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Abstract
Accurate quantification of small microplastics in environmental and food samples is a prerequisite for studying their potential
hazard. Knowledge of numbers, size distributions and polymer type for particles and fibers is particularly relevant in this
respect. Raman microspectroscopy can identify particles down to 1 µm in diameter. Here, a fully automated procedure for
quantifying microplastics across the entire defined size range is presented as the core of the new softwareTUM-ParticleTyper 2.
This software implements the theoretical approaches of randomwindow sampling and on-the-fly confidence interval estimation
during ongoing measurements. It also includes improvements to image processing and fiber recognition (when compared to
the previous software TUM-ParticleTyper for analysis of particles/fibers > 10 µm), and a new approach to adaptive de-
agglomeration. Repeated measurements of internally produced secondary reference microplastics were evaluated to assess
the precision of the whole procedure.

Keywords Microplastics · Morphological characterisation · Chemical identification · Adaptive de-agglomeration

Introduction

Most plastic materials are marketed in the form of dis-
posables. The resulting waste is characterised by a high
persistence in the environment [1–4]. Each plastic item, espe-
cially when entering aquatic ecosystems, is subject to an
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ongoing fragmentation, caused by physical strain, UV irradi-
ation, and biodegradation [5]. If the size of these fragments
reaches a range between 1 µm and 1 mm (or 5 mm, as an
alternative definition), they are called microplastics (MPs)
[6–8]. Potential hazards of MPs are, for example, the physical
influence on biota or their possibility to act as carrier of harm-
ful substances. MP counts (linked to the available contact
surface), size distributions (accessibility) and chemical com-
position are relevant properties in this context; representative
and reliable results for these categories are a prerequisite to
evaluate the influence of microplastic particles within this
subject area.

Several methods are usable for MP analysis, which are
to be divided into mass-based (e.g. thermoanalytical) and
particle-based (spectroscopic) methods delivering, to an
extent, complementary information [9–12].

This study addresses one type of the latter—static image
analysis methods for particle size analysis (ISO 13322-
1) [13] combined with Raman microspectroscopy—while
focussing on the topics of image processing, object recogni-
tion and representative subsampling. In particular, we address
special requirements for particles and fibers of the lower size
range (1 µm to 50 µm, minimum Feret’s diameter), statis-
tical methods used for that, and extensive automation as a
necessary prerequisite in this context.
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The typical procedure for quantification of MPs in envi-
ronmental and food samples with aqueous matrices includes
the filtration on a suitable substrate, e.g. Gold-coated poly-
carbonate membranes [14, 15] or silicon membranes [16],
which means the depositing of the solid matter content on the
filter membrane. Thereby it must be controlled that no signif-
icant contamination occurs from the laboratory environment
or from additional preparation steps such as oxidation (e.g.
Fenton reagent) to remove interferences, or density sepa-
ration [17]. A typical strategy to answer the questions on
fragment counts, size distribution, shape and chemical com-
position of MPs involves the use of commercial or in-house
developed software to detect the deposited fragments in
dark-field images and guide subsequent Raman microspec-
troscopic measurements on the filter. Several realisations of
this approach have already been brought forward [14, 18–
23]. They differ by respective lower limit of fragment sizes
and represent an evolution over the years, as can be seen
for the techniques used for image segmentation. Whereas
Erni-Cassola et al. [19] counted on threshold values for bina-
risation to be selected manually—which, however, is a major
drawback as results stemming from that procedure cannot
be reproduced—the “Microplastics Visual Analysis Tool”
(MP-VAT) [20] uses an automatically determined threshold.
Going further, the use of an adaptive threshold as applied for
TUM-ParticleTyper by von der Esch et al. [14] helps to take
into account also local differences in illumination that would
otherwise lead to erroneous detection results. The software,
to give an example, enables the detection and morpholog-
ical characterisation of fragments (particles and fibers) >

10 µm on an entire filter surface (circular, diameter 20 mm),
so that an accurate single-particle Raman measurement is
subsequently possible. It also enables a validation procedure
using the capability of particle detection by experts as a refer-
ence [14]. Regarding the automation of MP analysis, another
open-source software, GEPARD [22], as well as commercial
programmes, give the possibility to control Raman measure-
ments and to automatically summarise the data and present
the final results.

To develop the methodology in the direction of the lower
limit of the size range of MPs (1µm), several challenges gain
in importance, which will be discussed in the following.

As a true result for fragment counts depends primarily
on a correct detection, the precision of image analysis for
single-particle detection is of great importance. As a prereq-
uisite, the image resolution has to be high enough to resolve
all fragments down to the lower size limit ensuring an optical
image with a sufficient number of pixels (at least 13 pixels
according to von der Esch et al. [14]). Suggestions aiming
at a lower minimum (e.g. 3 pixels [21]) do not seem to con-
sider additional requirements such as those for classifying
shapes. An important tool to support a correct detection is
image processing carried out beforehand which can both lead

to a reduction of false positive and false negative results. An
example of an appropriate method is median filtering applied
in TUM-ParticleTyper (1) [14]. The use of a more elaborate
processing method, or a combination of methods, has the
potential to enhance this effect and is necessary for detection
of fragments in the lowest size range. Here, with a concomi-
tant change to a higher magnification objective, features of
the background (filter surface) will be more clearly visible.
An (almost) extinction by median filtering is not possible
anymore.

