Skip to main content

Advertisement

Log in

Metabolic profiling of urinary exosomes for systemic lupus erythematosus discrimination based on HPL-SEC/MALDI-TOF MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract 

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andonopoulos AP, Constantopoulos SH, Galanopoulou V, Drosos AA, Acritidis NC, Moutsopoulos HM. Pulmonary function of nonsmoking patients with systemic lupus erythematosus. Chest. 1988;94(2):312–5.

    Article  CAS  PubMed  Google Scholar 

  2. Basta F, Fasola F, Triantafyllias K, Schwarting A. Systemic lupus erythematosus (sle) therapy: the old and the new. Rheumatol Ther. 2020;7(3):433–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc Nephrol. 2017;12(5):825–35.

    Article  PubMed  Google Scholar 

  4. Perez-Hernandez J, Cortes R. Extracellular vesicles as biomarkers of systemic lupus erythematosus. Dis Markers. 2015;2015:613536.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol. 2003;56(7):481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;384(9957):1878–88.

    Article  PubMed  Google Scholar 

  7. Ippolito A, Petri M. An update on mortality in systemic lupus erythematosus. Clin Exp Rheumatol. 2008;26(5):S72–9.

    CAS  PubMed  Google Scholar 

  8. Drug, Therapeutics B. Systemic lupus erythematosus — an update. Drug Ther Bull. 2011;49(7):81–4.

  9. Zhang B, Zhao M, Lu Q. Extracellular vesicles in rheumatoid arthritis and systemic lupus erythematosus: functions and applications. Front Immunol. 2020;11:575712.

    Article  CAS  PubMed  Google Scholar 

  10. Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf. 2017;16(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  11. Parikh SV, Almaani S, Brodsky S, Rovin BH. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis. 2020;76(2):265–81.

    Article  PubMed  Google Scholar 

  12. Frodlund M, Reid S, Wetterö J, Dahlström Ö, Sjöwall C, Leonard D. The majority of Swedish systemic lupus erythematosus patients are still affected by irreversible organ impairment: factors related to damage accrual in two regional cohorts. Lupus. 2019;28(10):1261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bajaj S, Albert L, Gladman DD, Urowitz MB, Hallett DC, Ritchie S. Serial renal biopsy in systemic lupus erythematosus. J Rheumatol. 2000;27(12):2822–6.

    CAS  PubMed  Google Scholar 

  14. Hsieh YP, Wen YK, Chen ML. The value of early renal biopsy in systemic lupus erythematosus patients presenting with renal involvement. Clin Nephrol. 2012;77(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  15. Kang ES, Ahn SM, Oh JS, Kim H, Yang WS, Kim Y-G, et al. Risk of bleeding-related complications after kidney biopsy in patients with systemic lupus erythematosus. Clin Rheumatol. 2023;42(3):751–9.

    Article  PubMed  Google Scholar 

  16. Chen TK, Estrella MM, Fine DM. Predictors of kidney biopsy complication among patients with systemic lupus erythematosus. Lupus. 2012;21(8):848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article  PubMed  Google Scholar 

  18. Dieker J, Tel J, Pieterse E, Thielen A, Rother N, Bakker M, et al. Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for netosis. Arthritis Rheumatol. 2016;68(2):462–72.

    Article  CAS  PubMed  Google Scholar 

  19. Yang C, Sun J, Tian Y, Li H, Zhang L, Yang J, et al. Immunomodulatory effect of mscs and mscs-derived extracellular vesicles in systemic lupus erythematosus. Front Immunol. 2021;12:714832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arima Y, Liu W, Takahashi Y, Nishikawa M, Takakura Y. Effects of localization of antigen proteins in antigen-loaded exosomes on efficiency of antigen presentation. Mol Pharm. 2019;16(6):2309–14.

    Article  CAS  PubMed  Google Scholar 

  21. Dong C, Zhou Q, Fu T, Zhao R, Yang J, Kong X, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. Biomed Res Int. 2019;2019.

