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Abstract
Inflammatory bowel disease (IBD) diagnosis depends on criteria based on histological, endoscopic, radiological, and clini-
cal results. These studies show drawbacks as being expensive, invasive, and time-consuming. In this work, an untargeted 
metabolomic strategy based on the monitoring of volatile compounds in serum by headspace gas chromatography–mass 
spectrometry is proposed as a complementary, fast, and efficient test for IBD patient diagnosis. To develop the method and 
build a chemometric model that allows the IBD diagnosis, serum samples including IBD patients and healthy volunteers were 
collected. Analyses were performed by incubating 400 µL of serum for 10 min at 90 °C. For data processing, an untargeted 
metabolomic strategy was used. A total of 96 features were detected, of which a total of 10 volatile compounds could be 
identified and confirmed by means of the analysis of real standards. The chemometric treatment consisted of a discriminant 
analysis of orthogonal partial least squares (OPLS-DA) obtaining a 100% of classification rate, since all the analyzed samples 
were correctly classified.

Keywords Inflammatory bowel disease · Headspace · Gas chromatography–mass spectrometry · Untargeted metabolomic 
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Introduction

Inflammatory bowel disease (IBD) is a chronic, multifacto-
rial immune disorder characterized mainly, but not exclu-
sively, by inflammation of the intestine. In general, IBD 
encompasses two different pathologies: ulcerative colitis 
(UC) and Crohn’s disease (CD). Clinically, similar symp-
toms are shared for both diseases, such as bloody diarrhea, 
abdominal pain, weakness, and weight loss, while they tend 
to differ in the complications and prevalence, as well as the 

location and depth of inflammation [1, 2]. In cases where 
it is impossible to differentiate between UC and CD, since 
patients show overlapping pathological features of UC and 
CD, it often results in an interim diagnosis of unclassified 
IBD or indeterminate colitis (IC). There is a fourth entity, 
named microscopic colitis (MC), often misdiagnosed and 
confused with irritable bowel syndrome by not producing 
obvious macroscopic lesions.

There is no specific test for IBD diagnosis. In addition, 
the disease occurs in a fluctuating way, with periods of 
inflammatory flare-ups alternating with other periods of 
inflammatory remission. First, clinical symptoms are exam-
ined, including anemia, abdominal pain, weakness, weight 
loss, and diarrhea with blood and/or mucus. In general, the 
clinical suspicion of IBD prompts the practice of blood and 
stool tests, colonoscopy, and some imaging studies that con-
firm the diagnosis excluding other causes.

Analysis of blood can show an elevated white blood cell 
count and elevated C-reactive protein (CRP) levels. CRP is 
a plasma protein synthesized in the liver that can be used 
as a marker for indirect determination of the degree of 
inflammation in IBD. Under normal circumstances, CRP 
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is synthesized in small amounts (< 1 mg  L−1); however, 
because of some stimuli, usually inflammation, hepatocytes 
rapidly increase their synthesis [2, 3].

Regarding stool analysis, calprotectin is an abundant and 
widely distributed protein, mainly found in monocytes, reac-
tive macrophages, and polymorphonuclear leukocytes. Its 
biological function is not exactly known, but its protective 
activity in inflammatory, proliferative, and infectious pro-
cesses stands out, in which its plasma levels are increased 
from 8 to 40 times. Therefore, calprotectin determination 
in feces has been recently proposed as a new marker for the 
diagnosis of IBD [4, 5], which can be used to predict the risk 
of relapse or monitor response to treatment. In addition, it 
offers greater sensitivity and specificity than CRP.

An elevated level of calprotectin (> 50 µg   g−1) iden-
tifies patients who are more likely to have IBD and who 
should undergo colonoscopy. In contrast, a fecal calprotec-
tin level  < 50 µg  g−1 makes the diagnosis of IBD highly 
unlikely. Colonoscopy allows direct visualization of the 
intestinal mucosa and obtaining biopsies, making it the pre-
ferred test for IBD diagnosis. However, it has some risks and 
limitations, since it is an invasive procedure with relatively 
high cost and requires bowel preparation and patient seda-
tion. Furthermore, it is estimated that more than 60% of 
colonoscopies performed in young patients are potentially 
preventable since their results are normal [6].

In addition, disease status often needs to be reassessed 
with complementary explorations that can safely, quickly, 
and reliably detect the presence of inflammation. In the case 
of radiological tests, in patients with CD, magnetic reso-
nance imaging with bowel contrast is preferable to com-
puterized tomography scan since its diagnostic precision is 
greater and avoids frequent exposure to radiation.