Of additional importance for a correct detection is the
entire visibility of all particles after their deposition on the
filter surface. A single object can be correctly detected if it is
completely surrounded by (dark) background, as the detec-
tion itself is based on a threshold for brightness. Under the
assumption of Complete Spatial Randomness (CSR) Xu et
al. [24] showed theoretical higher limits for particle counts
(including different particle sizes) if an isolation ratio of 99%
has to be reached (e.g. 400 particles with a size of approx.
50 µm if distributed on a filter area (314 mm2) compara-
ble to the one involved here). Especially when considering
the need for representative sample volumes, it is not possi-
ble to completely avoid agglomeration. Since particle counts
can be one to two orders of magnitude higher, any detec-
tion method will have to deal with this issue. Agglomerates
lead to an underestimation of particle counts, a shift within
the size classification, erroneous fiber recognition, and thus
to an untrue result. The use of a de-agglomeration method
appears therefore reasonable and is described, for example,
by Anger et al. [23] and Brandt et al. [22]. Such a method
is frequently based on watershed transformation [25]. How-
ever, this approach is prone to overfragmentation, resulting
in an overestimation of particle counts, especially if many
fibrous objects are involved [22, 23]. While manual cor-
rection or guidance [22] is possible, it is not reproducible
and time-intensive. If an iterative automated measurement
process as presented here is to be considered, it is finally
impossible. Therefore, an alternative approach is necessary
which accounts for the drawbacks of watershed transforma-
tion on the one hand and is fully automated on the other
hand.

Another important topic is the differentiation between
particles and fibers. This can be achieved by defining a mor-
phological dimension for an object in question and applying
a threshold. This dimension should ideally be independent
of position and rotation of the object in relation to the coor-
dinate system. For flexible objects, also different curvatures
should not affect that value. An intuitive human recogni-
tion of fibers, which represents the reference, is certainly not
based solely on a single dimension like, for example, the
value 4 as a threshold for the aspect ratio given by von der
Esch et al. [14]. The reason is that this change in the appear-
ance of an object cannot be described by only one value, but
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requires several morphological parameters (or shape factors)
at the same time to enable a more precise classification [26].
Typical parameters in this sense are circularity [20, 26, 27],
convexity [22, 26], elongation or aspect ratio (with multiple
definitions) [14, 26, 28], or distance [29].

The intended core function of a software for particle/fiber
detection leads to the approach “one measurement point per
fragment”, which is acceptable, as individual fragments are
likely to consist of a material or compound in a uniform way
[14, 18, 30]. This strategy is typically combined with Raman
microspectroscopy, as the associated time savings are very
effective compared to alternative approaches like Spectral
Imaging. Since the sheer (expected) number of fragments on
a filter surface does usually not allow a Raman measure-
ment on every single object, additional strategies involve
statistical methods of subsampling. A suitable approach is
the random selection among all fragments as proposed by
Anger et al. [30] and applied by von der Esch et al. in TUM-
ParticleTyper (1) [14]. This approach is possible, if their
positions are completely known as is the case for particles
greater than 10 µm. As already mentioned, measurements on
particles/fibers of the lowest size range down to 1 µm require
special approaches for subsampling on the filter, but also to
circumvent technical limitations, such as the precision of a
given microscope stage. A possible solution was recently
introduced in a theoretical work by Schwaferts et al. [31].
To circumvent technical limitations such as the accumulated
positioning error of a microscope stage, but also to provide a
basis for an approach to estimating the uncertainty of the
final result for particle counts, Random Window Subsam-
pling (RWS) connected to an iterative measurement scheme
has been proposed, which assumes a measurement field
significantly smaller than the total filter area. While the open-
source software published to date, e.g. TUM-ParticleTyper
(1), does not include any kind of error estimation for the final
result, which would allow statistically sound measurements
of microplastics down to 1 µm, the RWS approach allows
for an on-the-fly estimation of confidence intervals through
ongoing calculations during the measurements, based on
bootstrap estimates of fragment counts. Once the relative
error has fallen below a predefined value, the measurement
can be terminated and the final result can be calculated.

A realisation of the findings by Schwaferts et al. [31]
requires a complete automatisation of the procedure, as man-
ual steps during the iterative measurement scheme have to
be avoided. This includes an exact definition of all con-
tributing steps (like image thresholding, de-agglomeration,
fiber recognition) and ensures furthermore full reproducibil-
ity of any result. Additionally, extensive automation also
reduces the necessary workload of the operator to a min-
imum. This realisation as well as approaches towards an
automatic de-agglomeration method and an advanced fiber
recognition—concerning the issues raised above—is now

presented as main subject of this work in the form of the
software TUM-ParticleTyper 2 as main outcome. Raman
microspectroscopic measurements and their analysis by
database matching, however, are aspects which are not related
to the core topic of automation and object detection of this
work and are therefore not discussed here. As a complete
validation of the procedure is problematic since no certified
reference materials exist yet, an evaluation of repetitive mea-
surements on in-house prepared reference particles [32] was
carried out instead to assess the precision to be expected
involving the entire procedure (object detection, identifica-
tion, and quantification of fragments).

