Skip to main content
Log in

Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing’s popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing.

Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Ref. [25] with permission from the Royal Society of Chemistry

Fig. 2
Fig. 3

Adapted from Sanchez Noriega et al. [29], licensed under Creative Commons CC BY 4.0

Fig. 4

Adapted from Warr et al. [19], licensed under Creative Commons CC BY 4.0

Similar content being viewed by others

References

  1. Amstad E, Gopinadhan M, Holtze C, Osuji CO, Brenner MP, Spaepen F, Weitz DA. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science. 2015;349(6251):956–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Xu S, Zhang Y, Jia L, Mathewson KE, Jang K-I, Kim J, Fu H, Huang X, Chava P, Wang R. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 2014;344(6179):70–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science. 2011;333(6038):58–62.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gökçe O, Castonguay S, Temiz Y, Gervais T, Delamarche E. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents. Nature. 2019;574(7777):228–32.

    Article  ADS  PubMed  Google Scholar 

  6. Kim H, Min K-I, Inoue K, Im DJ, Kim D-P, Yoshida J-i. Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing. Science. 2016;352(6286):691–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem. 1998;70(23):4974–84.

    Article  CAS  PubMed  Google Scholar 

  8. Lee G-B, Chen S-H, Huang G-R, Sung W-C, Lin Y-H. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens Actuators B Chem. 2000;75(1–2):142–8.

    Google Scholar 

  9. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53.

    Article  CAS  PubMed  Google Scholar 

  10. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86(6):3124–30.

    Article  CAS  PubMed  Google Scholar 

  11. Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 2014;14(7):1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogers CI, Qaderi K, Woolley AT, Nordin GP. 3D printed microfluidic devices with integrated valves. Biomicrofluidics. 2015;9(1):016501.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015;15(8):1934–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC. 3D printed microfluidic devices: enablers and barriers. Lab Chip. 2016;16(11):1993–2013.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuo AP, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A. High-precision stereolithography of biomicrofluidic devices. Adv Mater Technol. 2019;4(6):1800395.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D printed microfluidics. Annu Rev Anal Chem. 2020;13:45–65.

    Article  Google Scholar 

  18. Gong H, Woolley AT, Nordin GP. 3D printed selectable dilution mixer pumps. Biomicrofluidics. 2019;13(1): 014106.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Warr CA, Hinnen HS, Avery S, Cate RJ, Nordin GP, Pitt WG. 3D-printed microfluidic droplet generator with hydrophilic and hydrophobic polymers. Micromachines. 2021;12(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Costa BM, Coelho AG, Beauchamp MJ, Nielsen JB, Nordin GP, Woolley AT, da Silva JAF. 3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection. Anal Bioanal Chem. 2022;414:545–50.

    Article  CAS  PubMed  Google Scholar 

  21. Kim S, Kim M, Kim S, Kim B, Lim G. Continuous separation of submicron-scale oil droplets in aqueous electrolyte by electrophoretic migration. Sens Actuators B Chem. 2021;344: 130145.

    Article  CAS  Google Scholar 

  22. Kise DP, Reddish MJ, Dyer RB. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis. J Micromech Microeng. 2015;25(12): 124002.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Beauchamp MJ, Nordin GP, Woolley AT. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem. 2017;409:4311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walczak R, Adamski K, Kubicki W. Inkjet 3D printed chip for capillary gel electrophoresis. Sens Actuators B Chem. 2018;261:474–80.

    Article  CAS  Google Scholar 

  25. Gong H, Woolley AT, Nordin GP. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip. 2018;18(4):639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castiaux AD, Pinger CW, Hayter EA, Bunn ME, Martin RS, Spence DM. PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal Chem. 2019;91(10):6910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castiaux AD, Currens ER, Martin RS. Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices. Analyst. 2020;145(9):3274–82.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai G, Xue L, Zhang H, Lin J. A review on micromixers. Micromachines. 2017;8(9):274.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Viglione MS, Woolley AT, Van Ry PM, Christensen KA, Nordin GP. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat Commun. 2021;12(1):5509.

  30. Akuoko Y, Nagliati HF, Millward CJ, Woolley AT. Improving droplet microfluidic systems for studying single bacteria growth. Anal Bioanal Chem. 2023;415(4):695–701.

    Article  CAS  PubMed  Google Scholar 

  31. Quero RF, da Silveira GD, da Silva JAF, de Jesus DP. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Lab Chip. 2021;21(19):3715–29.

    Article  CAS  PubMed  Google Scholar 

  32. Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 2015;5(129):106621–32.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hunter Hinnen for assistance with figure preparation.

Funding

This work received funding support from the NIH (grants R01 EB027096 and R15 GM123405-02) as well as São Paulo Research Foundation—FAPESP (grant 2022/11346–4 and 2018/08782–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam T. Woolley.

Ethics declarations

Conflict of interest

GPN and ATW own shares in Acrea3D, a company that is commercializing 3D printers. ATW is an editor of ABC but was not involved in review of the manuscript. The other authors have no conflicts to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradela Filho, L.A., Paixão, T.R.L.C., Nordin, G.P. et al. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem 416, 2031–2037 (2024). https://doi.org/10.1007/s00216-023-04862-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04862-w

Keywords

Navigation