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Abstract
Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC × GC–MS) has great potential for 
analyses of complicated mixtures and sample matrices, due to its separation power and possible high resolution. The second 
component of the measurement results, the mass spectra, is reproducible. However, the reproducibility of two-dimensional 
chromatography is affected by many factors and makes the evaluation of long-term experiments or cross-laboratory col-
laborations complicated. This paper presents a new open-source data alignment tool to tackle the problem of retention time 
shifts — with 5 different algorithms implemented: BiPACE 2D, DISCO, MSort, PAM, and TNT-DA, along with Pearson’s 
correlation and dot product as optional methods for mass spectra comparison. The implemented data alignment algorithms 
and their variations were tested on real samples to demonstrate the functionality of the presented tool. The suitability of each 
implemented algorithm for significantly/non-significantly shifted data was discussed on the basis of the results obtained. 
For the evaluation of the “goodness” of the alignment, Kolmogorov–Smirnov test values were calculated, and comparison 
graphs were generated. The DA_2DChrom is available online with its documentation, fully open-sourced, and the user can 
use the tool without the need of uploading their data to external third-party servers.
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Introduction

Two-dimensional comprehensive gas chromatography cou-
pled with mass spectrometry (GC × GC–MS) [1] is a pow-
erful technique combining the high-resolution potential of 
two-dimensional separation and the identification ability of 
mass spectrometry techniques (such as time-of-flight and 
quadrupole). Exploiting the reproducibility of mass spec-
tra obtained under the same conditions is a well-established 
approach, and there are many commercial mass libraries. On 
the other hand, evaluating chromatograms measured under 
the same conditions is biased by various factors, such as col-
umn ageing, column flow fluctuations, or change in column 

length caused by their replacement. As a result, retention 
time shift complicate data alignment and pairing of peaks of 
the same chemical compounds in different chromatograms. 
Thus, data alignment is a crucial step, and its correct execu-
tion eliminates downstream errors for further evaluation of 
the results.

To demonstrate such situation when these obstacles come 
in play, we have used our research of human scent as an 
example. The data collection spreads over a 2-year span. 
During this time, various maintenances occurred causing 
different time shifts. Since the research is focused on non-
target analysis, a special library of identified chemical com-
pound had been developed. This library is based on one of 
the algorithms discussed later in this paper (MSort) and, 
ideally, should keep special codenames for each detected 
chemical compound. Without proper data alignment, the 
risk that compounds in the measured chromatograms may be 
labelled with the wrong codename (or one compound could 
have many such codenames) is significantly higher. These 
errors are hard to detect in later stages of data processing 
such as statistical analysis — thus, they are propagated into 
the later stages of data processing.
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There are commercial software programmes available 
to help overcome the problem of retention time shifts; the 
time correction tool is sometimes part of the official soft-
ware supplied by the instrumentation manufacturer. How-
ever, these programmes are often patented, or their core code 
is protected by other means, making such software one of 
the “black box” steps involved in data treatment. This paper 
introduces an open-source tool to alter these commercial 
options and aims to contribute to the open-science effort in 
a field of GC × GC–MS data processing automation.

Data alignment algorithms discussed in this paper can 
be divided into two groups: those with spectral depend-
ency and those without spectral dependency. Algorithms 
without spectral dependency are suitable for GC × GC-FID 
(two-dimensional gas chromatography coupled with flame 
ionization detector) application because they work only with 
the peak coordinates (respectively, they fit two signals based 
on their shape and magnitude). Coherent point drift (CPD) 
[2, 3] fits one point set onto the other by maximizing the 
likelihood of both point sets. This approach treats data align-
ment problem as a probability density estimation problem 
and alignment itself is performed by applying a transforma-
tion function on the data. The transformation function has 
three parameters for rigid transformation — rotation, trans-
lation, and scaling. Non-rigid transformation then allows 
non-uniform scaling and skewing of the data during the 
transformation. Li et al. [4] developed a spectral similarity 
extension algorithm for CPD, which should outperform local 
alignment algorithms in cases of real data with a high den-
sity of peaks. One of the most favourite data alignment algo-
rithms is correlation optimized warping algorithm [5, 6]. 
This algorithm works on the raw data level by splitting the 
chromatogram into subregions. Each subregion is then fitted 
to the “template” chromatogram. This algorithm is ideal for 
samples which do not vary in their qualitative composition.