Materials andmethods

Generation of reference samples

The generation of secondary reference MPs was performed
according to von der Esch et al. [32]. Square-cut pieces
(approx. 1 mm × 1 cm × 1 cm) of three different plastic types
(PS, PET, PLA) were, separated by type, subjected to ultra-
sonification (4 mL of 0.25 mol L−1 KOHaq each, 35 kHz,
1 h), combined and filled up to 0.5 L. Aliquotation was per-
formed according to Wolff et al. [33]: During turbulent
stirring with an overhead laboratory stirrer (700 min−1 =,
RZR 2000, Heidolph Instruments GmbH & Co. KG) under
the presence of a flow breaker construction, two aliquots were
taken through a volumetric pipette (20 mL and 60 mL) near to
the stirrer blades and subsequently filtrated on Gold-coated
track-etched polycarbonate membranes (pore size 0.8 µm,
diameter 25 mm, APC GmbH, Germany, Sartorius filtration
apparatus, Sartorius AG, Germany). The filter was clamped
into an according filter holder to ensure flatness of the fil-
ter as a basic requirement for the further analysis [14]. To
avoid (additional) agglomeration of particles at the edges of
the glass tube on top of the filter (“coffee-ring” effect), an
additional layer (cellulose, circular cut out with a diameter
being about 1 mm to 2 mm smaller than the one of the glass
tube) is placed centred beneath the filter.

Ramanmicroscope systems

Optical image acquisition and RM measurements were per-
formed on a WITec Raman microscope system (alpha300,
WITec GmbH, Germany), which is directly controlled by
the WITec software Control FIVE 5.3 and ParticleScout. All
spectra were recorded with following settings: 532 nm exci-
tation wavelength, 3.5 mW laser power, up to 40 × 0.5 s
integration time per particle. As the Raman measurements
themselves represent the most time-consuming part of the
whole procedure, they also have the greatest savings poten-
tial.ParticleScout offers the function “Optimize Fast”, which
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analyses the signal-to-noise ratio (SNR) and stops the ongo-
ing accumulation of spectra, when the preselected SNR limit
is reached or if the signal at the actual position is generally
too low (Low Signal Limit). The values were set as 12 (SNR
limit within a spectral range of 500 cm−1 to 3600 cm−1)
and 25 (Low Signal Limit), respectively, after validation
through experiments. The time savings can be more effective,
if—starting from a fixed recording time of 20 s—a higher
accumulation number and, accordingly, a lower integration
time per accumulation is chosen, as this function basically
needs a minimum of three accumulations before achieving
any effect. The choice of this function can be reserved directly
at the graphical user interface ofTUM-ParticleTyper 2. Addi-
tionally, the inbuilt function “Spectral Auto Focus” was
used (Z-axis range 10 µm to 60 µm, related to the z posi-
tion of the filter surface, Minimum Integration Time 0.2 s,
Step Size Multiplier 2.0). Although this function adds time
(several seconds per particle), it helps the first-mentioned
function to work more efficiently, as it is more likely to
achieve a sufficient high SNR if always focusing on the
surface of each particle. For database matching, WITec True-
Match was used and a custom-made database was applied
(including spectra of the polymer types PE, PES, PET, PLA,
PMMA, polysiloxane, POM, PP, PPTA, PS, PTFE, PVC).
The material revealing the highest hit quality index (Pear-
son correlation coefficient) after baseline correction (rolling
ball algorithm [34], radius 100 pixel, considered spectral
range from 590 cm−1 to 1770 cm−1 and from 590 cm−1 to
1770 cm−1) was assigned, if the value was at least 0.45. Based
on the materials named above, the decision for this value is
based on spectra with varying signal-to-noise ratio for mea-
surements of both pristine and aged (known) plastic samples,
so that a correct assignment, i.e. a sufficient difference to the

second hit is likely. These results were automatically trans-
ferred toTUM-ParticleTyper 2 and, in case of the RWS mode,
instantly evaluated to decide whether to continue or to stop
the measurement process.

As a noteworthy component of computer hardware the
installed memory amounts to 64 GB, which is necessary for
processing very large images and the simultaneous calcu-
lation of measurement points on particles in case of high
particle loads (> 100000), even though measurements will
not be performed on those particles not included in a random
subsample.

All measurements were directed by the automated proce-
dure of TUM-ParticleTyper 2, the connection to the control
software of the microscope is done through desktop recogni-
tion and simulated user interaction (Python module PyAuto-
GUI). For that reason, a set of images of all involved buttons
of the graphical user interfaces was created once.

Object detection and image processing

The core function of TUM-ParticleTyper 2 is object detec-
tion in dark-field images. After starting the programme,
the dimensions of the field-of-view and Raman acquisition
parameters can be entered via the graphical user interface.
These values are then transferred to the microscope software
at the appropriate time. The reader may therefore be referred
to the accompanying manual. The detection of objects on
the image of a filter surface involves two functions from
the Open Source Computer Vision Library for Python, con-
sistent to the original version of TUM-ParticleTyper [14].
After the original image has been processed (filtering in
the Fourier domain, top-hat transformation, morphological
opening, described in Section “Image processing”) the detec-

Table 1 Summary of the steps intended for object detection and morphological characterisation

