Zhang L, Gao C, Wang H, Lv Y, Han S. Targeting and covalently immobilizing the EGFR through SNAP-Tag technology for screening drug leads. Anal Chem. 2021;93(34):11719–28. https://doi.org/10.1021/acs.analchem.1c01664.

    Article  CAS  PubMed  Google Scholar 

  14. Xu L, Tang C, Li X, Li X, Yang H, Mao R, He J, Li W, Liu J, Li Y, Shi S, Xiao X, Wang X. Ligand fishing with cellular membrane-coated cellulose filter paper: a new method for screening of potential active compounds from natural products. Anal Bioanal Chem. 2019;411(10):1989–2000. https://doi.org/10.1007/s00216-019-01662-z.

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, Xia L, Fu K, Cao X, Yan W, Cheng J, Roux T, Peletier LA, Yin X, Guo D. Revisit ligand-receptor interaction at the human vasopressin V2 receptor: a kinetic perspective. Eur J Pharmacol. 2020;880:173157. https://doi.org/10.1016/j.ejphar.2020.173157.

    Article  CAS  PubMed  Google Scholar 

  16. Cao X, Wang P, Yuan H, Zhang H, He Y, Fu K, Fang Q, Liu H, Su L, Yin L, Xu P, Xie Y, Xiong X, Wang J, Zhu X, Guo D. Benzodiazepine derivatives as potent vasopressin V2 receptor antagonists for the treatment of autosomal dominant kidney disease. J Med Chem. 2022;65(13):9295–311. https://doi.org/10.1021/acs.jmedchem.2c00567.

    Article  CAS  PubMed  Google Scholar 

  17. Yun Y, Chen J, Liu R, Chen W, Liu C, Wang R, Hou Z, Yu Z, Sun Y, IJ AP, Heitman LH, Yin X, Guo D. Long residence time adenosine A1 receptor agonists produce sustained wash-resistant antilipolytic effect in rat adipocytes. Biochem Pharmacol. 2019;164:45–52. https://doi.org/10.1016/j.bcp.2019.03.032.

    Article  CAS  PubMed  Google Scholar 

  18. Li JL, Gao YH, Jin CX, Wang Y, He M, Dong WW, Zhao J, Li D, Shang HB. Facile surface modification of glass-fiber membrane with silylating reagent through chemical bonding for the selective separation and recycling of diverse dyes from aqueous solutions. ChemistrySelect. 2018;3(45):12734–41. https://doi.org/10.1002/slct.201802943.

    Article  CAS  Google Scholar 

  19. Mhatre AM, Chappa S, Ojha S, Pandey AK. Functionalized glass fiber membrane for extraction of iodine species. Sep Sci Technol. 2018;54(9):1469–77. https://doi.org/10.1080/01496395.2018.1520729.

    Article  CAS  Google Scholar 

  20. Liu J, Zhang HX, Shi YP. Lipase immobilization on magnetic cellulose microspheres for rapid screening inhibitors from traditional herbal medicines. Talanta. 2021;231:122374. https://doi.org/10.1016/j.talanta.2021.122374.

    Article  CAS  PubMed  Google Scholar 

  21. Phiri I, Eum KY, Kim JW, Choi WS, Kim SH, Ko JM, Jung H. Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fiber membranes. J Ind Eng Chem. 2019;73:78–86. https://doi.org/10.1016/j.jiec.2018.12.049.

    Article  CAS  Google Scholar 

  22. Zhou H, Fu J, Jia Q, Wang S, Liang P, Wang Y, Lv Y, Han S. Magnetic nanoparticles covalently immobilizing epidermal growth factor receptor by SNAP-Tag protein as a platform for drug discovery. Talanta. 2022;240:123204. https://doi.org/10.1016/j.talanta.2021.123204.

    Article  CAS  PubMed  Google Scholar 

  23. Bandara PC, Nadres ET, Rodrigues DF. Use of response surface methodology to develop and optimize the composition of a chitosan-polyethyleneimine-graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water. ACS Appl Mater Interfaces. 2019;11(19):17784–95. https://doi.org/10.1021/acsami.9b03601.

    Article  CAS  PubMed  Google Scholar 

  24. Hu Q, Zhang X, Jia L, Zhen X, Pan X, Xie X, Wang S. Engineering biomimetic graphene nanodecoys camouflaged with the EGFR/HEK293 cell membrane for targeted capture of drug leads. J Biomater Sci, Polym Ed. 2020;8(20):5690–7. https://doi.org/10.1039/d0bm00841a.

    Article  CAS  Google Scholar 

  25. Hu Q, Bu Y, Zhen X, Xu K, Ke R, Xie X, Wang S. Magnetic carbon nanotubes camouflaged with cell membrane as a drug discovery platform for selective extraction of bioactive compounds from natural products. Chem Eng J. 2019;364:269–79. https://doi.org/10.1016/j.cej.2019.01.171.