There are semi-automatic alignment algorithms without 
spectral dependencies [7, 8] that require the user to manu-
ally enter the list of anchor points (peaks present in both 
referential and aligned chromatograms) for each aligned 
chromatogram. The requirement of manual intervention 
is an undesirable characteristic with respect to the cur-
rent emphasis on automatization. However, the concept of 
anchor points — points present in all aligned samples, is a 
pivotal idea for spectral-dependent algorithms. Gros et al. 
[7] used the user-predefined list of anchor points to align 
data through a linear extrapolation in the first dimension 
and Sibson natural neighbour interpolation in the second 
dimension. Reichenbach et al. [8] used the concept of anchor 
peaks to create the transformation grids for data alignment. 
A modified anchor peak algorithm (RI) had been used in our 
laboratory. There were 17 anchor points in total. Thirteen 
anchor points were used for alignment of data in the first 
dimension, and 1 shared plus 4 unique anchor points were 

used for alignment in the second dimension. Both reten-
tion times were separately recalculated to retention Kovats 
indices, and this step aligned the data without any other data 
manipulation.

Spectral-dependent algorithms include not only peak 
coordinates but also spectral similarity between peaks. The 
Smith–Waterman algorithm [9] originally used in proteom-
ics [10] was modified with respect to spectral similarity. The 
“match”/ “mismatch” decision rule depends on whether the 
spectral similarity exceeds the given threshold. Each cell of 
the aligning matrix (n × m, n dimension corresponds to the 
number of peaks in the aligned chromatogram, the m dimen-
sion corresponds to referential chromatogram) is then scored 
as a sum of the “match”/ “mismatch”/ “gap” rule and the 
value of the previous cell. Then, it traces back, from the end 
cell with the highest score, the path with the highest scoring 
values, which is the resulting “aligning” path (see Fig. 1).

Robinson et al. [11] altered the decision rule. Each cell 
of a scoring matrix is calculated from the similarities of the 
peak powered to the time difference between the reference 
and the aligned peak (the time difference is calculated from 
the total retention time). BiPACE 2D [12] builds on the pre-
vious dynamic programming methods. BiPACE 2D treats 
the 1st and 2nd retention time shifts separately, thus adding 
one more parameter to the Robinson equation [11, 12]:

Fig. 1  Visualization of the Smith–Waterman algorithm. The ideal 
aligning path follows the highest scoring pixels back the cell near 
[0,0] position — the first cell in the matrix. This is a common algo-
rithm behaviour for similarly populated chromatograms. However, 
if the number of peaks in the aligned chromatograms differs signifi-
cantly, the aligning path often initiates in a cell further away from the 
origin [0,0]. Each pixel represents one cell of the matrix
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s(p, q) is the spectral similarity of the compared peaks; the 
exponential members of the equation take the squared dif-
ference between the retention times for the first and second 
dimension divided by tolerance parameters D. The higher 
the D value, the greater the time differences between the 
peaks tolerated. The exponential terms are called reten-
tion time (RT) penalty terms, and the user can assign an 
additional threshold parameters T1 and T2 and thus apply a 
search window discrimination to the peak comparison. The 
algorithm creates Best Bidirectional Hits tables (or maps) 
where the strength of the anchor point (peak, respectively) is 
expressed as a count of connections to the other members of 
the specific anchor point cluster (peaks of the same chemical 
compound through all aligned chromatograms). DISCO [13] 
identifies anchor points based on their Euclidian distances. 
First, the retention times are recalculated to the z scores 
(Fisher transformation). Then, X nearest peaks (20% of the 
total number of all peaks in the table was set as a discrimina-
tion rule for this experiment) from the referential chromato-
grams are compared to the inspected peak from the aligned 
chromatogram. If the spectral comparison exceeds the criti-
cal threshold, the inspected peak is marked as the anchor 
point. The overall execution of the alignment starts with a 
randomly picked chromatogram as the referential table of the 
anchor peaks. Through the iteration over all aligned chroma-
tograms, anchor peaks which are not found in all samples are 
dropped, and the final referential table is a list of peaks found 
in every member of the aligned dataset. The alignment itself 
is done by a linear fitting method. MSort [14] has a static 
search window for the first and second retention times and 
chooses a peak with the highest spectrum similarity coeffi-
cient in the searched area. PAM [15] has no search window. 
Like DISCO, PAM recalculates times to Canberra distances, 
and the selection rule is a weighted product of the distance 
and spectral similarity of peaks. The algorithm compares 
all peaks from both chromatograms, and matches the peaks 
with the highest similarity according to [15]