Step Description

1 Adaptive Threshold1 Binarisation of the original image

2 Find Contours1 Boundaries around bright areas (object contours)

3 Topology1 Keep the outermost contours only

4 Minimum area1 Keep objects with at least 13 pixel only

5 Applicable diameter1 Proceed with objects within the requested size range

6 Applicable position2 3 Requirements for a measurement frame (for RWS only)

7 Shape classification2 Prediction of shape category (fiber/particle)

8 Adaptive de-agglomeration2 Automated separation of in-touch particles (fibers excluded)

9 Measurement points2 Calculation of suitable measurement positions4

10 Random sampling2 3 Reduction of RM measurements (max. 7000, not for RWS)

11 Real coordinates1 Calculation according to resolution (dep. on magnification)

1(Mostly) unchanged compared to TUM-ParticleTyper 1 [14]
2 Optimised or entirely new parts
3 Optional, depending on programme mode
4 See Section “One measurement point per particle or fiber”
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tion of (bright) objects before a dark background is done
through two functions cv2.adaptiveThreshold()
(described at figure S1 in the Supplementary Material,
SM) and cv2.findContours(), which are pairwise
applied twice (first and second run). Useful values of the
required argumentsblocksize andCof cv2.adaptive
Threshold() can thus be applied for both large (pre-
vention of fragmentation) and small fragments (reduced
probability for agglomeration), whereby twofold counting
is naturally prevented. These parameters have a signifi-
cant impact on false positive and false negative results, and
detected object sizes (see Section “Object detection in dark-
field images”). All objects found that way are described
through lists of 2D coordinates representing their contours
(one per object). If contours are enclosed by others, only the
respective outermost one is further processed. Contours hav-
ing pixel counts, (minimum or maximum) lengths or shapes
(fiber or other), that do not match the conditions set by the
user, are sorted out as well (according to steps 3 to 7, Table 1).

From the resulting set of objects, a sample for succes-
sive RM measurements is drawn (RS), if the total count of
objects exceeds the intended sample length given by the user
(7000 per default). Otherwise, the whole set is subjected to
RM measurements. The default value results from theoret-
ical considerations regarding the sample size dependent on
the expected total particle count (e.g. 20000 particles) and,
accordingly, the analyte ratio (e.g. 3%) to ensure represen-
tativeness (confidence level 90%) [30]. By that, the typical
duration of the whole measurement procedure can be limited
(e.g. about 2d when an acquisition time of 20 s per fragment
is set). All spots to be measured are drawn into a black and
white image of same size as the original image as the transfer
of the spot coordinates into WITec ParticleScout can only be
achieved graphically. The latter programme then conducts
all Raman measurements using the parameters previously
entered intoTUM-ParticleTyper 2 (refer to the manual). This,
the successive database analysis, and export of results are ini-
tialised by ParticleTyper through simulated user interaction.

Validation of particle recognition

To assess the precision of the procedure based on RWS, ten
repeated measurements were performed on the same sam-
ple (20 mL aliquot) and with the same settings as follows:
The positions for 100 randomly placed windows (70 µm ×
70 µm) were determined, fragments from 1 µm to 50 µm
were to be considered (objective 100×, N.A. 0.9, working
distance 1 mm, Carl Zeiss AG, Germany) and the according
field-of-view was 120 µm × 120 µm. From the results of
object detection, point measurements (one per object) were
performed at the calculated spot positions. At each window
position, the sequence of image acquisition and process-
ing, object detection, Raman analysis (alpha300, WITec)

including database matching, and final data preparation was
automatically processed and repeated at all remaining win-
dow positions. After every tenth window, a bootstrap-based
confidence interval was calculated (confidence level 90%)
including the data of all windows measured until then. After
all windows were processed, the final result was calculated.

To assess the effect of higher probability of agglomer-
ation on the filter due to an increased particle load, five
repeated measurements were each performed on two samples
(20 mL and 60 mL aliquot) and with the settings as follows
(RS mode): A circular image (diameter 20 mm, resolution
0.873 µm) was taken and the sequence (image processing,
object detection, point measurements, final data preparation)
as described above was performed while taking fragments
from 10 µm to 1000 µm into account.

Results and discussion

TUM-ParticleTyper 2

TUM-ParticleTyper 2 (Fig. 1) provides full automation of all
analysis steps starting after sample placement beneath an
objective of the Raman microscope and resulting in material
dependent calculations of histograms of particle/fiber size
distributions. Any subjective bias can therefore be prevented.
Based on desktop recognition and simulated user interaction,
the software maximises the functionality of a Raman system
for an optimal detection, quantification and morphological
characterisation of (plastic) microparticles and fibers.

When compared to TUM-ParticleTyper 1 (suitable for
characterisation of particles/fibers down to 10 µm) [14], the
software presented here enables now the representative anal-
ysis of fragments down to 1µm (minimum Feret’s diameter).

This is mainly reached by significant improvements in
image processing and the full implementation of the random
window sampling approach (RWS) proposed by Schwaferts
et al. [31]. In addition, new approaches for improved fiber
detection (Section “Shape classification”) and a fully auto-
mated way for appropriate separation of in-touch fragments
(Section “Adaptive de-agglomeration”) are included.

Finally, an experimental validation of RWS provides infor-
mation about the precision of the entire automated analysis.

There are two subsampling methods available in TUM-
ParticleTyper 2 to shorten the measurement time: random
sampling (RS) of particles for the analysis of fragments
> 10 µm and RWS for fragments within the size range 1 µm
to 50 µm; two methods can also be applied in sequence.
RS requires objectives with lower magnification (e.g. 20×).
Here, fragments to be measured are randomly selected after
their detection on the entire filter surface [14, 17, 30]. RWS
(designed for the use of higher magnification objectives (e.g.
100×, 50×)) moreover allows variance estimation on-the-fly
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Fig. 1 Screenshot of the graphical user interface of the software TUM-ParticleTyper 2

based on bootstrap samples and an automatic termination of
the window measurement loop [31]. Here, measurement win-
dows are randomly placed over the whole filter area, where
particle detection followed by RM measurements is pair-
wise sequentially conducted, until predefined criteria are met
(maximum number of plastic particles/fibers to be measured
or maximum measurement time reached, maximum number
of windows reached, given uncertainty of result undercut).
Finally, fragment counts are extrapolated according to the
achieved window subset area proportion (RWS) or to the
counts of all detected (but not necessarily measured) frag-
ments per size class. An overview for both approaches (RS
and RWS) is given by Fig. 2.

