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Abstract
Non-target screening (NTS) is a powerful environmental and analytical chemistry approach for detecting and identifying
unknown compounds in complex samples. High-resolution mass spectrometry has enhanced NTS capabilities but created
challenges in data analysis, including data preprocessing, peak detection, and feature extraction. This review provides an in-
depth understanding of NTS data processing methods, focusing on centroiding, extracted ion chromatogram (XIC) building,
chromatographic peak characterization, alignment, componentization, and prioritization of features. We discuss the strengths
and weaknesses of various algorithms, the influence of user input parameters on the results, and the need for automated
parameter optimization. We address uncertainty and data quality issues, emphasizing the importance of incorporating con-
fidence intervals and raw data quality assessment in data processing workflows. Furthermore, we highlight the need for
cross-study comparability and propose potential solutions, such as utilizing standardized statistics and open-access data
exchange platforms. In conclusion, we offer future perspectives and recommendations for developers and users of NTS data
processing algorithms and workflows. By addressing these challenges and capitalizing on the opportunities presented, the
NTS community can advance the field, improve the reliability of results, and enhance data comparability across different
studies.
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Introduction

Organic micropollutants of partly unknown origin, fate, and
chemical behavior enter our aquatic environment by various
routes [1]. To address these blind spots and mitigate human
and ecotoxicological risks, Brunner et al. and numerous other
research groups have highlighted the increasing importance
and need for comprehensive analytical monitoring strategies.
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These approaches aim to account for virtually all known and
unknown organic compounds in environmental samples [2].
The non-target screening (NTS) is one of the most promising
methods for this analytical issue, andmanyof its aspects, e.g.,
sampling, sample preparation, or measurement methods, are
continuously developed and improved.

NTS was initially established as a qualifying method that
does not require reference standards by design. Substances
not yet covered by target analysis or suspect screening can
be detected via NTS, and after successful identification, the
suspect list can be expanded.NTS is commonly used for sam-
ples with unknown and variable substance compositions like
waste waters or rivers. This can be obtained, among others,
from Purschke et al., who investigated industrial wastewater
[3], and from Tisler et al., who analyzed urban wastew-
aters [4]. However, the compromise that has to be made
with NTS is that, in many cases, reliable identification of
unknown substances cannot be made due to the very high
number of substance signals often combinedwith poor signal
quality. In addition to qualification methods, the first quan-
tification approaches are currently being evaluated, which is
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well demonstrated in the work of Malm et al. and Aalizadeh
et al. [5, 6].

NTS detects abstract features of substances within the mea-
surement data not covered by conventional target analysis or
suspect screenings. Therefore, NTS is an upcoming technol-
ogy formodern riskmitigation and to fulfill the precautionary
principle of the European Union [7]. Naturally, NTS features
depend on the analytical instrument domains. One widely
used technique is high-performance liquid chromatography
with high-resolution mass spectrometry (HPLC-HRMS).
This method generates feature triplets consisting of reten-
tion time (rt), mass-charge ratio (m/z), and intensity (I).

A typical LC-HRMS dataset comprises a series of mass
spectra collected over time, reflecting the separation of ana-
lytes by the chromatographic system. These mass spectra
are recorded independently, meaning that individual m/z val-
ues may differ. Consequently, the data structure is not a
large matrix with predefined time and m/z domain chan-
nels but rather a collection of high-resolution mass spectra
that require processing to obtain XICs and identify fea-
tures. In this data structure, the extracted ion chromatograms
represent the intensity of a specificm/z value across the chro-
matographic time domain. XICs provide information on the
elution profile of analytes and can be used for peak detection
and integration. Charge state dispersion is another impor-
tant aspect of LC-HRMS data, as it refers to the distribution
of various charge states that an ion can adopt in the mass
spectrometer. The presence of multiple charge states can
complicate data interpretation and provide valuable informa-
tion for identifying compounds. In addition, an accuratemass
determination is crucial in non-target screening for identify-
ing unknown compounds. Calculating isotope peaks, which
represent the natural abundance distribution of isotopes in
a molecule, aids in an accurate mass determination by pro-
viding a characteristic isotopic pattern that can be used for
elemental composition determination and compound identi-
fication.

Furthermore, some methods include gas chromatography
(GC) or ion mobility spectrometry (IMS) as an alternative
or additional separation/analysis techniques, modifying or
extending the feature domains. Additional analytical dimen-
sions significantly increase the number of data points and
improve the quality of the results through additional informa-
tion, e.g., clearer/ more precise substance identification. The
outcomingmulti-dimensional data provide characteristic fin-
gerprints for each sample. They can be used for similarity
analysis, e.g., to compare different waters or monitor indi-
vidual substances’ temporal or spatial behavior based on their
feature compositions [3, 8].

The NTS analytical workflowmostly aims to avoid losing
any sample component at any time, resulting in very com-
plex, multi-dimensional, and large datasets. Data processing
aims to extract and convert relevant signals into substance-

assigned features. However, when considering organic trace
compounds, NTS data processing is challenged by reliably
detecting relevant but less intense features in large, com-
plex, and multi-dimensional datasets containing non-linear
and highly variable noisy background signals. Data analysis,
as the second part of NTS data evaluation, aims to compare
data sets from (1) replicatemeasurements for filtering repeat-
able features, (2) different samples and blanks for prioritizing
characteristic features, and (3) identify features as chemical
substances.

NTA measurement data is recorded in measurement
system manufacturers’ specific file formats, e.g., *.raw
(Thermo Scientific), *.D (Agilent Technologies), or
*.wiff (Sciex). However, exchanging or evaluating data
with third-party software typically requires file format trans-
formation to an open standard. A common format that is
used in this context is *.mzXML or the newer version called
*.mzML by the HUPO-PSI committee, both being XML-
like files where measurement data is stored Base64 encoded.
Moreover, the data can also be compressed in several ways,
e.g., zlib or numpress to significantly reduce the store size.
From our observations, zlib reduced data size to 55%, and
adding numpress further reduces the size to 25%. However,
not every NTA evaluation tool can handle certain compres-
sions; therefore, these parameter settings should be checked
in advance.

In total, both parts, data processing and -analysis, are
critical steps in non-target screening. They cause many chal-
lenges in NTS and hold many pitfalls due to numerous
required user-defined input parameters with rarely known
interactions. Therefore, this critical review presents, dis-
cusses, and makes recommendations on current NTS data
evaluation to sensitize for this essential topic.