where w is weight parameter, Dd is the distance between the 
two compared peaks (tj, ri) and S is the spectral similarity of 
the two compared peaks. To speed up the calculation pro-
cess, we added a similarity threshold parameter. If the spec-
tral similarity of the two compared peaks does not exceed 
the threshold, the rest of the calculation is skipped. Based 
on the obtained results, the new variation of previously dis-
cussed algorithms was proposed — the non-targeted data 
alignment (TNT-DA) — see the Experimental section.
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As all tested algorithms (BiPACE 2D, DISCO, Msort, 
PAM, and TNT-DA) were of the spectral dependant family, 
the final DA-2D_Chrom tool [16] provides optional param-
eters for the mass spectra comparison. Kim et al. [17] tested 
various approaches to mass spectra comparison and the 
influence of mass spectra transformation. Four mass spec-
tra comparison setups published by Kim were tested in this 
study: Pearson’s correlation and dot product, both with and 
without spectra transformation.

The main motivation of this experiment was to develop 
open-source alignment tool with multiple algorithms imple-
mented in ready-to-deploy state. The tool was then used for 
the peak alignment of real human scent samples acquired by 
a non-target analysis approach and evaluated the potential 
of algorithms previously described in various studies. In the 
following paragraphs, all implemented data alignment and 
spectral comparison methods are tested and compared using 
DA_2DChrom. First, all implemented algorithms are used 
for data alignment of small sample set [18]. The data align-
ment problems (mass spectra deformation after deconvolu-
tion, misidentification of anchor points) encountered during 
the DA_2DChrom development and their impact on data 
alignment are also briefly discussed. In the second part of 
data alignment experiments, the best performing published 
algorithm and TNT-DA are applied to the complete dataset 
of 503 scent samples [19]. The ability to perform a good 
fit peak alignment on a large set of samples acquired over 
a long period of time or even by different laboratories (fol-
lowing the same methodology) would greatly improve the 
potential of data sharing in a GC × GC community.

Experimental

Sample data set

All human scent samples were acquired with the same meth-
odology and measured under the same settings. Both steps 
were described in our previous work [20], a detailed descrip-
tion is provided in Supplementary materials: S1_Method-
ology. The 503-chromatogram dataset could be divided 
into three subgroups: system_1 (274 samples), system_2 
(136 samples), and system_3 (93 samples). A maintenance 
operation (column replacement in both dimensions) was 
performed between the subsets of the measurements. The 
main idea of the split is that there should be minimal time 
shift variation between chromatograms from the same sub-
set (homogenous samples) and a larger time shift variation 
when comparing samples from different subsets. All samples 
were pre-processed with ChromaTOF® software (version 
4.72.0.0, LECO Corp., St. Joseph, MI, USA) at signal-to-
noise (S/N) ratio levels 100, 300, and 500. Thresholds below 
S/N 100 detected many “noise” peaks with incomplete mass 
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spectra which would be excluded from real analyses any-
way. The detected peaks (1st dimension retention time, 2nd 
dimension retention time and spectra) were exported without 
any additional adjustments of the data to a.csv file format 
with a tabulator as a separator. To test the “goodness” of the 
data alignment for the each implemented algorithm, training 
data set containing twenty samples were randomly chosen 
as a training set [18] (8 from system_1, 3 from system_2, 
and 9 from system_3). Those samples were additionally re-
exported with columns bleeding areas excluded. For testing 
the performance of Pearson’s correlation versus cosine simi-
larity as a tool for mass spectra comparison, five standard 
samples of 48 compounds were measured under the same 
conditions as samples from system_3 (see Supplementary 
materials: S3_Table of standards).

Volunteers and naming of the samples

In total, samples from 40 volunteers (20 women and 20 
males) through all three system conditions were processed. 
The samples are named in a uniform way — first letter repre-
sents a biological sex of the volunteer, the following number 
is the ID of the volunteer in a database, and after the under-
score, the ID of the sampling session follows. (M15_8 means 
that this volunteer is the 15th male volunteer in our database, 
and this sample is their 8th sample provided.)