Image processing

Three distinct methods of image processing are here applied
that aim for a more precise and correct object detection,
in particular, filtering in the Fourier domain and top-hat
transform, followed by morphological opening. A general
overview about these methods can, inter alia, be found in
“Computer and Machine Vision: Theory, Algorithms, Prac-
ticalities” by E. R. Davies [35]. If the entire surface of the
filter is to be depicted (for RS), a circular mask is additionally
applied beforehand to the image to erase the parts of the filter
holder [14] that would otherwise appear at the edges of the
image. For all output of processed images, the dimensions
of the original image are preserved which is crucial for an
unambiguous link of positional statements during the proce-
dure. For RWS, the dimensions of the image (describing the
field-of-view) exceed the one of a single window (denoted as
measurement frame), in accordance to the recommendations
of the International Standard 13322, part 1 (2014) [13].

Filtering in the Fourier domain, which enables back-
ground reduction, is the first and crucial step in image
processing. The original image is therefore divided into N
sections of same size. From every section, a new image s is
created by mirroring and stitching until the original dimen-
sions are rebuilt. All these mirrored images si are analysed
by the Fourier transform F and then multiplied (Eq. 1).

H =
∏

i

Fsi i = 1, 2, 3 . . . N (1)

The resulting Fourier filter H , representing the spectrum
of spatial frequencies, shows higher intensities when accord-
ingly sized similar objects are frequently present, which is
true for characteristics of the filter surface and especially
for the filter pores as they are present in the whole original
image. These objects are then located in a similar region of the
Fourier spectrum and can therefore be attenuated effectively,
whereas particulate objects stemming from the sample stand
out and therefore remain almost untouched. Subsequently,
the image is recreated by the inverse Fourier transform from
the modified spatial spectrum Fnew according to Eq. 2.

Fnew = Foriginal · Foriginal

Foriginal + H
(2)

This process of background reduction is repeated several
times, leading to an even more effective accentuation as a
gradual reduction of interfering background features can be
observed (Fig. 3). Further advantages are, on the one hand,
the preservation of sharpness of object contours and, on the
other hand, a scaling invariant method, which means that
there is no discrimination in the way particles of different
sizes are processed.
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Fig. 2 Flow chart depicting processes during the analysis by TUM-
ParticleTyper 2. Left side: Random sampling (for analysis of fragments
sized ≤ 10 µm. Right: Random window sampling (for fragments
sized ≤ 1 µm). Rectangles denote processes, parallelograms data
input and output, and rhombuses decisions. When compared to TUM-
ParticleTyper 1 [14], a blue colour of borderings stands for new or
further developed functions (grey borderings denote steps not controlled

but only activated by ParticleTyper), which is also true for all deci-
sion steps. Coloured background marks groups which are discussed in
coherent Sections: blue in Section “Image processing”, green (image
analysis) starting from Section “Object detection in dark-field images”
up to Section “Adaptive de-agglomeration”. Red background refers to
automation and window related steps (RWS mode). Fields highlighted
in grey belong to the Section “Evaluation and presentation of results”
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Fig. 3 Illustration of filtering in the Fourier domain. Repeated application leads to a more effective suppression of background features while
remaining object features almost untouched

The second method for image processing, the top-hat
algorithm, specifically improves the recognition of small par-
ticles in the neighbourhood of bigger and high reflective
particles (see SM, figure S2). However, size and shape of
the latter might also be distorted which is a drawback of the
method. In view of the reduction in the rate of false negatives,
this may still be acceptable.

The third method, morphological opening (on grey val-
ues), can lead to a removal of small features which are below
the demanded minimum size, but still have an influence on
object detection leading to false positive results. In particular,
the effect of median blur used by TUM-ParticleTyper 1—for
its advantages see von der Esch et al. [14]—is already inte-
grated. Opening consists of morphological erosion (of bright
pixels) followed by dilation until the original object dimen-
sions are restored. Objects being smaller than the range of
erosion in step 1 will disappear and thus not be recoverable
through dilation.

Compared to the sole application of a median filter [14],
the processing steps presented here result into an improved
starting point and, thus, performance during object detection.

Object detection in dark-field images

Appropriate settings for the arguments blocksize and C
of the function cv2.adaptiveThreshold() have been
found and validated by von der Esch et al. [14]. Values were
determined to −6 (C), 243 (blocksize, first run), and 101
(blocksize, second run). The blocksize at second run
has been slightly modified to improve contour detection (91
instead of 101). Small changes of this value have no sig-
nificant influence on resulting particle counts. However, if
chosen too low, there is an increasing probability for artifi-
cial fragmentation. In this case, the assessment by an expert
serves as criterion. When compared to von der Esch et al.
[14], the values for blocksize are transformed into a

representation that takes advantage of the new ability of the
microscope software (WITec Control FIVE and WITec Par-
ticleScout) to export stitched images at a constant resolution,
regardless of physical size. The values are applied in this way
for ParticleTyper 2.