Thus, the diagnosis of IBD depends on criteria based on 
the results of clinical, endoscopic, histological, and radio-
logical examinations, which are often costly, invasive, and 
time-consuming. Therefore, low-cost, rapid, and non-inva-
sive diagnostic tools are needed. In recent years, metabo-
lomics approaches have been showing promising results in 
the diagnosis of IBD. The metabolomic analysis consists of 
the exhaustive and quantitative study of the metabolome, 
understanding this as the complete set of small molecules 
called metabolites that are synthesized by a biological sys-
tem [7]. Sample selection in metabolomics studies is key, 
as each type of sample provides different biochemical infor-
mation: blood can provide useful information on systemic 
metabolism, while fecal profiles are indicative of digestive 
metabolism, and urine provides a profile of endogenous 
metabolism. Due to the chemical diversity of metabolites, 
the choice of analytical technique will also be decisive in the 
metabolomic study.

To date, proton nuclear magnetic resonance spectros-
copy (1H-NMR) is the most widely used technique in 

metabolomics studies for IBD diagnosis. Studies have been 
conducted on biofluids such as plasma, serum, feces, and 
urine from patients with this disease and have been com-
pared with IBD-healthy individuals. These studies have 
focused primarily on non-complex and small molecules 
such as amino acids or derivative metabolites. It has been 
reported that there are differences in metabolic profiles 
between IBD patients and healthy controls [8–13], as well 
as between IBD subtypes [8, 9, 13].

Liquid chromatography with tandem mass spectrom-
etry (LC-MS/MS) has also been applied for monitoring the 
inflammation lipid mediator leukotriene E4 in plasma [14], 
and the lipoid profile in urine [15] as biomarkers of IBD 
activity. Fourier transform ion cyclotron resonance mass 
spectrometry (FT-ICR-MS) has also been applied for the 
analysis of fecal samples in patients with CD [16]. Recently, 
the potential of LC coupled to high-resolution mass spec-
trometry (HRMS) has also been investigated, demonstrat-
ing that there is a loss of “metabolic diversity” among IBD 
patients since gut metabolites were frequently depleted, thus 
leading to alterations in immune response and cell prolifera-
tion, among other biological processes [17].

Gas chromatography coupled to mass spectrometry 
(GC-MS) has allowed the analysis of volatile metabolites in 
serum [18] or feces [19] as an assessment approach to IBD 
or its subtypes. Specifically, Kohashi et al. [18] mainly tar-
geted water-soluble metabolites for UC diagnostic, reporting 
that the components of the urea cycle (citrulline, ornithine, 
and urea) and the tricarboxylic acid cycle (fumaric acid, 
succinic acid, and malic acid) showed the most significant 
alterations, and all of them except urea exhibited a signifi-
cant decrease of serum levels in the UC patients. In addition, 
significant decreases in serum levels of several amino acids 
such as isoleucine, lysine, histidine, leucine, and methio-
nine have been detected in UC patients. Ahmed et al. [19] 
monitored between 234 and 290 metabolites to discriminate 
inactive and active CD or UC. The statistically significant 
metabolites in separating the groups were broadly classi-
fied into aldehydes, ketones, secondary alcohols, esters, 
and short and branched-chain fatty acids. More recent stud-
ies focus on the analysis of fecal [20] and exhaled volatile 
organic compounds (VOCs) [21] using GC coupled to ion 
mobility spectrometry (IMS).

The goal of this work is to investigate a totally untar-
geted metabolomic approach based on the total VOC profile 
obtained by GC-MS for the diagnosis of IBD. The novelty 
includes that a headspace (HS) analysis is proposed as a 
sample treatment of serum and introduction system, avoid-
ing more complex procedures proposed to date, which are 
based on solid-phase microextraction (SPME) [18] or the 
combination of liquid-liquid extraction and lyophilization 
and derivatization steps [17]. On the other hand, this is the 
first study carried out in a totally untargeted mode.
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Material and methods

Instrumentation and software

HS-GC-MS analyses were carried out on an 8890 gas chro-
matograph (Agilent Technologies, Santa Clara, CA, USA) 
equipped with an HS system (Gerstel, Mülheim, Germany) 
and coupled to a mass spectrometer (5977B) quadrupole 
mass selective detector (Agilent Technologies) with inert 
ion source based on electron impact (EI). The chromato-
graphic separation was carried out on an HP-5MS capil-
lary column (30 m × 0.25 mm inner diameter × 0.25 µm 
film thickness), also from Agilent Technologies.