  22. Bruschi M, Ravera S, Santucci L, Candiano G, Bartolucci M, Calzia D, et al. The human urinary exosome as a potential metabolic effector cargo. Expert Rev Proteomics. 2015;12(4):425–32.

    Article  CAS  PubMed  Google Scholar 

  23. Henderson M, Azorsa D. The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol. 2012;2.

  24. Huang X, Luu LDW, Jia N, Zhu J, Fu J, Xiao F, et al. Multi-platform omics analysis reveals molecular signatures for pathogenesis and activity of systemic lupus erythematosus. Front Immunol. 2022;13.

  25. Du Y, Chen L, Li X-S, Li X-L, Xu X-D, Tai S-B, et al. Metabolomic identification of exosome-derived biomarkers for schizophrenia: a large multicenter study. Schizophr Bull. 2021;47(3):615–23.

    Article  PubMed  Google Scholar 

  26. Hadizadeh N, Bagheri D, Shamsara M, Hamblin MR, Farmany A, Xu M, et al. Extracellular vesicles biogenesis, isolation, manipulation and genetic engineering for potential in vitro and in vivo therapeutics: an overview. Front Bioeng Biotechnol. 2022;10.

  27. Chen H, Huang C, Wu Y, Sun N, Deng C. Exosome metabolic patterns on aptamer-coupled polymorphic carbon for precise detection of early gastric cancer. ACS Nano. 2022;16(8):12952–63.

    Article  CAS  PubMed  Google Scholar 

  28. Yan B, Huang J, Zhang C, Hu X, Gao M, Shi A, et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod Rheumatol. 2016;26(6):914–22.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Deng J, Zhou J, Xie Z-j, Gan J, Wen C-p. Metabonomic study of traditional Chinese herb pair, Qinghao-Biejia in treating systemic lupus erythematosus mice. Chin Pharmacol Bull. 2016;32(5):727–31,32.

  30. Mendoza-Pinto C, Garcia-Carrasco M, Mendez-Martinez S, Munguia-Realpozo P, Etchegaray-Morales I, Diaz-Merino G, et al. Insulin resistance metabolomic profile in non-diabetic women with systemic lupus erythematosus. Gac Med Mex. 2021;157(6):613–7.

    Google Scholar 

  31. Xue J, Liu H, Chen S, Xiong C, Zhan L, Sun J, et al. Mass spectrometry imaging of the in situ drug release from nanocarriers. Sci Adv. 4(10):eaat9039.

  32. Zhao D, Ma C, Gao M, Li Y, Yang B, Li H, et al. Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Res. 2022;15(3):2722–33.

    Article  CAS  Google Scholar 

  33. Sun X, Huang L, Zhang R, Xu W, Huang J, Gurav DD, et al. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent Sci. 2018;4(2):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guan S, Yu H, Yan G, Gao M, Sun W, Zhang X. Size-dependent sub-proteome analysis of urinary exosomes. Anal Bioanal Chem. 2019;411(18):4141–9.

    Article  CAS  PubMed  Google Scholar 

  35. Guan S, Yu H, Yan G, Gao M, Sun W, Zhang X. Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation. J Proteome Res. 2020;19(6):2217–25.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng H, Guan S, Wang X, Zhao J, Gao M, Zhang X. Deconstruction of heterogeneity of size-dependent exosome subpopulations from human urine by profiling n-glycoproteomics and phosphoproteomics simultaneously. Anal Chem. 2020;92(13):9239–46.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang N, Sun N, Deng C. Rapid isolation and proteome analysis of urinary exosome based on double interactions of Fe3O4@TiO2-DNA aptamer. Talanta. 2021;221:121571.

    Article  CAS  PubMed  Google Scholar 

  38. Rossetti FF, Bally M, Michel R, Textor M, Reviakine I. Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir. 2005;21(14):6443–50.

    Article  CAS  PubMed  Google Scholar 

  39. Gao F, Jiao F, Xia C, Zhao Y, Ying W, Xie Y, et al. A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2. Chem Sci. 2019;10(6):1579–88.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Zhang N, Wu Y, Yang C, Xie Q, Deng C, et al. Investigation of urinary exosome metabolic patterns in membranous nephropathy by titania‐assisted intact exosome mass spectrometry. Small Science. 2022;2(5).