Found objects are consecutively filtered according to sev-
eral criteria (outermost contours, minimum area > 12 pixel,
minimum Feret’s diameter above a minimum, maximum
Feret’s diameter below a maximum required value). Where
most of the criteria and their thresholds are consistent to the
work of von der Esch et al. [14], the relevant value for particle
size classification is now given by the minimum (rather than
the maximum) Feret’s diameter; nevertheless, both diam-
eters (as well as the area) are stored as part of the final
result.

Thereafter, the new approaches for a classification of
found objects into particles and fibers and adaptive de-
agglomeration are applied. Another noteworthy feature is
the improved method shown here for determining the mea-
suring points for the Raman analysis. All steps regarding
to the detection and handling of objects are summarised in
Table 1.

For validation of the results of object detection, six images
depicting fragments under dark-field illumination and taken
under equivalent conditions were manually analysed by
three experts (as the human recognition ability is gener-
ally accepted as “gold standard” within this context). As
already demonstrated by von der Esch et al. [14] the result
of object detection performed by TUM-ParticleTyper 1 is
comparable to the results of two experts. In this study the
same approach was chosen to show also the effects of an
improved image processing while additionally involving the
results of a third expert (Fig. 4). The result of Particle-
Typer is said to be valid, if the difference in recognition
between two experts exceeds the difference between one
expert andParticleTyper. The new programme version shows
improved detection rates with the True Positive rate being
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Fig. 4 Comparison of average
detection rates between three
experts, TUM-ParticleTyper
(version 1) [14] and
TUM-ParticleTyper 2 (this
work) with Expert 1 being set as
reference

now closer to one expert as it is the case for two other
experts. This is possible because ParticleTyper 2 finds more
objects overall, which leads to a higher rate of false posi-
tives. Yet this does not inevitably mean a high number of
random contours but rather a higher (and consistent) sen-
sitivity towards particularly faint objects which could be
overlooked by the experts. Moreover, fluctuations can be
expected for those objects with its size as seen by an expert
(and painted accordingly) being smaller than detected byPar-
ticleTyper if this occurs in the range of the threshold area
(13 pixels).

Onemeasurement point per particle or fiber

Suitable measurement points are then calculated for all
selected objects. Whereas this seems to be trivial for convex
and more or less circular shaped contours, fibrous and other
elongated or curved objects lead to useless results if the mea-
surement point was placed at the centroid. In ParticleTyper
1 an algorithm is applied for the latter cases which randomly
moves the intended spot in different directions until it lies
within the contour. However, this often results in a remaining
misplacement after the maximum number of random steps
has been reached, or when the last random movement ends
close to the edge of the particle, so that the confocal volume is
only to a small extent filled by the sample during the Raman
measurement.

ParticleTyper 2 uses a new function instead which takes
the object brightness into account. At first, an image section
showing only the object in question is eroded and multiplied
by its distance transform (a pixel within the contour gets the
brighter the more it is afar from any background pixel). The
brightest pixel resulting from these operations is then chosen
as measurement spot. As an example, the resulting measure-
ment point for the object shown in Fig. 5 is highlighted there
with a blue dot (distance transform, top right). This procedure

ensures a spot being located at a position where the object
tends to be widest and at the same time set not in prox-
imity to its border. Incorrect positioning is therefore almost
impossible.

We note that the evaluation of the precision reached
for the analysis of small MP fragments (1 µm to 50 µm,
Section “Experimental validation of the RWS concept”) does
naturally include the chemical identification of fragments as
an integral part of the whole method for MP analysis.

Fig. 5 Graphical description of morphological parameters taken from
each detected object. Additional useful features can be seamlessly inte-
grated into this approach as it is generally meant as new suggestion to
the topic of fiber recognition
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Shape classification

Shape classification is done by applying a random forest clas-
sifier model involving a set of values which are derived from
several shape descriptors rather than using a threshold value
for a single shape descriptor like the aspect ratio.

To achieve an automated differentiation between
microfibers and other fragments, a sorting of detected objects
is usually accomplished by defining a threshold for a spe-
cific parameter to describe its shape. An example is the
aspect ratio, which can be expected to be similar for most
fibers. However, a comprehensible threshold value is rather
unclear, as already mentioned in the introduction. To answer
the crucial question of “What is a fiber?”, a new approach
is presented here, which takes at first the decision of an
expert towards this issue into account. To this end, a ref-
erence set was first created in that sense, which consists of
1861 objects, from which 225 were classified as fibers by
manual colouring in a filter image stemming from a sample
of washing machine water. As suggested by Ilic et al. [26],
not only one, but six different features per contour ( f1 to
f6, Eqs. 3 to 8) are calculated from that reference set. These
are derived from five morphological parameters shown in
Fig. 5. These six features are then used as input for a random
forest classifier. The model generated in this way is subse-
quently applied to all object contours found by the previous
steps of object detection. All necessary files for recreation,
adaption or further improvement of the model created in this
way are made available together with TUM-ParticleTyper 2
itself.

f1 = pcircle

pobj
, with aobj = acircle (3)

f2 = aobj

dFeret, min · dFeret, max
(4)

f3 = dFeret, min

dFeret, max
(5)

f4 = aobj

aobj, convex
(6)

f5 =
√
aobj

dFeret, max
(7)

f6 = SD(dl.br.)

d̄l.br.
(8)

As long as a fiber is placed flatly on the surface, its length
is correctly stated by the maximum length of the skeletal
branches instead of the maximum Feret’s diameter which
will give too small values if the fiber is curved. The skeleton
of a contour is calculated by the functions medskel() and
analyze_skeletons() which are part of the Python
library filfinder [36]. Since the calculation may not work
correctly in all cases, the maximum Feret’s diameter is then
automatically used as the indication for the fiber length.