Analysis and data acquisition were carried out using 
the MSD Chemstation Data Analysis application (Ver-
sion G1701EA), and data were processed using MS-DIAL 
(Version 4.80, RIKEN) and SIMCA-P (Umetrics, Malmö, 
Sweden).

Standards and reagents

A total of 10 analytical standards were used for the identi-
fication of volatile compounds in serum samples: butanal, 
pentanal, toluene, hexanal, ethylbenzene, p-xylene, hepta-
nal, 1-ethyl-3-methylbenzene, 1,3,5-trimethylbenzene, and 
2-ethyl-1-hexanol. All of them were supplied by Sigma-
Aldrich (St. Louis, MO, USA) and individual stock solu-
tions were prepared at 1000 µg  mL−1 in methanol (MeOH). 
All standard solutions were stored at  − 20 °C.

High-quality MeOH was provided by ChemLab (Zedel-
gem, Belgium). The carrier gas used was helium with 
99.99% purity and was provided by Air Liquide (Madrid, 
Spain).

A mixture of alkanes (from C8 to C40) at 500 µg  mL−1 
in dichloromethane was also supplied by Sigma-Aldrich. 
The alkane mixture was prepared at 1 µg  mL−1 in hexane 
and used as quality control throughout the analyses.

HS‑GC–MS method

A volume of 400 µL of sample was incubated at 90 °C for 
10 min, while being stirred at 750 rpm. Then, 1.5 mL of 
the headspace was injected into the GC system using a 
2.5 mL syringe (90 °C) in splitless mode. The carrier gas 
was helium with a flow rate of 1 mL  min−1. The program 
oven was as follows: initial temperature of 40 °C held for 
5 min, which was increased to 130 °C at 5 °C  min−1 and 
subsequently to 200 °C at 35 °C  min−1 (total run 25 min). 
The MS was operated in EI mode at 70 eV. Temperatures 
of the ion source, transfer line, and quadrupole were set at 

230, 280, and 150 °C, respectively. Data acquisition was 
carried out in the range of 20–400 m/z.

Samples

The ethics committees of Murcia University (Favourable 
Report ID: 2908/2020) and Rafael Méndez University Hos-
pital (Lorca, Spain) approved this study. Informed consent 
was obtained from all patients and volunteers, and samples 
were used in accordance with the hospital guidelines.

A total of 56 patients with IBD and 48 volunteers with 
no suspicion of IBD disease were recruited from the Rafael 
Méndez University Hospital. IBD diagnosis was established 
by endoscopic, histological, and radiological criteria. Since 
IBD is a very broad disease, the patients who participated 
in this study were selected with different clinical pictures to 
cover a wide spectrum of the disease.

Table 1 shows the clinical and demographic character-
istics of the study population. The study cohort comprised 
55% females in the IBD-healthy volunteer’s group and 
64% females in patients with IBD. The mean age of cohort 
patients with IBD disease and IBD-healthy volunteer was 
48.9 and 43.0, respectively. Table 1 also shows CRP, cal-
protectin, and other parameters such as cholesterol, Fe, 
and hemoglobin (HGB), since they had been previously 
described as abnormalities exhibited by patients with IBD 
[22, 23], although no significant differences were found 
between the two groups. It should be noted that some IBD-
healthy volunteers showed high CRP, suggesting another 
inflammatory process, not related to IBD.

IBD patients who participated in the study received a 
wide variety of treatments, including those specific to the 
inflammatory disease such as aminosalicylates (mesala-
zine), thiopurines (azathioprine), corticosteroids (budeso-
nide, beclomethasone dipropionate, prednisone, and meth-
ylprednisolone), and biological (anti-TNF, anti-interleukins 
IL12/23, anti-integrins, JAK inhibitors…) as well as mineral 
(iron or calcium) and vitamin (folic acid, cyanocobalamin, 
calciferol) supplements. In the case of the IBD-healthy vol-
unteers, some of them also had some type of medication 
including antihypertensives, antibiotics, analgesics, antip-
sychotics, or antidepressants.

Each blood sample was collected in a special tube for 
blood collection. This tube contains a separating gel that 
allows the cells to be separated from the blood, obtaining 
serum as the final result after being centrifuged at 3000 rpm 
for 10 min at room temperature. Then, the serum was trans-
ferred to a clean tube and stored at  − 20 °C until use.