Data processing

Centroiding

The first user-applied data processing step in HRMS-
based non-target screening is mostly centroiding the highly
resolved mass profiles, which can be obtained from Fig. 1.
This step significantly reduces the number of data points
by a factor of 10–150, depending on the measurement sys-
tem. However, different mass analyzers, e.g., Orbitrap, time
of flight (TOF), or Fourier transform ion cyclotron reso-
nance (FT-ICR), go along with different highly resolved m/z
peak profile shapes, e.g.,Gaussian (mostly for Orbitrap) [9],
Voigt, or any asymmetric modification (may appear in TOF
data) [10]. Therefore, centroiding algorithms should consider
these circumstances, and in this context, it is not surprising
using different algorithms may offer different results [11,
12]. To that end, using reference standards for characterizing
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Fig. 1 Schematic overview of a typical non-target screening data processing workflow from centroiding to prioritization

the centroids’ mass errors is highly recommended to avoid
any significant bias in this early stage of the NTS workflow.
Employing reference standards ensures that the centroiding
algorithms correctly account for the specific peak profile
shapes and instrument characteristics, leading to amore accu-
rate representation of the underlying data. Furthermore, the
use of reference standards can enable the assessment and
comparison of different centroiding algorithms, ultimately
helping researchers to choose the most appropriate method
for their specific analytical requirements.

Algorithms In principle, centroiding extracts two pieces of
information (a) position, i.e., m/z value (qualitative informa-
tion), and (b) height or area, i.e., intensity value (quantitative
information). Next to validated vendor-specific but often not
fully accessible centroiding algorithms, the two approaches
from (1) Du et al., based on continuous wavelet transform
(cwt) [13], and (2) Vergeynst et al., based on the full width of
half maximum (fwhm) [12], are widely spread applied and
implemented in many common NTS evaluation tools, e.g.,
MzMine ormsConvert. Bothmethods provide the same inten-
sity values directly extracted from the measured data, i.e., no
inter- or extrapolation. However, m/z values differ because
the fwhm method, called the exact mass method, is based
on interpolation, i.e., interpolation of the center within the
mass peak profile’s fwhm range. In contrast, the cwt method
determines m/z by local maximum analysis of the scalogram
provided by cwt and, therefore, considers a measured instead
of an interpolated m/z value.

Boulet et al. demonstrated that m/z errors for centroids
extracted directly from measured data, e.g., using the local
maximum or cwt method, can be significantly improved
by interpolation approaches [11]. They presented a method
involving Savitzky-Golay’s first-order derivative for peak
detection in HRMS data in this context [14]. In principle,
the algorithm detects zero crossings of the differentiated ms
spectra by interpolation. This peak detection approach is not
new per see; e.g., a study from John Morrey used derivate
data for peak detection a long time ago [15]. However, Boulet
et al. demonstrated the benefit of considering m/z errors of
this method for HRMS data for the first time [11].

Next to the centroiding’s benefit of data compression,
this step also goes along with information loss, e.g., peak

width, which holds details about individual mass accuracy
and precision [16]. Therefore, Samanipour et al. presented a
centroiding method based on non-linear regression using a
Gaussian peak model [16]. The approach called Cent2Prof
extracts centroid information, i.e., m/z, intensity, and peak
width, as regression coefficients. Moreover, they imple-
mented machine learning (random forest) to predict peak
widths considering the m/z in case HRMS profiles are not
accessible.However, non-linear regression is an iterative pro-
cess includingmuch calculation effort, significantly affecting
the NTS data evaluation time.

Reuschenbach et al. presented a similar approach based
on regression analyses [17]. However, they followed the
Caruana et al. method to reduce computation times signif-
icantly [18]. Thereby, they linearized the Gaussian function
by log-transform to switch from non-linear to much faster
linear regression (time save: factor 100–1000), i.e., 90’000
centroids per second. In addition to the centroids’ character-
istics: of height, area, position, and width, they provided the
corresponding coefficient uncertainties and a score, called
Data Quality Score (DQS), that summarizes the individ-
ual centroids’ total uncertainties. The authors demonstrated
that the DQS is a suitable indicator for detecting false posi-
tives in later feature lists and could improve the overall NTS
workflow.

Challenges and Opportunities When taking a comprehensive
look at centroiding inNTS, there are threemain challenges to
overcome. (1)Most algorithms require user-input parameters
that, not wondering, strongly influence the results. However,
two effects can be distinguished: some parameters work just
as filters and do not influence the centroids’ values. One
example is the intensity threshold (noise level) within the
exact mass method [12]. Adjusting the intensity threshold
only affects the number of centroids. On the other hand, next
to filters, some parameters do influence the centroids’ values,
e.g., thewindow size of the Savitzky-Golaymethod presented
by Boulet et al. [11]. Therefore, adjusting impacts the mass
dispersion in a consecutive measurement of an LC-HRMS
experiment and should be done cautiously. Establishing
standardized criteria catalogs according to which individual
parameters are selected and optimized and/or using parame-
ter optimization routines can counteract this challenge.
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(2) With some exceptions, there is less known about the
reliabilities of the estimated centroids. However, such a met-
ric could improve avoiding false positives and, therefore,
increase the robustness of further evaluation and the over-
all cross-data comparability. Reuschenbach et al. suggested
using error propagation for this purpose, a well-established
approach that can be easily implemented in most existing
centroiding algorithms [17].

And (3), most algorithms are affected by asymmetry
properties of HRMS peaks that can occur due to physical
processes, e.g., in TOF instruments, or signal overlapping,
e.g., non-resolved isotopic fine-structures [10, 19, 20]. The
effect of asymmetry typically leads to centroid shifts along
the peak’s tailing side, which can be obtained from Fig. 2.
For cwt, SG, or other convolutionmethods, this shifting origi-
nated from the convolution design having a moving window,
and the width of this window directly influences the out-
coming effect [13]. For the exact mass method (determining
fwhm), asymmetry may also lead to two significantly differ-
ent half widths at half maximum (hwhm) while the peak’s
apex is not in the center of the full width at halfmaximum any
longer [21]. However, without any information on the asym-
metry, the exact mass method leads to m/z shifts as well. One
can consider the different distances from the local maximum
to the two half widths at half maximum to overcome this
problem. Algorithms that consider asymmetries are clearly
at an advantage since they are less susceptible to positional
shifts of the centroids.

Extracted ion chromatograms

Most NTS datasets consist of consecutive recorded HRMS
spectra centroided in a former step. I.e., the number and
positions of centroids are highly variable, not equidistant,

and follow a continuous scale. Therefore, grouping centroids
of similar m/z in subsequent spectra to obtain extracted ion
chromatograms is a complex and challenging task, and sev-
eral algorithms are available in this context.