Tested algorithms

BiPACE 2D, DISCO, MSort, PAM, Smith–Waterman, TNT-
DA, and additionally the modified anchor point algorithm 
were tested with multiple parameters if possible. In some 
cases, algorithms were modified (see following sections). 
Note that the modified anchor point algorithm was not tested 
on all 503 chromatograms, as finding the best automated 
solution was the main objective of this study.

To minimize the differences between algorithm execu-
tions, the new data alignment tool DA_2DCHROM [16] 
was designed in a manner to execute the alignment always 
in the same manner, so the execution differed only in the 

selection rules based on the chosen algorithm (step Find 
anchor peaks). Sample system_1_M13_4 was set as a ref-
erential chromatogram and the rest of the 19 samples were 
aligned, one by one, to the referential chromatogram. Each 
alignment process executed the following steps:

Find anchor peaks → Check elution order → Export 
anchor points → Retention time shift correction → Export 
peak map → Export time corrected chromatogram.

The selection rules and tuneable parameters for the 
alignment tool (step Find anchor peaks) are summed up in 
Table 1.

The non‑target data alignment tool (TNT‑DA)

TNT-DA is derived from the DISCO discrimination rule 
and the PAM selection rule. First, the retention times are 
recalculated to z scores. For every peak in a referential table, 
Canberra or Euclidian distances for every peak in an aligned 
table are calculated. Then, 20% of the nearest peaks are con-
sidered as potential anchor peaks. Spectral similarity is cal-
culated for every potential anchor peak. If the spectral simi-
larity reaches the similarity threshold, the PAM selection 
rule is applied, and the peak from the aligned table with the 
highest score is marked as an anchor peak. The performance 
of the proposed algorithm was tested, and the best result was 
compared to the other algorithms.

Performance evaluation

First, the distributions of the peaks in the chosen 2D chro-
matograms were compared for each dimension using a 
Kolmogorov–Smirnov (K-S) test [14, 21]. It is a non-
parametric test of the proximity of two distribution func-
tions. The closer the value to the zero, the better the fit of 
the distributions. That means that unaligned data would 
have higher K-S value than perfectly aligned data (the 
zero value could never be reached with our dataset as 
the samples were not qualitatively identical). The over-
all processing times of the test samples were inspected. 
The K-S test values were then recalculated after the peak 

Table 1  Summarization of the inspected algorithms and their parameters used in DA_2DCHROM [16]

Data alignment algorithm Search window Selection rule Tuneable parameters

BiPACE 2D Optional (T parameters) Equation 1 D1, D2, T1, T2, spectral similarity
DISCO Optional (20% set as default) Top spectral similarity Spectral similarity
MSort Yes Top spectral similarity max_shift_1 [s], max_shift_2 [s], 

spectral similarity
PAM No Equation 2 w, spectral similarity
Anchor peaks (RI) No None None
Smith–Waterman No Spectral similarity Spectral similarity
TNT-DA Optional (20% set as default) Equation 2 Distance method, w, spectral similarity
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alignment of the inspected dataset, and the pre-alignment 
and after-alignment values were compared. The F1 score 
was used to compare Pearson’s correlation versus cosine 
similarity as a tool for comparing distances between mass 
spectra. F1 score is the weighted average of precision and 
recall [22]:

where TP = true positive, FP = false positive, and FN = false 
negative.

All results (graphical and numerical) discussed in the 
section “Results and discussion” are part of the provided 
sample dataset [18]. Exported m/z values are representing 
relative abundance of the m/z fragment in the obtained 
spectrum. Please, see the dataset Readme file. All calcu-
lations were performed on a common workstation (Intel® 
CoreTM i7-9700F @ 3.00 GHz, with 32 GB RAM DDR4 
and 64-bit Win 10 OS).

Results and discussion

The following sections demonstrate the impact of switch-
ing between alignment algorithms and tuning of their 
parameters while using the introduced open-source data 
alignment tool. As the development of the 2D_Chrom 
involved lot of testing and visualizations of failed experi-
ments, the main pitfall of automated data alignment algo-
rithms was inspected — misidentification of the anchor 
peaks. The symptoms and solutions of this phenomenon 
are discussed in following paragraphs.