    Article  CAS  Google Scholar 

  26. Sykes DA, Moore H, Stott L, Holliday N, Javitch JA, Lane JR, Charlton SJ. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun. 2017;8(1):763. https://doi.org/10.1038/s41467-017-00716-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bu Y, Hu Q, Ke R, Sui Y, Xie X, Wang S. Cell membrane camouflaged magnetic nanoparticles as a biomimetic drug discovery platform. Chem Commun (Camb). 2018;54(95):13427–30. https://doi.org/10.1039/c8cc08530g.

    Article  CAS  PubMed  Google Scholar 

  28. Bandara GC, Heist CA, Remcho VT. Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein content analysis. Talanta. 2018;176:589–94. https://doi.org/10.1016/j.talanta.2017.08.031.

    Article  CAS  PubMed  Google Scholar 

  29. Woo S, Park HR, Park J, Yi J, Hwang W. Robust and continuous oil/water separation with superhydrophobic glass microfiber membrane by vertical polymerization under harsh conditions. Sci Rep. 2020;10(1):21413. https://doi.org/10.1038/s41598-020-78271-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao HH, Liu YQ, Chen J. Screening acetylcholinesterase inhibitors from traditional Chinese medicines by paper-immobilized enzyme combined with capillary electrophoresis analysis. J Pharm Biomed Anal. 2020;190:113547. https://doi.org/10.1016/j.jpba.2020.113547.

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Ma XH, Dong YM, Jin L, Chen J. Alpha-Glucosidase immobilization on polydopamine-coated cellulose filter paper and enzyme inhibitor screening. Anal Biochem. 2020;605:113832. https://doi.org/10.1016/j.ab.2020.113832.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Guan C, Gao X, Zuo X, Yang W, Yan H, Shi M, Li H, Sain M. High efficiency solar membranes structurally designed with 3D core-2D shell SiO2@amino-carbon hybrid advanced composite for facile steam generation. ACS Appl Mater Interfaces. 2020;12(31):35493–501. https://doi.org/10.1021/acsami.0c10461.

    Article  CAS  PubMed  Google Scholar 

  33. Mallick I, Kirtania P, Szabo M, Bashir F, Domonkos I, Kos PB, Vass I. A simple method to produce Synechocystis PCC6803 biofilm under laboratory conditions for electron microscopic and functional studies. PLoS One. 2020;15(7):e0236842. https://doi.org/10.1371/journal.pone.0236842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Q, Bu Y, Cao R, Zhang G, Xie X, Wang S. Stability designs of cell membrane cloaked magnetic carbon nanotubes for improved life span in screening drug leads. Anal Chem. 2019;91(20):13062–70. https://doi.org/10.1021/acs.analchem.9b03268.

    Article  CAS  PubMed  Google Scholar 

  35. Chen WD, Zhao YL, Sun WJ, He YJ, Liu YP, Jin Q, Yang XW, Luo XD. “Kidney tea” and its bioactive secondary metabolites for treatment of gout. J Agric Food Chem. 2020;68(34):9131–8. https://doi.org/10.1021/acs.jafc.0c03848.

    Article  CAS  PubMed  Google Scholar 

  36. Chen WD, Zhao YL, Dai Z, Zhou ZS, Zhu PF, Liu YP, Zhao LX, Luo XD. Bioassay-guided isolation of anti-inflammatory diterpenoids with highly oxygenated substituents from kidney tea (Clerodendranthus spicatus). J Food Biochem. 2020;44(12):e13511. https://doi.org/10.1111/jfbc.13511.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Biotree Biomedical Technology Co., Ltd., for technical assistance with HRMS analysis.

Funding

This project was financially supported by the National Natural Science Foundation of China (22077110, 22377103, 8234869), the Natural Science Foundation of Jiangsu Province (BK20200106), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA350001, 21KJB350025), and the project of scientific and technological development of traditional Chinese medicine in Jiangsu province (MS2021106). This project was partly performed at the National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University) and funded by the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (grant number 202210313024Z).

Author information

Authors and Affiliations

Authors

Contributions

Yinan Wang: original draft. Yan He: data curation. Xiaojiao Ye: editing and visualization. Yixiao Zhang: methodology. Xiuxiu Huang: validation. Hongli Liu: software. Wenqing Dong: visualization. Dongzhi Yang: supervision. Dong Guo: writing — review and editing.

Corresponding authors

Correspondence to Dongzhi Yang or Dong Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, Y., Ye, X. et al. Target immobilization on glass microfiber membranes as a label-free strategy for hit identification. Anal Bioanal Chem 415, 6743–6755 (2023). https://doi.org/10.1007/s00216-023-04951-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04951-w

Keywords

Navigation