Algorithms Two common strategies available in many NTS
evaluation tools are (1) Region of Interest (ROI) by Taut-
enhahn et al., which is based on the densification of mass
dispersion along a chromatographic peak [22]. The ROI, i.e.,
XIC, is a continuous series of centroids with a low mass
dispersion estimated by the empirical standard deviation.
Tautenhahn et al. stated that the m/z deviation is determined
by the mass accuracy of the mass spectrometer and typically
increases with lower signal intensities. However, it is up to
the user to define a suitable threshold. Feng et al. presented a
model-basedmass dispersion estimationmethod that is appli-
cable to most common HRMS systems (TOF, Orbitrap, and
FT-ICR) [23]. In conclusion, they proposed a more dynamic
instead of a fixed thresholding approach that significantly
improves the quality of the XIC obtained. The authors deter-
mined the quality by the Hoekman et al. strategy based on
t-test statistics of four-fold changes using internal standard
spikes [24].

(2) The Automated Data Analysis Pipeline (ADAP) pro-
vided an XIC builder alternative to ROI and was presented
by Myers et al. in an NTS context [25]. ADAP sorts the
whole data set by the intensity and assigns centroids to dif-
ferent XICs based on their m/z differences. In contrast to
ROI, ADAP does not consider the retention time, i.e., strict
consecutive data series are not required, and XICs may con-
tain rt gaps. In addition and parallel to ROI, ADAP requires
user input to define a mass dispersion threshold. In theory,
there is no restriction to using a fixed threshold; therefore,

Fig. 2 Comparison of different Centroiding algorithms for symmetric,
asymmetric, isolated, and overlapping peaks: The given data is simu-
lated to highlight the effect of m/z shifts due to asymmetry. While the
main peaks for symmetric systems (a & c) provide mostly comparable

centroids for different algorithms, asymmetric (b & d) as well as largely
overlapped peaks, i.e., the side peak in c) may provide significantly dif-
ferent centroids using different algorithms
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the mentioned dynamic strategy from Feng et al. could be
implemented with a manageable effort.

Zhu et al. modified the ADAP method by using Hier-
archical Density-based Spatial Clustering of Applications
with Noise (HDBSCAN) for assigning centroids to XICs
and called the method HDBSCAN-based Pure Ion Chro-
matograms (HPIC) [26]. For clustering, the user must define
a range for m/z and rt that limits the centroid with the highest
intensity, called anchor ion. Then, the HDBSCAN is applied
within this ranged two-dimensional space, and the clustered
centroids are deleted from the original data set. Finally, the
procedure is repeated with the remaining centroids until an
intensity threshold is subceeded. The HPIC is not limited to
constant m/z traces but also allows first- or second-order lin-
ear trends in those traces. Moreover, the user-defined ranges
should not affect the XICs and are mainly used to reduce cal-
culation efforts. The HDBSCAN does not require user input,
so HPIC can be seen as a parameter-free XIC builder.

Challenges and Opportunities In parallel to centroiding, the
XIC building step reveals similar challenges: (1) different
algorithms provide differentXICs. Therefore, it seems unsur-
prising that Hohrenk et al., when comparing four different
software tools for NTS data evaluation, only obtained a 10%
overlap of the detected features [27]. On the other hand, Zhu
et al. presented a larger overlap of 60% but compared only
three different workflows [26]. Therefore, both studies are
not directly comparable. The following problematic ques-
tion emerges: When can XICs be assumed to come from
the same population and thus contain the same feature? One
approach to address this issue is to estimate the confidence
intervals of the XICs, which can measure the uncertainty
and variability associated with the values. By leveraging the
bootstrap method, a widely used non-parametric technique
for estimating confidence intervals, we can better understand
the reliability and comparability of the XICs from differ-
ent algorithms. This would also directly preempt the second
challenge.

(2) The qualities or reliabilities ofXICs are rarely reported
and, even more concerning, not considered within further
processing. Especially considering reliabilities would offer
a smart opportunity for later result prioritization. However,
a promising approach already exists for characterizing the
clustering’s output: the silhouette score, which considers the
distances of a centroid within its cluster and the distances
to the neighboring cluster. I.e., the larger the relative gap
between clusters, the more reliable the XIC assignment and
the better the silhouette score [28].

InNTS, this silhouette score is used for optimizing param-
eters in the XIC building, which can be obtained from Wei
et al. [29]. Their study presented a DBSCAN-based XIC
builder similar to the later proposed HPIC from Zhu et al.
[26], and the DBSCAN parameters were obtained from sil-

houette score-based optimization. However, the suggested
further score reporting and consideration for later result pri-
oritization are not yet implemented in NTS XIC builder
algorithms. From a broader perspective, Starczewski et al.
further improved the silhouette score by adding a normal-
ization term [30]. The new criterion, called SILA, allows for
comparing clusters more robustly and would open the oppor-
tunity to measure the quality of individual XICs, which is of
interest for further prioritization or optimizing the analytical
measurement method.

Chromatographic peak characterization

In many applications, XIC building and characterization of
the chromatographic peaks are directly combined. However,
even though these are two successive steps, both have dif-
ferent algorithms, challenges, and opportunities. On a basic
level, the numerical task for peak characterization is very sim-
ilar to centroiding HRMS peaks. However, the peak area is
more relevant than the signal intensity for centroiding due to
the proportional relationship between peak area and concen-
tration that persists even with asymmetric peaks. Therefore,
it is more important to accurately and robustly detect the
chromatographic peak edges or integration limits. Moreover,
within this step, the m/z value for each peak is estimated,
which makes this step very critical for further feature identi-
fication/annotation.

In general, XICs can be divided into four different cate-
gories: containing (a) a single peak, (b) sufficiently resolved
and therefore multiple isolated peaks, (c) insufficiently
resolved and therefore overlapping peaks, and (d) the absence
of any peak. While category (a) is the best for accurate and
robust peak determination, it has to be mentioned that XICs
of the other categories may occur due to insufficient XIC
building and instrument limitations, i.e., co-elutions.

Algorithms The cwtmethod is one of themost common algo-
rithms for peak characterization in NTS, and Tautenhahn et
al. implemented it in their centWave algorithm [22]. Local
minimum ridges of the cwt coefficients within the scalogram
are considered for determining the peak edges. This is a
robust strategy since the cwt also acts as a noise-reducing
smoothing filter by design. However, the proposed propor-
tional relation fromDuet al. between the cwt coefficient at the
peak apex and the peak area is not considered by centWave
[13]. Instead, ordinary trapezoid integration within the peak
range is used. However, this modification avoids asymmetry
effects on the cwt coefficients, which would lead to a bias in
this context. In addition, the m/z value is estimated using an
intensity-based weighted average of the m/z centroids within
the peak range.