(3)F1 =
TP

TP +
FN + FP

2

Time efficiency

The least demanding algorithm was a modified anchor point 
(RI). The execution of data alignment of one sample took 
less than 1 s. However, it took approximately 15–20 min to 
identify, mark, and export anchor peaks. Algorithms with a 
“search” window (MSort, DISCO, BiPACE 2D, TNT-DA) 
took the same amount of time (15–20 min) for one sample. 
The PAM algorithm was slightly slower, and the execution 
of one sample took around 40 min to 1 h. The reason of 
lower time efficiency is the fact that PAM algorithm has no 
search window, or any other discrimination step; thus all 
peaks are compared against each other. The execution of the 
Smith–Waterman algorithm was counted in hours and exhib-
ited severe misalignments while processing chromatograms 
with fewer peak counts, thus being left out of further testing.

Sample dataset alignment

For DISCO, MSort, BiPACE 2D, and PAM, “alignment 
artefacts” appeared. They can be described as horizon-
tal or vertical lines formed by misplaced aligned points 
(Fig. 2). Homologous series tend to have linear or exponen-
tial character in a later stage of the analysis (corresponds 
to the isothermal temperature end of the chromatographic 
programe) in the proposed experimental setup. Therefore, 
the rearrangement of the detected peaks to constant func-
tion behaviour marks an error in the data alignment. The 
appearance of alignment artefacts was correlated with the 
incorrect identification of the anchor peak — the reference 
table peak which was identified in an aligned table. This 
misidentification was a result of either low critical value of 
spectral similarity or wrong setting of the discrimination 
rules (for example, favouring distance between two peaks 

Fig. 2  An example of align-
ment artefacts in one of the 
aligned samples. Each colour 
represents a different chromato-
gram. Red boxes represent the 
wrong alignment in the first and 
second dimensions. The vertical 
red box (second dimension 
misalignment) clearly causes 
alignment error for samples 
F15_19 and F15_21 in the 1st 
RT > 2000. The displacement is 
market by the blue ellipse, and 
the expected direction of the 
alignment is pointed out by the 
blue arrows. These results were 
obtained using DISCO algo-
rithm, S/N = 500, and spectral 
similarity threshold (Pearson’s 
correlation coefficient) was set 
to 0.3
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over spectral similarity). Figure 3 depicts such an incorrect 
identification. Time shifts in both dimensions have similar 
direction through the sample; therefore, different directions 
of the shift are an indicator of the identification error, which 
eventually results in poor alignment of the chromatograms.

The evaluation of the K-S metrics was misleading in some 
cases. For example, the dataset contained dense data, and 
the overall distribution of peaks differed in the first place 
(some of the samples had richer polar fractions than others). 
Second, a denser area along the alignment artefact lines dis-
torted the resulting distributions. Considering the previous 
points, all alignment experiments were additionally visually 
checked for the performance evaluation.

BiPACE 2D was tested with a different parameter con-
figuration. Cut-off values T1 and T2 were both set to value 
0.99. D1 (threshold for time delta in the first dimension) 
was tested at levels 10, 50, and 100 in combination with D2 
(threshold for time delta in the second dimension) values 
0.25, 0.5, and 0.8. Performance improved with increasing 
S/N (100 <  < 300 < 500) and the D1 parameter. Even with 
the alignment of the highest D2 value (0.8), the alignment 
of the data in the second dimension was not sufficient, espe-
cially with second dimension retention times y > 4 s. For 
DISCO, the performance improved with increasing spectral 
similarity (30% <  < 80% < 90%) and with increasing S/N. 
MSort proved to be sensitive to user input (search window 
boundaries). The correctness of the alignment was raised 
with broader boundaries (especially for the second dimen-
sion) and a higher threshold of similarity of the mass spec-
tra. However, the user must set the boundaries with respect 
to distances between spectrally similar elution areas (in 
second dimension) or members of homologous series (in 
first dimension) to avoid anchoring on the wrong peaks. The 
PAM algorithm is rather time-consuming but, on the other 
hand, less discriminating than other inspected algorithms. Its 
sensitivity to various time shifts could be managed through 

the preference of spectral similarity (w parameter is a weight 
parameter — higher values prioritize distance between the 
peaks, lower values prioritize the spectral similarity) without 
any processing time trade-off. The value of w = 0.8 yielded 
the best results when considering the alignment in both 
dimensions.