  41. Zhu Y, Gasilova N, Jovic M, Qiao L, Liu B, Lovey LT, et al. Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chem Sci. 2018;9(8):2212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin X, Yang J, Zhang M, Wang X, Xu W, Price CH, et al. Serum metabolic fingerprints on bowl-shaped submicroreactor chip for chemotherapy monitoring. ACS Nano. 2022;16(2):2852–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibb S, Strimmer K. Mass spectrometry analysis using MALDIquant. In: Datta S, Mertens BJA, editors. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. Cham: Springer International Publishing; 2017. p. 101–24.

    Chapter  Google Scholar 

  44. Wu T, Xie C, Han J, Ye Y, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. Plos One. 2012;7(6).

  45. Ouyang X, Dai Y, Wen JL, Wang LX. 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus. 2011;20(13):1411–20.

    Article  CAS  PubMed  Google Scholar 

  46. Cao Z, Wang J, Weng Z, Tao X, Xu Y, Li X, et al. Metabolomic analysis of serum from pure coronary artery ectasia patients based on UPLC-QE/MS technique. Clin Chim Acta. 2022;534:93–105.

    Article  CAS  PubMed  Google Scholar 

  47. Tam LS, Li EK, Leung VYF, Griffith JF, Benzie IFF, Um PL, et al. The effects of vitamins C and E on oxidative stress markers and endothelial function in patients with systemic lupus erythematosus: a double-blind, placebo-controlled pilot study. Ann Rheum Dis. 2004;63:212–3.

    Google Scholar 

  48. Moori M, Ghafoori H, Sariri R. Nonenzymatic antioxidants in saliva of patients with systemic lupus erythematosus. Lupus. 2016;25(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Sun Z, Cao S, Lin X, Wu M, Li Y, et al. Reduced immunity regulator MAVS contributes to non-hypertrophic cardiac dysfunction by disturbing energy metabolism and mitochondrial homeostasis. Front Immunol. 2022;13:919038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: insight into biomarkers and pathology. J Neuroimmunol. 2015;279:25–32.

    Article  CAS  PubMed  Google Scholar 

  51. Rodriguez-Carrio J, Lopez P, Sanchez B, Gonzalez S, Gueimonde M, Margolles A, et al. Intestinal dysbiosis is associated with altered short-chain fatty acids and serum-free fatty acids in systemic lupus erythematosus. Front Immunol. 2017;8.

  52. Yan R, Jiang H, Gu S, Feng N, Zhang N, Lv L, et al. Fecal metabolites were altered, identified as biomarkers and correlated with disease activity in patients with systemic lupus erythematosus in a GC-MS-based metabolomics study. Front Immunol. 2020;11.

  53. Xie Y, Liu B, Wu Z. Identification of serum biomarkers and pathways of systemic lupus erythematosus with skin involvement through GC/MS-based metabolomics analysis. Clin Cosmet Investig Dermatol. 2022;15:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duarte-Delgado NP, Cala MP, Barreto A, Rodríguez CL-S. Metabolites and metabolic pathways associated with rheumatoid arthritis and systemic lupus erythematosus. J Transl Autoimmun. 2022;5:100150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wen M, Liu T, Zhao M, Dang X, Feng S, Ding X, et al. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J Immunol Res. 2021;2021:5579608.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Project: 22274027 and 21974023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Yang or Mingxia Gao.

Ethics declarations

Ethics approval and consent to participate

All of the urine samples in this work were collected in compliance with the ethical standards. This study was approved by the Review Board and Ethical Committee of Fudan University, and written informed consent was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2472 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Huang, Z., Chen, X. et al. Metabolic profiling of urinary exosomes for systemic lupus erythematosus discrimination based on HPL-SEC/MALDI-TOF MS. Anal Bioanal Chem 415, 6411–6420 (2023). https://doi.org/10.1007/s00216-023-04916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04916-z

Keywords

Navigation