Curve fitting using Gaussian or asymmetric modifications
is another technique for chromatographic peak detection. In
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this context, performing anon-linear regressionusing aGaus-
sian function is the most intuitive. This option is offered by
the centWave algorithm as an alternative to ordinary trape-
zoid integration [22]. Furthermore, if multiple peaks occur in
an XIC, the sum of multiple Gaussian functions is used. I.e.,
curve fitting with multiple components is a deconvolution
process; therefore, it is possible to characterize overlapping
peaks more accurately.

However, Gaussian functions are symmetric, while this
restriction is not true for chromatographic peaks, and to that
end, the exponentially modified Gaussian function (EMG) is
often used in chromatography.Optimization of the separation
method is limited for NTS due to the unknown and highly
variable sample composition [31]. Isaacman-VanWertz et
al. presented an automated non-linear regression method
for LC-HRMS that considers both Gaussian and exponen-
tially modified Gaussian for peak characterization [32]. The
authors obtained comparable results to other methods. How-
ever, as an additional benefit, this method offers statistical
parameters, e.g., the uncertainty of the individual peak areas
or retention times.

Furthermore, the proposed algorithm can also handle
XICs that contain only noise. The authors implemented
a looping approach in which the dataset was repeatedly
smoothed and subjected to peak detection. Each iteration
increased the smoothing span if no peaks were identified.
Once peaks were detected, their characteristics, such as
regression results and statistical metrics, were analyzed to
effectively separate relevant peak signals from background
noise. However, the disadvantages of non-linear regression
are (1) the required initial fit coefficients that can signifi-
cantly influence the results and (2) the calculation effort, as
non-linear regression is an iterative process. Moreover, there
is no separate calculation of the m/z, and this value needs to
be estimated in advance.

Wei et al. presented a similar strategy using differ-
ent regression models for peak characterization [29]. They
included six different non-linear peak functions and used
a retention time-dependent training approach based on the
most intense isolated peaks to decide whichmodel fits best in
discrete rt ranges. Therefore, calculation efficiencies should
be slightly improved compared to Isaacman-VanWertz et al.
because regression is performed only once for most peaks.

Brotons et al. also presented a regression-based peak
characterization called Pipelines and Systems for Threshold-
AvoidingQuantification (PASTAQ) [20]. PASTAQcombines
centroiding, extracted ion chromatogram building, and chro-
matographic peak characterization. Therefore, the algorithm
works as a two-dimensional peak regression. Brotons et al.
used, like Reuschenbach et al., the Caruana approach for
linearizing the Gaussian function, but in PASTAQ, it is per-
formed for the rt and m/z domains simultaneously. PASTAQ
is still very fast, even consideringmany data points due to lin-

ear regression. However, the Caruana method cannot handle
overlapping or asymmetric peaks because it is no deconvo-
lution method for mathematical reasons (logarithm laws),
and no linearized asymmetric peak function is known yet.
A bias based on overlapping peaks cannot be avoided with
this approach. The m/z value is indirectly extracted from the
regression coefficients and weighted by the signal intensity.
The latter is due to the linearized regression using logarithms
performed as a weighted regression.

Dietrich et al. presented an empirical peak characteriza-
tion method that adapts a manual peak characterization, but
they realized this in an automatic workflow [33]. The algo-
rithm detects all local maxima and the corresponding peak
boundaries via an iterative loop along the intensity profile
until a defined threshold is subceeded. Furthermore, Peaks
are split by valley points or merged if the apex-valley ratio
falls below a defined threshold. For the m/z, Dietrich et al.
considered the intensity-weighted average of the correspond-
ing m/z values between the peak boundaries. Besides the
user-input parameters, this method is one of the most intu-
itive and time efficient.

Challenges and Opportunities One of the main challenges
in chromatographic peak characterization is accurately and
robustly detecting the number of peaks within an XIC. On
the one hand, all XICs containing only noise are false pos-
itive candidates. However, on the other hand, all peaks not
detected are false-negative results. This contradiction ends up
in a dilemma; decreasing false negatives also means increas-
ing false positives [34]. To that end, a common strategy is
paying the price of additional false positives and using filters
to delete these afterward. Adding a user-defined threshold
parameter is then a commonly used approach.

However, as there is no suitable feedback or target value
to characterize the quality of a discrete parameter setting, the
optimization strategy needs to be improved. In this context,
Dietrich et al. avoid optimization by estimating the signal-
to-noise ratio for every peak, a normalized parameter with
well-established thresholds, e.g., s/n>3 or s/n>10 [33].
With this, the noise amplitude is often estimated directly next
to the corresponding peaks, i.e., beyond the peak boundaries.
However, since noise cannot be extracted from all XICs in
that way, this method is unsuitable as a general strategy. In
particular, for Orbitrap-MS data, XICswith single chromato-
graphic peaks rarely contain data points beyond their peak
boundaries.

Next to s/n, the peak width, including minimum and max-
imum limits, is another commonly used filter criterion [22,
33]. A lower limit can be justified by theminimum number of
points required to describe a Gaussian peak. From a statisti-
cal perspective, this limit is four due to the three parameters
height, width, and position, which result in one degree of
freedom. The higher limit can also be deduced by applying a
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model; in this context, peak broadening in chromatography
is a well-known field [35]. However, inmany algorithms, this
information is not considered; instead, the user should define
fixed values for upper and lower limits, which may decrease
the comparability between different studies.

Using regression for peak characterization, e.g., PASTAQ
[20] or the non-linear regression by Isaacman-VanWertz et
al. offers a promising filter approach based on the regres-
sion confidence [32]. The better the quality of the original
data, the lower the uncertainty of the output coefficients. The
adjusted coefficient of determination (R̄2) is a standard statis-
tical parameter.However, since there is no generally accepted
minimum value for R̄2, this decision is left to the user. For
the linearized regression approaches, a global F-testwould be
one promising candidate to resolve user dependency. Thus,
peakmodels are only considered if they significantly improve
over a baseline signal with a constant offset. Therefore, this
decision is based on generally accepted p-Value limits of
0.05.