All algorithms had one thing in common, their perfor-
mance improved with a rising S/N. This could be caused 
by improper peak deconvolution done by software used for 
peak detection and data export. For fully separated peaks, 
the level of S/N does not impact the correctness of the 
presented mass spectra. Compared to that, the coelution 
of peaks caused disjunction of spectra because of wrong 
deconvolution. The most common example in the presented 
samples are higher ethyl esters of fatty acids and their satu-
rated and non-saturated pairs, which were coeluting heav-
ily. With lower S/N ratios, there were more than 4 peaks 
detected instead of two. The real peaks were often split into 
two “peaks”, one with spectrum containing lower m/z frag-
ments and the other with characteristic masses (236 etc.) as 
base fragments (fragments with the highest intensity). As 
all the tested algorithms rely on the mass spectra reproduc-
ibility, the variations in spectra lead to the processing errors 
(such as spectral similarity of the peaks of the same chemi-
cal compound do not exceed the similarity threshold through 
the samples or the algorithm identifies the wrong member of 
the homologous series).

For the complete commentary on the performance 
of all implemented algorithms, every algorithm and its 
parameter tuning were, in fact, tested twice. The final 
DA_2DChrom tool contains step Check elution order. 
When this step was left out of the alignment procedure, 
the number of anchor peak identification errors (mainly 
for mass similarity thresholds 30 and 80%) was dramati-
cally higher (most of them were false identifications) 
compared to the situation with this step involved. For 

Fig. 3  An example of anchor peak misidentification. On the left 
(DISCO algorithm with spectral similarity threshold ≥ 30%), obvi-
ous identification errors are marked with red boxes. On the right 
(DISCO algorithm with spectral similarity threshold ≥ 90%), there is 

an example of better anchor peak identification. However, even this 
experimental alignment exhibited identification errors for the area 
x > 2700 s (elution time greater than 2700 s)
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example, for mass similarity > 30%, there were hundreds 
of detected anchor peaks for each chromatogram. How-
ever, with the check step on, the count of the anchor peaks 
seldomly reached over 150. At the early stages of the 
DA_2DChrom, the elution check was performed sepa-
rately for the 1st dimension and the 2nd dimension. This 
approach, however, had issues while dealing with the 
peaks with the same retention times in one of the dimen-
sions. Thus, the implemented elution check checks on the 
elution order with respect to the total elution time (sum 
of the retention times from both dimensions).

In terms of data alignment, the modified anchor point 
algorithm (based on retention indices) outperformed other 
algorithms. There are two possible outcomes of this find-
ing: first, when the user is dealing with a reasonable count 
of complicated samples, human processing time should be 
an acceptable trade-off for the algorithm performance. Sec-
ond, if the user is familiar with the structure and common 

pattern in aligned chromatographs, there is a possibility to 
write a list of selection rules (considering spectral similarity 
and rigid relative distances) for finding such anchor peaks 
automatically, which might be a very challenging task. For 
the completion of the study, the modified anchor point algo-
rithm was used as a pre-process alignment, and all other 
algorithms were applied on the transformed dataset.

Figure 4 sums up K-S test results for all tested algo-
rithms and their top performing parameters. For full 
reference, see Supplementary materials: S2_KS-test_
results_SN_500. Graphical results are part of the pub-
lished dataset [18], which was created as a part of this 
study. The RI approach was the best performing in the 
1st dimension, while the PAM algorithm reached the best 
result in 2nd dimension. As the final dataset contained 
503 samples, we decided to prioritize DISCO over PAM 
and RI because of the time efficiency in the case of PAM 
and fully automated concept in the case of RI.
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1st Dim 0.0227 0.0224 0.0224 0.0224 0.0226 0.0213 0.001

2nd Dim 0.0904 0.0784 0.0725 0.0736 0.0656 0.0714 0.0746
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Fig. 4  Summary of the best K-S test results obtained for each algo-
rithm (with paramaters). Blue bars represent values for the 1st dimen-
sion, orange bars represent results for the 2nd dimension. BiPACE 
2D settings: D1 = 100, D2 = 0.8; DISCO settings: Pearson’s correla-

tion = 0.8; MSort settings: Pearson’s correlation = 0.8, search win-
dow =  ± 25 s in the 1st dimension, ± 0.5 s in the 2nd dimension; PAM 
settings: w = 0.8; TNT-DA settings: cosine correlation = 0.9, w = 0.4, 
distance = Canberra

