
Vol.:(0123456789)1 3

Analytical and Bioanalytical Chemistry (2023) 415:3945–3966 
https://doi.org/10.1007/s00216-023-04620-y

CRITICAL REVIEW

Unraveling surface‑enhanced Raman spectroscopy results 
through chemometrics and machine learning: principles, progress, 
and trends

Diego P. dos Santos1 · Marcelo M. Sena2,3 · Mariana R. Almeida2 · Italo O. Mazali1 · Alejandro C. Olivieri4 · 
Javier E. L. Villa1

Received: 24 November 2022 / Revised: 2 February 2023 / Accepted: 20 February 2023 / Published online: 3 March 2023 
© Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information 
and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, 
and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matri-
ces, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent 
this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a 
wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible stand-
ardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS 
with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and 
trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on 
benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will 
help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
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Introduction

In the last decades, nanomaterials have become very impor-
tant because of their useful properties, such as a large sur-
face area to volume ratio and enhanced electrical and optical 

responses, mainly related to the quantum size effect [1]. By 
exploiting these properties, outstanding advances have been 
achieved in science and technology applications. From col-
orimetric-based assays to ultrasensitive fluorescent sensors, 
the optical properties of nanomaterials have made it pos-
sible to design a wide variety of analytical platforms [2]. In 
this regard, an efficient sensing platform should be capable 
to characterize samples with complex matrices, demanding 
high sensitivity (to monitor relevant changes in composi-
tion at trace levels), and selectivity and chemical specificity 
(to capture and unequivocally identify target molecule(s) 
present(s) in the system).

Surface-enhanced Raman spectroscopy (SERS) is a nano-
science-based technology that comprises high sensitivity and 
chemical specificity for molecules adsorbed on nanostruc-
tured metallic surfaces. Since the discovery and correct inter-
pretation of SERS in the 1970s, advances in nanotechnology 
have driven its rapid development and analytical applications 
[3]. This can be corroborated by the continuous increase 
in the number of SERS-related publications every year as 
shown in Fig. 1. In contrast to other highly sensitive tech-
niques (e.g., fluorescence spectroscopy), SERS provides an 
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additional spectral fingerprint that stems from the vibrational 
modes of the molecules. Therefore, structural and chemical 
information can be obtained with high sensitivity. The selec-
tive adsorption of target molecules is nevertheless unusually 
observed in the analysis of real-world samples, in which the 
matrix molecules may be much more concentrated than the 
analyte and competitive adsorption for the available surface 
is recurrent. Consequently, at the core of every SERS-based 
analytical method is the challenge to selectively adsorb target 
molecules onto the metallic surface before the measurements.

Own to the lack of selectivity, a complex overlapping of 
SERS signals is often observed. To deal with this issue, one 
can modify the metallic surface with capture agents that pos-
sess a high affinity for the analyte [4, 5]. However, the need 
for additional fabrication steps and specific capture agents 
are the main limitations of this approach. Advanced signal 
processing methods based on chemometrics and machine 
learning can alternatively be implemented. The incorpora-
tion of these methods has been gaining prominence in SERS, 
mainly due to improvements in selectivity and automatiza-
tion toward the development of “smart” sensors. As can be 
seen in Fig. 1 (inset), the number of publications using SERS 
along with chemometrics and machine learning has rapidly 
increased in the last 5 years. These multivariate approaches 
are devoted to extracting key information contained in the 
data and, therefore, have great potential to boost the develop-
ment of automated SERS sensors for real-world applications.

In this review, we start by defining some theoretical and 
practical concepts of SERS, chemometrics, and machine 
learning to provide a useful background in the context of 
analytical chemistry. We then survey recent advances in the 
combination of SERS and a range of different multivariate 

models for both qualitative and quantitative applications. 
Limitations, challenges, and trends of this coupling to 
achieve the much-desired SERS selectivity via advanced 
data analysis are also discussed. Finally, benchmarking 
and insights about the selection of the suitable multivariate 
method for SERS applications are presented.

Surface‑enhanced Raman spectroscopy/
scattering (SERS)

The intensity of Raman scattering of molecules adsorbed 
onto nanostructured metals (e.g., Ag, Au, and Cu) is sub-
stantially enhanced if compared to the normal Raman meas-
urements. This enhancement effect, known as SERS, stems 
from chemical and electromagnetic mechanisms that will be 
described in this section.