For their analysis, serum samples were tempered at room 
temperature for approximately half an hour and vigorously 
vortexed for 2 min for sample homogenization. Then, 400 µL 
of serum was placed into a 20 mL glass vial and hermetically 
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sealed with 18 mm aluminum screw caps provided with sili-
cone septum and injected in the HS-GC-MS system.

Data processing

Data from HS-GC-MS were converted to analysis Base 
Framework (ABF) formats and processed using MS-DIAL, 
which includes peak picking, deconvolution, compound 
identification, and peak alignment. The peak identification 
was carried out using an alkane mix–based retention index 
by Kovats’s method and GC-MS metabolomics MSP spec-
tral library (RIKEN).

The features (including both identified and unidentified 
compounds) were used to carry out the multivariate study. 
The chemometric analysis consisted of a discriminant analy-
sis of orthogonal partial least squares (OPLS-DA) using a 
unit variance (UV) scale and was carried out using SIMCA-
P software. The OPLS-DA model was built using 80% of 
the samples and was externally validated with the remain-
ing 20%. The ellipses for each category using a confidence 
probability level of 95% were obtained with Excel software 
using available online algorithms. R2X(cum), R2Y(cum), 
Q2(cum), and classification rate (CR) were evaluated in 

order to study the model success. The cross-validation pro-
cedure was a sevenfold cross-validation without shuffling. 
R2X(cum) and R2Y(cum) represent the cumulative fraction 
of the variance explained by a specific component. Q2(cum) 
indicates the predictive ability of the chemometric model, 
which should have a value greater than 0.5 [24]. In addition, 
validation of the model was carried out using a permutation 
test using 50 random permutations.

Quality control samples were included at the start and 
end of an assay run, and at regular intervals throughout the 
assay (one QC every 5 samples analyzed). QC was a mixture 
of serum samples with the aim of obtaining a representative 
sample of the qualitative and quantitative composition of the 
samples. Principal component analysis (PCA) was carried 
out to check possible signal deviations or sensitivity loss.

Results and discussion

Optimization of HS‑GC–MS method

The optimization of the HS-GC-MS method was carried 
out with the aim of achieving the best results in terms of 

Table 1  Clinical and 
demographic characteristics of 
the study population

HGB hemoglobin, LEU leucocytes, CRP C-reactive protein, CAL calprotectin, IQR interquartile range
*Both groups were compared using a t test

IBD-healthy volunteers Patients with IBD P-value*
Number of participants 45 56

Gender
  Male, n (%) 20 (45) 20 (36)
  Female, n (%) 25 (55) 36 (64)
Age (years)
  Median (IQR) 43.0 (23.0–63.4) 48.9 (38.2–57.1) 0.250
Cholesterol (mg/dL)
  Median (IQR) 186.0 (161.5–208.0) 192.5 (170.5–215.0) 0.810
  Missing (%) 11 5
Fe (μg/dL)
  Median (IQR) 86.3 (83.0–100.5) 84.8 (56.0–100.0) 0.740
  Missing (%) 51 64
HGB (g/dL)
  Median (IQR) 13.6 (13.0–14.5) 14.1 (13.3–15.1) 0.584
  Missing (%) 7 14
LEU (mg/dL)
  Median (IQR) 6.2 (6.1–7.6) 7.5 (5.7–8.6) 0.571
  Missing (%) 9 18
CRP (mg/dL)
  Median (IQR) 0.5 (0.1–0.8) 0.7 (0.1–0.6) 0.280
  Missing (%) 16 2
CAL (µg/g)
  Median (IQR) 88.6 (68.0–127.0) 297.4 (29.5–287.4) 0.350
  Missing (%) 10 3
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intensity and separation between peaks. Specifically, oven 
program, volume of serum sample, and temperature and time 
of incubation were investigated.

Considering that the objective of an untargeted metabo-
lomic method is to obtain as much information as possible, 
it is essential to achieve a good separation between peaks in 
the shortest possible time, so the first parameter optimized 
was the oven program. Among the different temperature 
programs assayed, the best results were obtained with the 
following conditions: initial temperature of 40 °C held for 
5 min, which was increased to 130 °C at 5 °C  min−1 and 
subsequently to 200 °C at 35 °C  min−1, thus providing a total 
run time of 25 min.

The amount of the sample available limited the range of 
sample volumes investigated. Experiments were carried out 
using 100, 250, and 400 µL of serum. As expected, using the 
greater amount of sample, the number of signals and their 
intensity increased (Fig. 1a). Thus, 400 µL was selected for 
further experiments.