Melnikov et al. presented a machine learning approach
based on convolutional neural networks (CNN) to classify
XICs [36]. Their algorithm, called peakonly, defined three
classes: (1) no peaks, (2) one or more peaks, and (3) com-
plex peak-like signal that requires manual expert inspection.
As a result, they obtained that 32% of the features detected

by XCMS online were classified as noise and 17% as com-
plex/uncertain peaks. A significant benefit of employing
machine learning algorithms is their reduced reliance on
user intervention or input. However, those approaches highly
depend on the training data, i.e., applying machine learn-
ing by another research group having different training data
leads to different results. Moreover, machine learning is still
a red flag for many users and requires extensive background
knowledge to assess and interpret the results obtained.

Another challenge in NTS peak characterization is deter-
mining the m/z value. In this context, intensity weighting is
often used to avoid influences of data points at the peak edges
with larger mass dispersion but are less intense. However, for
flat peaks, i.e., low height/width ratio, this weightingmay not
compensate for m/z distortion, leading to an increased mass
deviation in replicate measurements, which can be obtained
from Fig. 3. On the other hand, high signal intensities are
no guarantee for accurate and precise m/z values, as this
assumption is based on empirical findings. Depending on the
measurement instrument, extrema like high intensity-high
mass dispersion and low intensity-low mass dispersion can
also be obtained in theNTS dataset. To that end, reporting the
uncertainties of the estimated m/z values is urgently needed.
Statistical concepts for the uncertainty of weighted averages

Fig. 3 Effect of peak shape and m/z dispersion window on the calcu-
lated intensity-weighted mean for m/z of a chromatographic peak. The
example data given is based on a simulation to highlight the effect. For
both cases, sharp and flat, the mass dispersion window slightly changes
the m/z calculated, which can be obtained from the horizontal straight
lines (blue: 5 ppm; red: 10 ppm). In this context, the solid lines (—,—)

provide the resulting m/z values, while the dotted lines (· · · ) provide
the borders of the 5 ppm selection window and the dashed lines (- - -)
provide the respecting borders of the 10 ppm window. The peak profile
also influences the effect strength, which can be obtained by comparing
the spread of the two lines for the sharp peak (left) and the flat peak
(right)
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are well-established but, unfortunately, not yet implemented
in many weighted average m/z estimations.

Alignment and componentization

InmodernNTS data evaluation, multiple features originating
from the same chemical substance, e.g., isotopes, adducts,
fragments, or cluster ions, are grouped as a component [37].
Grouping these features compresses and structures the data
set and later be used for substance identification [38]. How-
ever, it has to be mentioned that the term component is
not harmonized, and other notions, like molecular feature,
bucket, feature, or compound, exist in parallel. In addition,
componentization also partially involves grouping features
detected across multiple samples, e.g., by replicate measure-
ments or blank correction. However, data sets, especially rt,
vary frommeasurement tomeasurement for a certain amount
across-sample calculations, i.e., data comparisons require an
alignment step for rt and m/z in advance.

Algorithms Kuhl et al. published theCAMERApackage, one
of the most common approaches for componentization in
NTS [39]. In short, the algorithm considers multiple chro-
matographic peaks as a component if they have (1) similar
elution profiles within one sample [40], (2) correlating inten-
sities across samples [41], and (3) chemically plausible m/z
differences. All criteria are used to calculate a score that is
further considered in cluster analysis for grouping. Isotopes
and common adducts are annotated by comparing the inten-
sity ratios or m/z differences with a reference database. The
CAMERA algorithm does not require user input parame-
ters directly, as all information is extracted from the data
set and feature list. However, as the algorithm considers
across-sample correlations, an alignment process is required
to harmonize rt and m/z along multiple measurements.

Permiakova et al. presented a componentization strategy
fully based on XIC similarity called Chromatogram HIerar-
chical Compressive K-means with Nyström approximation
(CHICKN) [42]. First, the authors used the Wasserstein dis-
tance to characterize the pairwise similarity between two
XICs by their cumulative intensity profiles. Then, they trans-
formed the similarities with a Kernel-basedmapping from an
rt-m/z into a feature space where similar features are close.
Finally, a K-means cluster analysis is used for componen-
tization. As an advantage, this algorithm works with XICs
within and across samples and is, therefore, more flexible
than CAMERA. However, chemical criteria, e.g., isotope
ratios or common known m/z differences, are not consid-
ered.

Whenever across-sample consideration is made, align-
ment of the XICs or features is required due to natural
variations. One very intuitive way to do this is based on sim-
ple tolerances for the individual domains, mainly m/z and

rt [43]. However, these approaches assume variations to be
constant or linear scaled, strongly depend on the user input,
and often do not provide feedback on whether the settings
chosen are suitable.

Prince and Marcotte developed an alignment algorithm
basedondynamic timewarping called orderedbijective inter-
polated warping (OBI-Warp) [44]. The algorithm analyses
the similarity of mass spectra across samples by their cor-
relation and creates a similarity matrix. Then, the path with
the best similarity scores from the lower left (first spectra) to
the upper right (last spectra) is extracted for warping. In this
context, the deviation from the path extracted to the diagonal
of the similaritymatrix is considered for rt correction. In con-
trast to the abovementioned approach, OBI-Warp conserves
the mass spectra, which is a chemically meaningful strat-
egy, ensuring the samemeasurement conditions for centroids
recorded at once. However, this alignment requires a much
higher calculation effort due to similarity matrix calculation
and the nature of a pairwise approach. Moreover, OBI-Warp
also includes some user parameters to be optimized.

Gorrochategui et al. developed a componentization strat-
egy based on the region of interest and multivariate curve
regression (ROIMCR) [45]. The presented algorithm does
not require a peak characterization step and provides cal-
culated mass spectra of m/z traces with similar elution
profiles. Therefore, ROIMCR differs from most NTS evalu-
ation workflows that typically provide feature lists based on
individual XIC peak characterizations. Furthermore, by pro-
viding mass spectra, which can be later used for compound
identification, there is no need for any alignment. More-
over, the ROIMCR algorithm is developed for single-sample
and multi-sample componentization. The main principle of
an MCR is a matrix decomposition by applying a bi-linear
regression. In this context, the XICs are provided by the ROI
approach and are transferred into a matrix. This matrix con-
taining intensities at specific rt (row) and m/z (column) is
decomposed into submatrices that contain information on
calculated intensity profiles along rt (submatrix 1) and cal-
culated mass spectra (submatrix 2). The critical parameter is
the number of components explaining most of the data set’s
variance. If this value is chosen too small, it has some effect
on the overall result. On the other hand, a value that is too
large can lead to overfitting, which can also affect the results.
Therefore, an iterative optimization approach is commonly
used, but as matrix decomposition on large datasets demands
a high calculation effort, ROIMCR is time-consuming.