Figure 6 shows the evaluation of fiber detection in a similar
way as it was done for object detection (Table 1). Referred
to the classification by an expert, the method presented here
leads to an improved recognition of fibers especially in the
case of curved positions.

As a suggestion for future improvements, additional suit-
able parameters/features leading to an even more precise
classification can simply be added.

Adaptive de-agglomeration

Here, a new method is presented that intends to combine a
de-agglomeration method involving watershed transform in
a way being not prone to overfragmentation on the one hand,
and to generally avoid its application on fibers on the other
hand. Additionally, only (remaining) objects possessing a
distinct concave shape are considered for de-agglomeration.
In preparation, all objects are manually classified into (sin-
gular) particles and agglomerates once in a typical dark-field
image. The two groups can then be separated according to
the distribution of convexity values using Otsu’s algorithm,
which is a well-known method for automatic threshold selec-
tion [37]. For all following images, only those (non-fibrous)
objects surpassing this threshold of convexity are considered
for de-agglomeration. The chosen objects are then further
processed. Per default, the masked image of a single object
is eroded and multiplied by its distance transform (“option 3”
in Fig. 7). Being prepared that way, it is subjected to water-
shed transform, followed by additional contour detection and
calculation of additional measurement spots. A division of
parent objects is not necessarily the case, of course. Only if
at least two children per parent object are generated this way,
they will be represented within the final result (output files
final_result_size_classification∗.csv) in-
stead of the former parent particle. However, the final list
of single particles (final_result_all_particles.
csv)1 still contains those parents with their determined
parameters and chemical properties. A graphical description
of the whole procedure is presented again in Fig. 7.

When looking at the effect of this method on object
detection in a section of a typical filter image, an object
count without additional de-agglomeration leads to a parti-
cle count of 258. Manual counting by an expert, on the other
hand, reveals at least 361 objects. Including adaptive de-
agglomeration, the count after automated detection rises to
344 corresponding to an improved trueness of object detec-
tion while at the same time being fully reproducible as no
manual intervention meaning an introduction of human bias
is further required.

1 A detailed description of all output files is given in the ParticleTyper
manual.
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Fig. 6 Comparison of results of
fiber recognition between two
experts, TUM-ParticleTyper
(version 1) [14] and
TUM-ParticleTyper 2 (this
work) with Expert 1 being set as
reference

Evaluation and presentation of results

Results of object detection (output by TUM-ParticleTyper 2
in tabular form) and material identification by RM measure-
ments (tabular output by WITec ParticleScout) are merged
according to measurement spot coordinates. After the object
classification (fiber recognition) and, if applicable, extrap-
olation according to the chosen method of subsampling
has finished, these results are automatically evaluated and
presented in tabular (list of all detected particles, list of par-
ticle counts per size class and material) and visual form
(microscope images in original and preprocessed form, addi-
tionally overlaid by recognised contours distinguishable
drawn according to their classification).

Experimental validation of the RWS concept

To validate the concept of random window sampling and
the bootstrap-based calculation of confidence intervals, the
results from repeated measurements of reference particles are
evaluated for variance. Ten consecutive measurements under
equal conditions on the same sample result in 5.776 × 105

to × 8.125 × 105 plastic particles (almost exclusively con-
sisting of PS, PET, PLA) applying the whole measurement
procedure involving random window sampling offered by
TUM-ParticleTyper 2. Each result consists of the measure-
ments on 100 randomly placed windows (detailed results of
these measurements are given in the SM, figures S3 to S12).
As this procedure can also be seen as a series of 1000 win-

Fig. 7 Description of adaptive de-agglomeration as a new approach presented in this work. Steps 2 and 3 (additional image processing, watershed
transform) are applied only to objects which were considered for de-agglomeration beforehand (step 1)
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dows measured one after another under equal conditions, it
can be concluded that there should be a negligible differ-
ence in uncertainty when observing arbitrary groups of same
length (100). Accordingly, the blue error bars which denote
the remaining uncertainty estimated from bootstrap samples
(90% level) are of similar size (top left and right diagrams).
However, when estimated through standard deviation (SD)
from the ten final results (real order of 10×100 windows) as
seen in Fig. 8 (top left diagram, three outliers out of ten results
according to bootstrap estimates), the uncertainty is about
twice as high as estimated from bootstrap samples. Of two
possible reasons—erroneous bootstrap estimation or altered
measurement conditions—the first one can be excluded since
after regrouping the 1000 underlying window results in a ran-
dom manner there is an approximate consistency between
the two methods for estimating the uncertainty (top right
diagram, one outlier out of ten results). Consequently, there
must be an additional factor of between-group variance that
can therefore not be captured by estimation through boot-
strap samples. As already shown theoretically by Schwaferts
et al. [31] the longer the measurements are going on in terms
of overall number of windows, the more precise a result can

be. Lengthy and time-consuming measurements are often
not practicable; this method can provide results within a
few hours at the cost of higher uncertainty as shown in
Fig. 8 (bottom). With the given instrumentation the remaining
uncertainty presented here (about 5% to 8% at 90% confi-
dence level) was reached after 1d of measurement time in
each case.