Next, the effect of the incubation temperature was inves-
tigated. Experiments at temperatures between 80 and 100 °C 
were performed. When the temperature increased from 80 

to 90 °C, the intensity of the signals also increased. This is 
because high temperatures facilitate the release of volatile 
organic compounds with high boiling points. However, when 
the temperature increased from 90 to 100 °C, practically 
no significant differences were observed, for which reason 
90 °C was finally selected as the optimum value.

Finally, the incubation time was studied between 5 to 
20 min. As can be seen in Fig. 1b, the time range studied 
did not have a very significant effect on the intensity of the 
signals obtained. A small increase was observed in the sig-
nals that appear at the beginning of the chromatogram when 
increasing the time from 5 to 10 min. However, after 10 min, 
no differences were observed. An incubation time of 10 min 
was therefore selected as optimum.

Metabolic features derived from untargeted 
metabolomic analysis and peak identification

For data analysis, an untargeted metabolomic strategy was 
proposed using MS-DIAL. According to the acquisition 
method, the mass range was established between 20 and 
400 m/z. For peak detection, data points were smoothed 
with a linearly weighted smoothing average using a level of 
3 scans and an average peak width of 20 scans. Noise was 
defined by ion amplitude less than 1000. The deconvolution 
was carried out to the detected m/z–retention time features, 
thus features with identical peak widths and retention times 
were combined into single arrays. In this case, a resolution 
of 0.5 was set, since higher values could decrease the num-
ber of resolved chromatographic peaks and lower values 
could recognize noise as chromatographic peaks.

For peak identification, an alkane mix–based retention 
index by Kovats’s method was used. The alkane mix  (C8 
to  C40) was analyzed using the proposed methodology and 
a dictionary with retention time was created and used for 
identification purposes. Deconvoluted spectra were matched 
against a GC-MS metabolomic MSP spectral library from 
RIKEN. The retention index, retention time, and m/z toler-
ances were set at 20, 0.5 min, and 0.5 Da, respectively. A 
match criterion of more than 85% was considered. Finally, 
alignment was carried out using a retention time tolerance of 
0.075 min and spectral similarity tolerance of 70%.

A total of 96 features were detected, of which a total of 10 
compounds could be identified and confirmed by means of 
the analysis of real standards (Fig. 2). Table 2 summarizes 
the identified compounds.

The presence of butanal, pentanal, toluene, hexanal, 
ethylbenzene, p-xylene, and heptanal has been previously 
described in serum human samples [25, 26]. 1-Ethyl-3-meth-
ylbenzene has been associated with smokers and has been 
detected in exhaled breath [27], while 1,3,5-trimethylben-
zene and 2-ethyl-1-hexanol have been detected in biological Fig. 1  Optimization of a volume of sample, b time of incubation
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human and rat samples after exposure to these compounds 
[28, 29].

Subsequently, a statistical study of the identified com-
pounds in the samples was carried out. Therefore, a t test 
was performed using the peak area values of the samples 
of each category since data fit a normal distribution. Only 
pentanal (p-value = 0.01) and hexanal (p-value = 0.01) pre-
sented statistically significant differences between the mean 
from IBD-healthy volunteers and IBD patients at the 95.0% 
confidence level. However, no significant differences were 
obtained for butanal, toluene, p-xylene, heptanal, 1-ethyl-
3-methylbenzene, 1,3,5-trimethylbenzene, and 2-ethyl-
1-hexanol (p-value  > 0.05).

Chemometric models for the identification of IBD 
patients

The 96 features (including known and unknown compounds) 
were used to create the dataset for multivariate analysis, so 
it had a dimension of 101 (samples) × 96 (features). The 
101 samples included both serum samples of IBD-healthy 

volunteers (45 samples) and serum samples of patients with 
IBD (56 samples).

Initially, the residual normal probability plot was 
obtained. The residuals were random and normally distrib-
uted, since the normal probability plot has all the points 
lying on a straight line. The normal distribution of the data 
makes it possible to create the models using the raw data 
without transformations. In addition, all experimental runs 
ranged between  − 2.5 and  + 2.5; therefore, no outliers were 
detected (Supplemental Figure S1).

PCA was firstly applied over the training set to visualize 
any possible grouping of samples, but it was not enough 
to discriminate the categories (Supplemental Figure S2). 
Therefore, an OPLS-DA using UV scale or autoscaling, the 
most applied in metabolomics and that uses the standard 
deviation as the scaling factor, was proposed [30].