Challenges and Opportunities The alignment across samples
is critical; unfortunately, this step is mainly based on user-
input parameters, and therefore, there is always a risk of
decreasing the comparability between studies [27]. In this
context, the first steps have already been taken to improve
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comparability. For example, Aalizadeh et al. propose a har-
monized rt index for the NTS [46].

A relevant challenge for alignment and componentiza-
tion is connected to the similarity analysis of XICs. Most
approaches inNTSused for this task requireXICs of the same
length, e.g., to calculate the correlation of two ormore elution
profiles. Those considerations are based on a point-by-point
concept and only work if every point from one profile can be
assigned to a certain point in the other. However, NTS sig-
nals detected are not arranged in a predefined discrete grid
but are stored data-dependent as individual coordinates in a
continuous rt, m/z, and intensity space. XIC building does
not remove this continuum space. Still, a discrete space is
required for the alignment algorithms used in NTS, which is
solved by a gap-filling process that adds a bias to the results.

Genolini et al. developed a more general concept that was
not optimized for NTS but also covered the numerical align-
ment task. Thereby, the authors consider grouping curvatures
using longitudinal clustering [47]. In this approach, called
kmlShape, the Fréchet distance describes the similarity of
different curves, i.e., XICs. The main advantage of using
Fréchet distance is that the number and positions of points
within these curves can differ. On a basic level, kmlShape is
a K-means clustering using the Fréchet metric that consid-
ers curvatures’ shape. In the context of NTS data, kmlShape
could group XICs across and within samples by their elu-
tion profile similarity. Moreover, the method would provide
average elution profiles for m/z traces across samples.

Prioritization

In most cases, an NTS data processing workflow provides
some feature list that contains at least rt, m/z, and intensity
information for single or multiple samples. However, a pri-
oritization for further analysis is highly recommended due
to the sheer number of 1000–10,000 features. Therefore, this
step extracts the most characteristic, relevant, or concerning
features.

Algorithms A common prioritization strategy is considering
the intensity-based fold change of a feature across samples,
e.g., as presented in a study by Schollée et al. [48]. The
fold change is defined as the ratio between two values typi-
cally transformed into a log-2 scale, i.e., a fold change of 1
means the intensity is doubled,while -1means the intensity is
halved. User-defined thresholds are then used to extract fea-
tures with significant absolute fold changes. However, the
fold change is often combined with a significance descriptor,
e.g., a p-value obtained from t-tests, ANOVA, or other statis-
tical tests [8]. As an advantage, the p-value has an established
threshold of 0.05.

Köppe et al. presented a practical approach to removing
ubiquitously found featureswhen analyzingwastewater [49].

The general principle is defining and excluding the intersect-
ing features across samples. Therefore, the authors identified
features that occur in most samples by defining a threshold
(80%). Using this strategy, they significantly reduced the
number of features by an additional 30%. The method helps
identify features that originate from a specific source. How-
ever, relationships between features like (anti-) correlations
are not considered.

Purschke et al. developed a multivariate method to pri-
oritize features by applying principal component analysis
(PCA) to their data set that consists of a time series NTS
monitoring [3]. In the PCA, they analyzed the variation of the
time series (variables) for all features (objects). According
to this, the authors obtained scores describing each feature’s
position in themultivariate space,where similar scores reflect
similar features. Besides, the PCA provides the loadings that
describe the different time series trends. Based on the scores
and loadings, they could distinguish relevant features with
increasing or decreasing trends from less-relevant fluctuating
features. However, in parallel with alignment and componen-
tization, such matrix-based strategies require data having no
gaps to perform best. If this is not the case, e.g., some feature
is not detected or miss-evaluated at some point within the
time series, the gap filling adds some bias to the results.

Challenges and Opportunities The prioritization step signifi-
cantly reduces the features and should be performed carefully
because miss-prioritization may add blindspots to the anal-
ysis. Most of the algorithms used for this task are based
on the features’ variance. However, the problem with vari-
ances is that precise, representative, and repeatable results
require a large sample set. The more samples are included,
the more unique features are added to the lists. In contrast,
feature space is limited due to the m/z and rt ranges of the
measurement method, which implies that overall similarities
decrease. Therefore, prioritization is always a compromise,
and it strongly depends on the sample set, which reduces the
result comparability between studies by design. Overall, pri-
oritization is certainly one of the most far-reaching steps in
NTS data processing, and the concepts presented here show
only a small section.

Conclusion

Themethods presented in this article underline that NTS data
evaluation is (1) a complex multi-step process with a contin-
uously increasing toolbox of algorithms [50], each with its
unique strengths and weaknesses, and a non-comprehensive
but common selection can be obtained from Table 1. (2)
NTS is still very challenging, especially when considering
the comparability and reliability of results [25, 27]. Looking
at the data processing workflow in total, it is striking that
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Table 1 Overview of the
algorithms discussed in this
paper: merged cells indicate that
the corresponding algorithm
covers multiple aspects of NTS
data processing

The background color indicates if the algorithm requires user-input parameters (green: no user parameters
must be defined)

the current challenges have some commonalities. For exam-
ple, many algorithms are heavily dependent on user input
parameters. However, in this context, a promising approach
to this problem results from automated parameter optimiza-
tion [51], such as the isotopologue parameter optimization
IPO by Libiseller et al. or Autotuner by McLean and Kujaw-
inski [52, 53].

Some studies show that many user input parameters are
unnecessary and work with standardized statistics instead.
Centroiding byReuschenbach et al., theXIC building by Zhu
et al., and Prioritization by Purschke et al. are good examples
in this context (Table 1) [3, 17, 26]. All these algorithms
avoid human-based subjectivity in the NTS data evaluation
and, therefore, may increase the cross-study comparability.
However, this promising hypothesis was not yet tested.

Unfortunately, there is much potential uncovered yet,
because the uncertainty connected to all intermediate results
is partially obtained, less reported but not taken into account

by the further processing steps. Thus, the uncertainty of a
centroid in m/z does not play a role in assembling an ion
chromatogram, although increased uncertainties may indi-
cate a false positive feature [17]. So, at this point, future
workflows should collect the uncertainties of intermediate
results throughout the process and incorporate them into the
prioritization of features at the end, e.g., to improve the fur-
ther result interpretation step. Especially under the aspect of
comparability of results, a good estimation of the confidence
intervals of individual features is very helpful.