Influence of particle density on the result

Figure 9 shows two diagrams resulting from measurements
on two samples of reference particles based on two different
aliquot volumes (20 mL, A, and 60 mL, B). Random sam-
pling was chosen for automatic measurements corresponding
to a lower size limit of 10 µm (minimum Feret’s diame-
ter) and thus a focus on bigger particles (up to 1000 µm).
The measurements result in 2.342 × 104 particles (A) and
5.387 × 104particles (B), respectively. Compared to Fig. 8
it is first noticeable that the error bars are smaller by about
one order of magnitude related to the uncertainty derived
from the standard deviation of the single results. This is due
to the exclusive reference on the random choice of particles

Fig. 8 Results of ten repetitive measurements (RWS mode) on
microplastic particles > 1 µm (PS, PET, PLA) generated by ultrasonic
treatment (Materials and Methods) (A), results of ten virtual measure-
ments (regrouping of 1000 single windows in random order) (B), and

progression of the bootstrap-based confidence interval [31] (1000 single
windows in random order, now representing one coherent measurement)
(C)
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Fig. 9 Results of five repetitive measurements (RS mode) on MP fragments > 10 µm (PS, PET, PLA) generated by ultrasonic treatment after
filtration of a 20 mL aliquot (A) and a 60 mL aliquot (B)

when a certain ratio of plastic and non-plastic particles of the
population is given. However, the inclusion of Raman-based
information on the chemical identity of each particle is not
considered here. A calculation based on the real variability
in this sense, as it is the case for random window sampling, is
therefore not possible. This estimate of uncertainty can thus
only be considered as the smallest possible error that can be
made using Random Sampling and depending on the chosen
sample length (7000 per default).

A second peculiarity relates to the variation in parti-
cle counts depending on the underlying aliquot volumes.
Under the assumption that the subsampling works properly,
it can be seen that a tripling of the original sampling volume
(20 mL) and thus a corresponding increase in the expected
particle load does not lead to a tripling of the resulting par-
ticle counts after the measurements. This has to be expected
because of the higher probability of overlapping when a
higher amount of particles is deposited on a constant area
so that an increasingly untrue result has to be expected. A
theoretical description to this is, inter alia, given by Xu et
al. [24]. The adaptive de-agglomeration method described
here can, to a certain extent, migitate, but not eliminate,
these effects. As a consequence, the use of an aliquotation
method and the determination of an appropriate aliquot vol-
ume is of great importance as it does not necessarily lead to a
more precise (due to an additional uncertainty of the aliquo-
tation itself), but possibly to a particle count result of greater
trueness.

When real samples are to be measured, where a very high
number of non-plastic particles has to be expected—even
if a suitable sample preparation was been applied before—
this aspect gets relevant. In general, interference from these
matrix particles is less likely as long as the particles are
mostly separated and plastic particles are not covered, lead-
ing to false negative results otherwise. However, a lower
ratio of plastic to non-plastic particles results in a pro-

longed measurement time if a similar relative error is to be
achieved.

Summary

For MP analysis, a combination of recognition in optical
images followed by Raman microspectroscopic measure-
ments is employed. When advancing this methodology
towards the lower limit of the defined size range (> 1 µm),
aspects like representativeness but also technical restric-
tions of the instrument (i.e. precision of the microscope
stage) become increasingly important. As a solution, a mea-
surement scheme based on random window sampling can
be applied which gives additionally the possibility for a
bootstrap-based estimation of the remaining uncertainty,
after a certain number of particles/fibers was measured, and
to resume those measurements, if a predefined precision
value has not been reached so far. This approach was the-
oretically described by Schwaferts et al. [31] and is now
fully realised as part of the newly developed software TUM-
ParticleTyper 2. Based on the recently published work of
von der Esch et al. [14] the software offers the whole func-
tionality of the original programme, i.e. object recognition in
dark-field images or fluorescence images, random sampling
of objects to be measured, and the calculation of suitable
measurement points for subsequent Raman analysis. This
functionality, however, is now embedded into a fully auto-
mated measurement process starting after sample placement
beneath the microscope objective and finishing with a pre-
sentation of the final result including extrapolation and size
classification for differentiable plastic material types. The
software consists of an extended procedure for image pro-
cessing (containing filtering in the Fourier domain, top-hat
algorithm, and morphological opening) which aims for the
reduction of false positive and especially false negative object
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detection results. This is followed by a new approach for an
automated adaptive de-agglomeration, as the general appli-
cation of this type of post processing seems to be inevitable,
as otherwise it is very likely to risk a significant underesti-
mation of fragment counts. Another type of post processing
refers to differentiation between particles and fibers. Along
with TUM-ParticleTyper 2, a model for fiber recognition is
provided, which is derived from the according classification
of an expert and which takes five morphological parame-
ters into account. Its application leads to a detection rate of
80% when compared to the results of an expert. Overall,
results for classification of fragments in particles and fibers,
counts, minimum and maximum Feret’s diameters as well as
the areas are given. Additionally, values for morphological
parameters used for classification are also included. The new
ability of this programme, the estimation of uncertainty based
on a single result when applying random window sampling,
was tested by repetitive measurements on the same sample
containing secondary reference MPs which revealed an addi-
tional statistical variation through an external influence while
at the same time—through virtual mixing of single window
results—the correctness of the bootstrap-based estimation of
uncertainty could be approved.

In summary, the integration of optimised image pro-
cessing, random window subsampling and bootstrap-based
confidence intervals, combined with extensive automation,
enables representative and quantitative chemical analysis of
(microplastic) particles and fibers down to a diameter of
1 µm.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00216-023-04712-
9.
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