Skip to main content
Log in

Identification of DNA variants at ultra-low variant allele frequencies via Taq polymerase cleavage of wild-specific blockers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Detecting mutations related to tumors holds immense clinical significance for cancer diagnosis and treatment. However, the presence of highly redundant wild DNA poses a challenge for the advancement of low-copy mutant ctDNA genotyping in cancer cases. To address this, a Taqman qPCR strategy to identify rare mutations at low variant allele fractions (VAFs) has been developed. This strategy combines mutant-specific primers with wild-specific blockers. Diverging from other blocker-mediated PCRs, which rely on primer-induced strand displacement or the use of modified oligos resistant to Taq polymerase, our innovation is built upon the cleavage of specific blockers by Taq polymerase. Given its unique design, which does not hinge on strand displacement or base modification, we refer to this novel method as unmodified-blocker cleavage PCR (UBC-PCR). Multiple experiments consistently confirmed that variant distinction was improved significantly by introduction of 5′ unmatched blockers into the reaction. Moreover, UBC-PCR successfully detected mutant DNA at VAFs as low as 0.01% across six different variant contexts. Multiplex UBC-PCR was also performed to identify a reference target and three mutations with a sensitivity of 0.01% VAFs in one single tube. In profiling the gene status from 12 lung cancer ctDNA samples and 22 thyroid cancer FNA DNA samples, UBC-PCR exhibited a 100% concordance rate with ddPCR and a commercial ARMS kit, respectively. Our work demonstrates that UBC-PCR can identify low-abundance variants with high sensitivity in multiplex reactions, independent of strand displacement and base modification. This strategy holds the potential to significantly impact clinical practice and precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61.

    Article  CAS  PubMed  Google Scholar 

  2. Shastry BS. SNP alleles in human disease and evolution. J Hum Genet. 2002;47:561.

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi S, Canepa HM, Bailey AS, Nakayama S, Yamaguchi N, Goldstein MA, et al. Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2013;8(1):118–22.

    Article  CAS  Google Scholar 

  4. Wen S, Dai L, Wang L, Wang W, Wu D, Wang K, et al. Genomic signature of driver genes identified by target next-generation sequencing in Chinese non-small cell lung cancer. Oncologist. 2019;24(11):e1070–e81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G. "Liquid biopsy"-ctDNA detection with great potential and challenges. Ann Transl Med. 2015;3(16):235.

    PubMed  PubMed Central  Google Scholar 

  6. Giménez-Capitán A, Bracht J, García JJ, Jordana-Ariza N, García B, Garzón M, et al. Multiplex detection of clinically relevant mutations in liquid biopsies of cancer patients using a hybridization-based platform. Clin Chem. 2021;67(3):554–63.

    Article  PubMed  Google Scholar 

  7. Yin J, Deng J, Wang L, Du C, Zhang W, Jiang X. Detection of circulating tumor cells by fluorescence microspheres-mediated amplification. Anal Chem. 2020;92(10):6968–76.

    Article  CAS  PubMed  Google Scholar 

  8. Riva F, Dronov OI, Khomenko DI, Huguet F, Louvet C, Mariani P, et al. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer. Mol Oncol. 2016;10(3):481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allin DM, Shaikh R, Carter P, Thway K, Sharabiani MTA, Gonzales-de-Castro D, et al. Circulating tumour DNA is a potential biomarker for disease progression and response to targeted therapy in advanced thyroid cancer. Eur J Cancer. 2018;103:165–75.

    Article  CAS  PubMed  Google Scholar 

  10. Lv X, Zhao M, Yi Y, Zhang L, Guan Y, Liu T, et al. Detection of rare mutations in CtDNA using next generation sequencing. J Visualized Exp. 2017;126:e56342

  11. Liu G, Ma X, Tang Y, Miao P. Ratiometric fluorescence method for ctDNA analysis based on the construction of a DNA four-way junction. Analyst. 2020;145(4):1174–8.

    Article  CAS  PubMed  Google Scholar 

  12. Chai H, Tang Y, Guo Z, Miao P. Ratiometric electrochemical switch for circulating tumor DNA through recycling activation of blocked DNAzymes. Anal Chem. 2022;94(6):2779–84.