Filtering false positive features itself is still a major chal-
lenge, as it requires information that is often not available:
(1) is the data quality sufficient to make a reliable statement;
if not, there is probably a false positive feature, and (2) can
the feature be traced back to a plausible chemical compound.
For the first point, the Schymanski score checks at least the
availability of reference data to reflect the reliability of a fea-
ture [38]. However, the raw data quality is hardly considered.
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Here as well, workflows should be improved with regard to
the information on confidence intervals that include the entire
data evaluation process. The second point is primarily up
to the NTS community in total. Open-access data exchange
services, e.g., the Digital Sample Freezing Platform (DSFP),
should be used more frequently [54].

To advance the field of NTS data analysis, the following
future perspectives are proposed for developers of NTS data
processing algorithms and workflows:

1. Minimize user input parameters: Focusing on developing
algorithms that require minimal user input parame-
ters can reduce human-based subjectivity in NTS data
evaluation. This potentially increases the cross-study
comparability and reduces biases introduced by arbitrary
parameter selection. An automated parameter optimiza-
tion is a promising approach in this direction, as demon-
strated by existing studies [51–53].

2. Address uncertainties and data quality: Incorporating the
uncertainties associated with intermediate results and
raw data quality into the data processing algorithms is
essential for filtering false positive features and ensuring
reliable outcomes. Developers should work on creating
methods that consider these uncertainties and offer reli-
able ways to evaluate the data quality at every step of the
processing workflow [17, 38].

Moreover, the following future perspectives are proposed
for users of NTS data processing algorithms and workflows:

1. Characterize the strengths and weaknesses of chosen
algorithms/workflows: It is essential for users to under-
stand the strengths and weaknesses of the algorithms and
workflows they choose. A comprehensive and detailed
report on NTS data evaluation should be prepared to
ensure traceability and provide a better understanding
of the results obtained, as well as their reliability and
limitations [3, 17, 26, 51–53].

2. Utilize open-access data exchange platforms and com-
munity resources: To enhance the accuracy and trace-
ability of detected features, users should leverage open-
access databases, data exchange platforms, and commu-
nity resources. Sharing data and collaborating with the
NTS community enables validation, better interpreta-
tion of results, and a more accurate understanding of the
underlying chemistry [38, 54].
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30. Starczewski A, Krzyżak A. A modification of the silhouette index
for the improvement of cluster validity assessment. In: Interna-
tional Conference on Artificial Intelligence and Soft Computing.
Springer; 2016. p. 114–124.

31. Grushka E. Characterization of exponentially modified Gaussian
peaks in chromatography.Anal chem. 1972;44(11):1733–8. https://
doi.org/10.1021/ac60319a011.

32. Isaacman-VanWertz G, Sueper DT, Aikin KC, Lerner BM, Gilman
JB, de Gouw JA, et al. Automated single-ion peak fitting as
an efficient approach for analyzing complex chromatographic
data. J Chromatogr A. 2017;1529:81–92. https://doi.org/10.1016/
j.chroma.2017.11.005.

33. Dietrich C, Wick A, Ternes TA. Open-source feature detection
for non-target LC-MS analytics. Rapid Commun Mass Spectrom.
2022;36(2): e9206. https://doi.org/10.1002/rcm.9206.

34. Schulz W, Lucke T, Balsaa P, Hinnenkamp V, Brüggen S, Dünn-
bier U, et al. Non-target screening in water analysis-Guideline
for the application of LC-ESI-HRMS for screening. Water Chem-
istry Society, Division of the Gesellschaft Deutscher Chemiker.
2021;.

35. Gritti F, David M, Brothy P, Lewis MR. Model of retention
time and density of gradient peak capacity for improved LC-
MS method optimization: Application to metabolomics. Analytica
Chimica Acta. 2022;1197: 339492. https://doi.org/10.1016/j.aca.
2022.339492.

36. Melnikov AD, Tsentalovich YP, Yanshole VV. Deep learning for
the precise peak detection in high-resolution LC-MS data. Anal
chem. 2019;92(1):588–92. https://doi.org/10.1021/acs.analchem.
9b04811.

37. Keller BO, Sui J, Young AB, Whittal RM. Interferences and
contaminants encountered in modern mass spectrometry. Ana-
lytica chimica acta. 2008;627(1):71–81. https://doi.org/10.1016/
j.aca.2008.04.043.

38. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P,
Krauss M, et al. Non-target screening with high-resolution mass
spectrometry: critical review using a collaborative trial on water
analysis. Anal Bioanal Chem. 2015;407(21):6237–55. https://doi.
org/10.1007/s00216-015-8681-7.

123

https://doi.org/10.1021/acs.est.1c08014
https://doi.org/10.1016/j.ijms.2014.05.019
https://doi.org/10.1016/j.trac.2013.07.010
https://doi.org/10.1016/j.trac.2013.07.010
https://doi.org/10.1002/rcm.9036
https://doi.org/10.1002/rcm.9036
https://doi.org/10.1016/j.aca.2013.06.024
https://doi.org/10.1093/bioinformatics/btl355
https://doi.org/10.1093/bioinformatics/btl355
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60262a006
https://doi.org/10.1021/acs.analchem.1c03755
https://doi.org/10.1007/s00216-022-04224-y
https://doi.org/10.1007/s00216-022-04224-y
https://doi.org/10.1021/ac00297a041
https://doi.org/10.1021/ac00297a041
https://doi.org/10.1002/sia.3036
https://doi.org/10.1002/sia.3036
https://doi.org/10.1021/acs.analchem.1c01892
https://doi.org/10.1021/acs.analchem.1c01892
https://doi.org/10.1007/s12043-014-0828-0
https://doi.org/10.1186/1471-2105-9-504
https://doi.org/10.1016/j.aca.2021.338674
https://doi.org/10.1074/mcp.M111.015974
https://doi.org/10.1074/mcp.M111.015974
https://doi.org/10.1021/acs.analchem.7b00947
https://doi.org/10.1021/acs.analchem.7b00947
https://doi.org/10.1007/s10337-019-03766-1
https://doi.org/10.1007/s10337-019-03766-1
https://doi.org/10.1021/acs.analchem.9b04095
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1021/ac403803a
https://doi.org/10.1021/ac60319a011
https://doi.org/10.1021/ac60319a011
https://doi.org/10.1016/j.chroma.2017.11.005
https://doi.org/10.1016/j.chroma.2017.11.005
https://doi.org/10.1002/rcm.9206
https://doi.org/10.1016/j.aca.2022.339492
https://doi.org/10.1016/j.aca.2022.339492
https://doi.org/10.1021/acs.analchem.9b04811
https://doi.org/10.1021/acs.analchem.9b04811
https://doi.org/10.1016/j.aca.2008.04.043
https://doi.org/10.1016/j.aca.2008.04.043
https://doi.org/10.1007/s00216-015-8681-7
https://doi.org/10.1007/s00216-015-8681-7


Critical review on data processing algorithms in non-target screening

39. Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S.
CAMERA: an integrated strategy for compound spectra extrac-
tion and annotation of liquid chromatography/mass spectrometry
data sets. Anal chem. 2012;84(1):283–9. https://doi.org/10.1021/
ac202450g.