For the construction and validation of the models, the 
dataset was randomly divided into two subsets. Eighty per-
cent of samples were used for the model optimization (45 
serum samples from patients with IBD and 36 from IBD-
healthy volunteers) and the remaining 20% for its validation 
(11 serum samples from patients with IBD and 9 from IBD-
healthy volunteers). The obtained chemometric model (1 + 1 
component, R2X = 0.828, R2Y = 0.723, and Q2 = 0.543) 
perfectly separated the samples from patients with IBD and 
IBD-healthy volunteers as can be seen in Fig. 3. Q2 > 0.5 is 
usually admitted for good predictability, although it is diffi-
cult to give a general limit that corresponds to good predict-
ability, since this strongly depends on the properties of the 
dataset. For this reason, in order to demonstrate the model 
predictability, CV-ANOVA was carried out (Supplemental 
Table S1) and the model has also been validated by a permu-
tation test that consists of comparing the Q2 obtained for the 
original dataset with the distribution of Q2 values calculated 
when original Y values are randomly assigned to the indi-
viduals [31]. Supplemental Figure S3 shows the permutation 

Fig. 2  HS-GC-MS chroma-
togram of a serum human 
sample showing the identified 
compounds

Table 2  Detected compounds in serum samples

RT (min) Compound Ions (m/z)

2.3 Butanal 44, 43, 72, 41
3.5 Pentanal 44, 58, 29, 41
5.1 Toluene 91, 92, 77, 65
6.3 Hexanal 56, 44, 41, 43
8.5 Ethylbenzene 106, 91, 65, 77
8.8 p-Xylene 91, 106, 105, 77
9.8 Heptanal 70, 41, 44, 43
12.3 1-Ethyl-3-methylbenzene 120, 105, 91, 77
13.4 1,3,5-Trimethylbenzene 105, 120, 91, 77
14.8 2-Ethyl-1-hexanol 57, 41, 43, 70, 83
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plot for the OPLS-DA model using 50 random permutations. 
This plot confirms the validity of the model since all Q2 and 
R2 values to the left are lower than the original points to the 
right and the regression line of the Q2-points intersects the 
vertical axis below zero. Moreover, after applying the model 
to the validation set, a CR of 100% was obtained, since all 
samples were correctly classified. The OPLS-DA models 
met all quality criteria; it was proposed due to its ability to 
model data with noisy and multicollinear variables, such 
as spectral metabolic data. However, its results were also 
compared with those obtained using a PLS-DA model (Sup-
plemental Information), demonstrating that the OPLS-DA 
allows obtaining a better separation between the samples of 
patients with IBD and IBD-healthy volunteers.

The variable influence on the projections (VIP) plot (Sup-
plemental Figure S4) revealed that hexanal and pentanal 
were two of the compounds that most influenced the classi-
fication of the samples, in agreement with the data obtained 
from the ANOVA analysis. Further modeling of men and 
women separately allowed us to evaluate the influence of the 
confounding factors by means of shared and unique struc-
tures (SUS) plot. The SUS plot compared the contribution of 
volatile compounds to differentiate IBD-healthy females and 
females with IBD versus IBD-healthy males and males with 
IBD (Supplemental Figure S5). The majority of features are 
closely clustered around the diagonal of the SUS plot; there-
fore the volatile compounds responsible for the differentia-
tion of patients with IB are the same in women and men, 
which is an added value to the proposed methodology.

Conclusions

This work proposes an analytical strategy based on the use 
of HS-GC-MS and its combination with chemometric mod-
els as a possible complementary tool for the diagnosis of 
patients with IBD.

The untargeted metabolomic strategy allowed us to 
obtain 96 features that were used to build an OPLS-DA 
model that would allow us to separate patients with IBD 
and IBD-healthy individuals. The external validation did 
not give rise to false positives or negatives (100% of the 
classification rate). The results showed a higher concen-
tration of hexanal and pentanal in patients with IBD. In 
addition, a similar volatile profile was found for female 
and male IBD patients.

The main advantages of the proposed method are its 
speed in obtaining reliable results, since it takes less than 
an hour to apply the HS-GC-MS method and the chemo-
metric model, and the no need for sample treatment, since 
the volatiles generated in the headspace when heating the 
sample are monitored.

Although the results obtained demonstrate the potential 
of this methodology, it should continue to be investigated 
increasing the number of samples, and in order to demon-
strate its applicability for the differentiation of patients with 
CD or UC and evaluate the influence in the classification of 
the other inflammatory diseases.
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