Table 2  Confusion matrix of the spectral similarity compari-
son  methods.  True positive = correct identification; false posi-
tive = compound from the reference table had a higher spectral cor-
relation with the other compound from the compared table (wrong 

identification); false negative = none of the reference table — com-
pound pairs from align table had not reached the threshold of 80%; 
true negative was 0 since all compounds were present in the 5 chro-
matograms)

Pearson – no transformation Method applied
192 + - Total population + -

+ 84 3 + True Positive False 
Negative

- 105 0 - False Positive True Negative
0.61 F1 score

Pearson – 0.53,1.3 transformation Cosine – 0.53,1.3 Transformation
192 + - 192 + -

+ 149 24 + 156 3

- 19 0 - 33 0

0.87 0.90
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Modified anchor point algorithm as a pre‑processing step

The pre-align step led to higher processing times of all 
algorithms (except PAM). Surprisingly, the performance of 
BiPACE 2D and DISCO was worse than without the pre-
align step (meaning that there were more align artefacts and 
the K-S test results achieved higher values in both dimen-
sion). MSort performed better as time shifts were reduced. 
The PAM results were not different from the alignment 
based on the raw data. Overall, considering the input effort, 
using modified anchor point algorithm as a pre-processing 
step has no positive effect on the quality of the final data 
alignment.

Spectral transformation and spectra similarity comparison

As spectral comparison was the main issue, additional 
options of spectral similarity were inspected [17] — spec-
tral transformation and cosine similarity [23]. The best per-
forming transformation step, according to Kim’s paper, was 
the following: the intensity of each mass value was pow-
ered to 0.53, and the mass value was powered to 1.3 — this 
approach favours the masses with higher m/z ratios, which is, 
for example, useful while distinguishing between members 
of homologous series.

For this sub-experiment, five chromatograms of the stand-
ard mixture (48 compounds) were measured, the peaks were 
manually identified, and subsequently, only the mass spectra 
were compared. The first chromatogram was set as a refer-
ence chromatogram. F1 score [22] was used as an evalua-
tion metric. The Pearson’s correlation coefficient without 
transformation reached the F1 score 0.61 (precision = 0.44, 
recall = 0.97), and the spectral transformation with coeffi-
cients 0.53 and 1.3 improved the F1 score to 0.87 (preci-
sion = 0.89, recall = 0.86) (see Table 2). Cosine similarity 
with the same spectral transformation scored 0.90 (preci-
sion = 0.83, recall = 0.98). However, transformed Pearson 
performed better from the precision perspective. The higher 
occurrence of false positive results in the case of cosine sim-
ilarity is acceptable when the step of Check elution order 
is employed in the script. These results were applied to the 
development of the data alignment software, and all avail-
able algorithms were supplied with cosine similarity as an 
option for mass spectra comparison.

The non‑target data alignment tool (TNT‑DA)

The best performing setup included Canberra distances, 
cosine similarity (0.53, 1.3 transformation) with threshold of 
90 % and the w =0.4 (Fig. 4). The K-S test value for the 1st 
dimension was 0.0221 (default value = 0.0227) and 0.0714 
for the 2nd dimension (default value = 0.0904). Figure 5 

Fig. 5  Map of the identified anchor peaks (TNT-DA) and their shift 
against referential peaks. The top (1) map represents the shift for a 
sample from the very same system (system_1), the middle (2) map 
shows the shift for a sample from system_2, and the bottom (3) map 
depicts shift for a sample from system_3
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demonstrates the anchor peak shift for one sample from each 
system. The overall alignment of the data is shown at Fig. 6.

Overall data alignment

For the final data alignment experiment, the best perform-
ing tested algorithm (DISCO as the compromise between 
time efficiency and goodness of the alignment — also this 
algorithm is most similar to TNT-DA) and TNT-DA were 
tested on the complete dataset containing 503 samples. On 
the basis of the results of the sample dataset alignment, 
DISCO selection rules and cosine similarity with spectral 
transformation were chosen as the best alternative consider-
ing the processing time demands and the achieved alignment 
of the data points. The spectral similarity threshold was set 
at 90 % (0.9) for both algorithms. The TNT-DA w parameter 

was set to 0.4, and the Canberra distance was applied for the 
calculations. The K-S result (default values were 0.0283 for 
the 1st dimension and 0.1138 for the 2nd dimension) for the 
TNT-DA was 0.0282 for the 1st dimension and 0.0819 for 
the 2nd dimension, and DISCO scored 0.0280 for the 1st 
dimension and 0.0812 for the 2nd dimension. The processing 
time was roughly the same in the dozens of minutes per sam-
ple. For visual comparison, 100 randomly chosen pairs were 
exported as distribution maps and visually compared (note 
that random.seed was set to 42). For both algorithms, align-
ment artefacts appeared (see published Training dataset [18]) 
and the K-S results were similar. The results suggest that 
DISCO might be more error prone when dealing with dense 
and unadjusted data (the small testing sample set used for 
primary testing and on which TNT-DA performed better was 
re-exported without column bleed regions). The TNT-DA 