40. Ipsen A, Want EJ, Lindon JC, Ebbels TM. A statistically rig-
orous test for the identification of parent- fragment pairs in
LC-MS datasets. Anal chem. 2010;82(5):1766–78. https://doi.org/
10.1021/ac902361f.

41. Brown M, Wedge DC, Goodacre R, Kell DB, Baker PN, Kenny
LC, et al. Automated workflows for accurate mass-based puta-
tive metabolite identification in LC/MS-derived metabolomic
datasets. Bioinformatics. 2011;27(8):1108–12. https://doi.org/10.
1093/bioinformatics/btr079.

42. Permiakova O, Guibert R, Kraut A, Fortin T, Hesse AM, Burger T.
CHICKN: extraction of peptide chromatographic elution profiles
from large scale mass spectrometry data by means of Wasserstein
compressive hierarchical cluster analysis. BMC bioinformatics.
2021;22(1):1–30. https://doi.org/10.1186/s12859-021-03969-0.

43. Wei X, Shi X, Kim S, McClain C, Zhang X. A Novel Two-
Stage Alignment Method for Liquid Chromatography Mass
Spectrometry-Based Metabolomics. In: International Conference
on Intelligent Computing. Springer; 2012. p. 152–159.

44. Prince JT, Marcotte EM. Chromatographic alignment of ESI-
LC-MS proteomics data sets by ordered bijective interpolated
warping. Anal chem. 2006;78(17):6140–52. https://doi.org/10.
1021/ac0605344.

45. GorrochateguiE, Jaumot J,TaulerR.ROIMCR: apowerful analysis
strategy for LC-MS metabolomic datasets. BMC bioinformatics.
2019;20(1):1–17. https://doi.org/10.1186/s12859-019-2848-8.

46. Aalizadeh R, Alygizakis NA, Schymanski EL, Krauss M, Schulze
T, Ibanez M, et al. Development and application of liquid chro-
matographic retention time indices in HRMS-based suspect and
nontarget screening. Anal Chem. 2021;93(33):11601–11. https://
doi.org/10.1021/acs.analchem.1c02348.

47. Genolini C, Ecochard R, Benghezal M, Driss T, Andrieu S, Subtil
F. kmlShape: an efficient method to cluster longitudinal data (time-
series) according to their shapes. Plos one. 2016;11(6): e0150738.
https://doi.org/10.1371/journal.pone.0150738.

48. Schollée JE, Schymanski EL, Hollender J. Statistical approaches
for LC-HRMS data to characterize, prioritize, and identify trans-
formation products from water treatment processes. Assessing
Transformation Products of Chemicals by Non-Target and Sus-
pect Screening- Strategies and Workflows. 2016;1:45–65. https://
doi.org/10.1021/bk-2016-1241.ch004.

49. Köppe T, Jewell KS, Dietrich C, Wick A, Ternes TA. Application
of a non-target workflow for the identification of specific con-
taminants using the example of the Nidda river basin. Water Res.
2020;178. https://doi.org/10.1016/j.watres.2020.115703.

50. Minkus S, Bieber S, Letzel T. Spotlight on mass spectrometric
non-target screening analysis: Advanced data processing methods
recently communicated for extracting, prioritizing and quantifying
features. Anal Sci Advances. 2022;3(3–4):103–12. https://doi.org/
10.1002/ansa.202200001.

51. Lassen J, Nielsen KL, Johannsen M, Villesen P. Assessment
of XCMS Optimization Methods with Machine-Learning Per-
formance. Anal Chem. 2021;93(40):13459–66. https://doi.org/10.
1021/acs.analchem.1c02000.

52. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo
F, et al. IPO: a tool for automated optimization of XCMS param-
eters. BMC bioinformatics. 2015;16(1):1–10. https://doi.org/10.
1186/s12859-015-0562-8.

53. McLean C, Kujawinski EB. AutoTuner: high fidelity and
robust parameter selection for metabolomics data process-
ing. Anal chem. 2020;92(8):5724–32. https://doi.org/10.1021/acs.
analchem.9b04804.

54. Alygizakis NA, Oswald P, Thomaidis NS, Schymanski EL, Aal-
izadeh R, Schulze T. NORMAN digital sample freezing platform:
A European virtual platform to exchange liquid chromatography
high resolution-mass spectrometry data and screen suspects in "dig-
itally frozen” environmental samples. TrAC Trends Anal Chem.
2019;115:129–37.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1021/ac202450g
https://doi.org/10.1021/ac202450g
https://doi.org/10.1021/ac902361f
https://doi.org/10.1021/ac902361f
https://doi.org/10.1093/bioinformatics/btr079
https://doi.org/10.1093/bioinformatics/btr079
https://doi.org/10.1186/s12859-021-03969-0
https://doi.org/10.1021/ac0605344
https://doi.org/10.1021/ac0605344
https://doi.org/10.1186/s12859-019-2848-8
https://doi.org/10.1021/acs.analchem.1c02348
https://doi.org/10.1021/acs.analchem.1c02348
https://doi.org/10.1371/journal.pone.0150738
https://doi.org/10.1021/bk-2016-1241.ch004
https://doi.org/10.1021/bk-2016-1241.ch004
https://doi.org/10.1016/j.watres.2020.115703
https://doi.org/10.1002/ansa.202200001
https://doi.org/10.1002/ansa.202200001
https://doi.org/10.1021/acs.analchem.1c02000
https://doi.org/10.1021/acs.analchem.1c02000
https://doi.org/10.1186/s12859-015-0562-8
https://doi.org/10.1186/s12859-015-0562-8
https://doi.org/10.1021/acs.analchem.9b04804
https://doi.org/10.1021/acs.analchem.9b04804

	Critical review on data processing algorithms in non-target screening: challenges and opportunities to improve result comparability
	Abstract
	Introduction
	Data processing
	Centroiding
	Extracted ion chromatograms
	Chromatographic peak characterization
	Alignment and componentization
	Prioritization

	Conclusion
	Acknowledgements
	References