    Article  CAS  PubMed  Google Scholar 

  13. Wu LR, Chen SX, Wu Y, Patel AA, Zhang DY. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat Biomed Eng. 2017;1(9):714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El Achi H, Khoury JD, Loghavi S. Liquid biopsy by next-generation sequencing: a multimodality test for management of cancer. Curr Hematol Malig Rep. 2019;14(5):358–67.

    Article  PubMed  Google Scholar 

  16. Wang Y, Yang Y, Cao X, Liu Z, Chen B, Du Q, et al. Simple and ultrasensitive detection of glioma-related ctDNAs in mice serum by SERS-based catalytic hairpin assembly signal amplification coupled with magnetic aggregation. Int J Nanomed. 2023;18:3211–30.

    Article  CAS  Google Scholar 

  17. Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Delivery Rev. 2016;105(Pt A):3–19.

    Article  CAS  Google Scholar 

  18. Oliveira BB, Costa B, Morão B, Faias S, Veigas B, Pereira LP, et al. Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples. Anal Bioanal Chem. 2023;415(14):2849–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morlan J, Baker J, Sinicropi D. Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One. 2009;4(2):e4584-e.

    Article  Google Scholar 

  20. Qu S, Liu L, Gan S, Feng H, Zhao J, Zhao J, et al. Detection of low-level DNA mutation by ARMS-blocker-Tm PCR. Clin Biochem. 2016;49(3):287–91.

    Article  CAS  PubMed  Google Scholar 

  21. Byrom M, Bhadra S, Jiang YS, Ellington AD. Exquisite allele discrimination by toehold hairpin primers. Nucleic Acids Res. 2014;42(15):e120.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, Rodriguez L, Cheng LY, Wang M, Zhang DY. Single-tube qPCR detection and quantitation of hotspot mutations down to 0.01% variant allele fraction. Anal Chem. 2022;94(2):934–43.

    Article  CAS  PubMed  Google Scholar 

  23. Fouz MF, Appella DH. PNA clamping in nucleic acid amplification protocols to detect single nucleotide mutations related to cancer. Molecules (Basel, Switzerland). 2020;25(4):E786.

    Article  Google Scholar 

  24. Kim Y-T, Kim JW, Kim SK, Joe GH, Hong IS. Simultaneous genotyping of multiple somatic mutations by using a clamping PNA and PNA detection probes. Chembiochem. 2015;16(2):209–13.

    Article  CAS  PubMed  Google Scholar 

  25. Tanigawa N, Fujita T, Fujii H. Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR): a simple method for suppressing PCR amplification of specific DNA sequences using ORNs. PLoS One. 2014;9(11):e113345.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fujita T, Nagata S, Fujii H. Oligoribonucleotide-mediated blockade of DNA extension by Taq DNA polymerases increases specificity and sensitivity for detecting single-nucleotide differences. Anal Chem. 2023;95(6):3442–51.

    Article  CAS  PubMed  Google Scholar 

  27. Lázaro A, Tortajada-Genaro LA, Maquieira Á. Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene. Anal Bioanal Chem. 2021;413(11):2961–9.

    Article  PubMed  Google Scholar 

  28. Zuo Z, Chen SS, Chandra PK, Galbincea JM, Soape M, Doan S, et al. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples. Mod Pathol. 2009;22(8):1023–31.

    Article  CAS  PubMed  Google Scholar 

  29. How-Kit A, Lebbé C, Bousard A, Daunay A, Mazaleyrat N, Daviaud C, et al. Ultrasensitive detection and identification of BRAF V600 mutations in fresh frozen, FFPE, and plasma samples of melanoma patients by E-ice-COLD-PCR. Anal Bioanal Chem. 2014;406(22):5513–20.

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y, Wu T, Johnson-Buck A, Li L, Su X. A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion. Biosens Bioelectron. 2016;82:248–54.

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Lin B, Chen L, Li N, Xu J, Wang J, et al. Branch-migration based fluorescent probe for highly sensitive detection of mercury. Anal Chem. 2018;90(20):11764–9.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao X, Wu T, Xu L, Chen W, Zhao M. A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations. Nucleic Acids Res. 2017;45(10):e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Li L, Chen N, She Y, Wang S, Liu N, et al. Endonuclease IV based competitive DNA probe assay for differentiation of low-abundance point mutations by discriminating stable single-base mismatches. Chem Commun (Cambridge, U K). 2017;53(68):9422–5.