Fig. 6  Visual comparison of 
default training data (top) and 
data aligned with TNT-DA 
(bottom). Both data sets were 
exported on S/N 500. TNT-DA 
was performed with w = 0.4, 
distance method = Canberra, 
similarity threshold = 90%. The 
spectral data were transformed 
(0.53, 1.3) and compared by 
cosine similarity
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algorithm does not dramatically improve the data alignment 
compared to the tested algorithms but provides additional 
tuneable parameters if the user needs more flexible tuning.

Conclusions

In total, more than 1100 data alignment steps were carried 
out during this study using newly introduced open-source 
data alignment tool — DA_2DChrom. The performance 
differences of each implemented data alignment algorithm 
were demonstrated. For every algorithm with tuneable 
parameters, multiple alignment runs were carried out and 
compared to each other.

First, orientation experiments were performed on a 
reduced sample set containing twenty samples with the fol-
lowing result: BiPACE 2D has four controllable parameters. 
For our study, the discrimination rules T1 and T2 were rigid 
and only D1 and D2 were varied during the experiments. 
Adjustable parameters allow BiPACE 2D to deal with vari-
ous time changes, but the algorithm must first be tuned. 
The DISCO algorithm is robust considering time shifts, and 
swift has no real tuneable attributes, which makes DICSO 
a very user-friendly approach. MSort is perfect for chro-
matograms with smaller time deviations. It has the quick-
est execution time, and if there is no significant time shift, 
MSort would be the best choice. The PAM algorithm is the 
most time-consuming. However, it does not discriminate 
any peaks in the comparison itself. The user can choose 
the weight of the spectral similarity and peak distance on a 
single parameter. The PAM should be error prone to signifi-
cant time shift as well as to different peak distribution. The 
processing time of the PAM algorithm could be reduced by 
introducing the “search window” boundaries (like MSort or 
BiPACE2D). The transformation of retention time coordi-
nates into retention index coordinates proved to be very effi-
cient, especially in the 1st dimension, but this approach is 
not viable in automation of data processing. Smith–Water-
man algorithm was excluded from further calculations due 
to time-consuming calculations and severe misalignments 
for unequally populated chromatograms.

Choosing the right mass spectrum comparison method 
proved to be crucial and significantly improved the effective-
ness of the algorithms. Thus, the DA_2DChrom was expanded 
for another tuneable argument for each algorithm — the user 
can choose between the Pearson’s correlation or cosine simi-
larity when comparing mass spectra. The Pearson’s corre-
lation reached higher precision score than cosine similarity, 
which, on the other hand, yielded better recall results. The 
user can also transform the mass spectra in order to favour 
characteristic masses (masses with higher m/z ratios).

In the second part, the TNT-DA algorithm, combining the 
speed of DISCO and selection rule of PAM, was proposed. 
The abilities of TNT-DA were compared to that of DISCO. 
Both algorithms were applied to the complete dataset (503 
samples) and reached similar scores. TNT-DA is also imple-
mented in the DA_2DChrom tool.

The performance of the DA_2DChrom can be improved 
by filtering out the peaks detected in the elution areas of 
column bleeds of both dimensions (this applies to the imple-
mented algorithms in general). Subsequently, the results 
should be checked and realigned by different algorithm set-
ups if needed.

The proposed algorithm TNT-DA and more importantly 
the alignment tool can be further developed and updated as 
the main goal of this work is to help overcome data align-
ment problem for users relying on commercial processing 
software often supplied by instrument manufactures. With 
sufficient data alignment, non-targeted analyses of two-
dimensional chromatographic data could be as close to the 
routine as they are for one dimensional GC methods. The 
script used for the experiments as well as its documentation 
and the dataset are fully available online.
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