    Article  CAS  Google Scholar 

  34. Efrati E, Elkin H, Peerless Y, Sabo E, Ben-Izhak O, Hershkovitz D. LNA-based PCR clamping enrichment assay for the identification of KRAS mutations. Cancer Biomarkers. 2010;8(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  35. Chen D, Huang J-F, Xia H, Duan G-J, Chuai Z-R, Yang Z, et al. High-sensitivity PCR method for detecting BRAF V600E mutations in metastatic colorectal cancer using LNA/DNA chimeras to block wild-type alleles. Anal Bioanal Chem. 2014;406(9-10):2477–87.

    Article  CAS  PubMed  Google Scholar 

  36. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88(16):7276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Sun J, Zhao G, Xiong S, Ma Y, Zheng M. Transient stem-loop structure of nucleic acid template may interfere with polymerase chain reaction through endonuclease activity of Taq DNA polymerase. Gene. 2021;764:145095.

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Huang X, Li X, Guo Q, Xu W, Zhao M, et al. Performance comparison of commercial kits for isolating and detecting circulating tumor DNA. Scand J Clin Lab Invest. 2021;81(4):276–81.

    Article  CAS  PubMed  Google Scholar 

  39. Liu W, Wang C, Pan F, Shao J, Cui Y, Han D, et al. Clinical application of a multiplex droplet digital PCR in the rapid diagnosis of children with suspected bloodstream infections. Pathogens. 2023;12(5):719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alvarez-Garcia V, Bartos C, Keraite I, Trivedi U, Brennan PM, Kersaudy-Kerhoas M, et al. A simple and robust real-time qPCR method for the detection of PIK3CA mutations. Sci Rep. 2018;8(1):4290.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu J, Pu Y, Lin R, Xiao S, Fu Y, Wang T. PEAC: An ultrasensitive and cost-effective MRD detection system in non-small cell lung cancer using plasma specimen. Front Med (Lausanne). 2022;9:822200.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park J, Song M, Jang W, Chae H, Lee GD, Kim K, et al. Peptide nucleic acid probe-based fluorescence melting curve analysis for rapid screening of common JAK2, MPL, and CALR mutations. Clin Chim Acta. 2017;465:82–90.

    Article  CAS  PubMed  Google Scholar 

  43. Ugozzoli LA, Latorra D, Pucket R, Arar K, Hamby K. Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal Biochem. 2004;324(1):143–52.

    Article  CAS  PubMed  Google Scholar 

  44. Cao G, Kong J, Xing Z, Tang Y, Zhang X, Xu X, et al. Rapid detection of CALR type 1 and type 2 mutations using PNA-LNA clamping loop-mediated isothermal amplification on a CD-like microfluidic chip. Anal Chim Acta. 2018;1024:123–35.

    Article  CAS  PubMed  Google Scholar 

  45. Iliadi A, Petropoulou M, Ioannou PC, Christopoulos TK, Anagnostopoulos NI, Kanavakis E, et al. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer. Anal Chem. 2011;83(17):6545–51.

    Article  CAS  PubMed  Google Scholar 

  46. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods. 2004;56(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  47. Diekema DJ, Pfaller MA. Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin Infect Dis. 2013;56(11):1614–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Natural Science Foundation of China (NSFC) (82172954, 81872056, 82003581, and 81903391), Natural Science Foundation of Jiangsu Province (BK20190148), “333” Engineering Project Jiangsu province ((2022) 2-060), Jiangsu Young Medical Talents (QNRC2016188), Taihu Talent Plan (JZ), Reserve Talents of Double Hundred Talent Plan (HB2020017, HB2020018), General Program of Jiangsu Commission of Health (M2020012), Wuxi Medical Innovation Team (CXTD2021006), Wuxi Science and Technology Development Fund (N20192048), and Cohort and Clinical Research Program of Wuxi Medical Center, Nanjing Medical University (WMCC202304). Jiangsu Association for Science and Technology Support Project for Young Scientific and Technological Talents also supported this work. We thank Clarity Manuscript Consultants for assistance with language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wang or Jian Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.51 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X., Zhang, R. et al. Identification of DNA variants at ultra-low variant allele frequencies via Taq polymerase cleavage of wild-specific blockers. Anal Bioanal Chem 415, 6537–6549 (2023). https://doi.org/10.1007/s00216-023-04931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04931-0

Keywords

Navigation