The Raman scattering intensity of a vibrational mode of 
frequency �vib excited with radiation laser of frequency �0 
can be expressed as [6]:

where �0 ± �vib is the frequency of the scattered radiation 
( + for anti-Stokes and − for Stokes), N is the number of scat-
tering molecules, E0 is the incident radiation electric field 
amplitude, and ��� are the elements of the Raman polariz-
ability tensor. For molecules with small polarizability, such 
as water, the Raman and SERS intensities are very weak. 
This constitutes an important advantage for studying mol-
ecules in an aqueous solution, unlike infrared absorption 
spectroscopy. The chemical mechanism is related to modi-
fications of the polarizability tensor upon molecular adsorp-
tion, especially in chemisorption that leads to strong inter-
actions between molecular and metal electronic states [7]. 
On the other hand, the electromagnetic mechanism stems 
from modifications of the local field probed by a molecule 
at the metal surface (distance < 10 nm) and modifications in 
the dipole radiative emission rate [6]. As the electromag-
netic mechanism is mainly responsible for signal enhance-
ment, we will focus on it to highlight analytical applica-
tions. It should be noted, however, that important effects 
due to chemical mechanisms can be observed under specific 
experimental conditions, such as in spectroelectrochemical 
studies [8].

For nanostructured materials made of Ag, Au, and Cu, 
the incident radiation fields can strongly couple with excita-
tions of surface plasmon polariton modes in the metal (col-
lective oscillation of charge density). The general result of 
such excitations is a considerable increase in the electric field 
near the metallic surface, especially in the case of coupled 
nanoparticle systems [9, 10]. As an example, Fig. 2A (black 

(1)IRaman ∝ (�0 ± �vib)
4N|E0|2

∑
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Fig. 1   Published SERS papers since its discovery. The number of 
recently published papers related to SERS coupled to chemometrics 
(Chem) and machine learning (ML) is shown inset. Source: Web 
of Science—January 2023 (keywords: SERS, Chemometrics and 
Machine Learning)
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line) presents a numerical simulation based on the general-
ized Mie theory for the near-field enhancement (|E|∕|E0|)2 
in the gap of two Ag nanospheres of 50 nm in diameter. At 
such regions, known as hot spots, it is possible to achieve 
very large field enhancements, making it even possible to 
experimentally detect signals from single molecules [11]. For 
this reason, it is a common analytical practice to promote 
nanoparticle cluster/aggregate formation before SERS meas-
urements. Another important aspect of Raman scattering and 
SERS is the induced dipole in a molecule oscillating at a fre-
quency �0 ± �vib (see Eq. 1). For such an oscillating dipole, 
the relaxation may occur either via a radiative decay, giving 
rise to an inelastically scattered field, or via a non-radiative 
decay pathway. The key point here is that the radiative decay 
rate (scattering probability) can be strongly enhanced in the 
presence of metallic nanomaterials [6]. Figure 2A (red lines) 
shows the enhancement in the radiative decay rate, i.e., the 
ratio between rates in the presence and absence of nanopar-
ticles, Γ∕Γ0 . The plasmon modes increase the scattering 
intensity associated to an oscillating dipole. Interestingly, the 
scattering enhancement is dependent on dipole orientation 
relative to the metal surface. Figure 2A also displays a com-
parison of the radiative decay rate enhancement for a dipole 
perpendicular to the metal surface and after 45° rotation. In 
SERS, such dipole configurations simulate orientations of 
vibrational modes, and the largest increase in scattering is for 
vibrations oscillating perpendicularly to the metal surface. 

This result leads to differential enhancements in the Raman 
signals among vibrational modes depending on orientations 
relative to the surface. Therefore, the SERS spectrum may 
display significant changes in terms of relative band inten-
sities when compared to normal Raman measurements [6].

The discussion about the electromagnetic mechanism leads to 
the following figure of merit describing the expected enhance-
ment in SERS measurements relative to normal Raman:

where F is the so-called SERS enhancement factor, consid-
ering only the electromagnetic mechanism. The first term 
represents the near-field enhancement contribution (black 
line in Fig. 2A), whereas the second term describes the 
modification in dipole spontaneous emission (red lines in 
Fig. 2A). Note that, for a dipole perpendicular to the surface, 
the scattering probability and near-field enhancements are 
virtually the same, which allows approximating:

where the second approximation, a.k.a. E4 approximation 
[12], is due to a small difference between incident and ine-
lastic field frequencies (see Raman shift scale in Fig. 2A).

(2)F = (
||Eloc

||
||E0

||
)

2

�0

.(
Γ

Γ0

)
�0±�vib

(3)F ≈ (
|Eloc|
|E0|

)

2

�0

.(
|Eloc|
|E0|

)

2

�0±�vib

≈ (
|Eloc|
|E0|

)

4

�0

Fig. 2   Mie theory simulations for a dimer of Ag nanospheres. A 
Local field enhancement (computed as the squared ratio between 
local and incident electric fields, black line), and dipole radiative 
decay rate enhancement (ratio between decay rates in the presence 
and absence of nanoparticles, red lines). Two dipole orientations are 

considered: perpendicular and 45° rotation (inset scheme). The field 
and radiative enhancements are computed as a function of wavelength 
(incident and scattered radiation). B E4 approximation simulation of 
SERS enhancement factor spatial distribution for a 633 nm excitation 
source
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The largest SERS enhancements can be achieved for exci-
tation source in resonance with plasmon excitations tuned 
via nanoparticle/hot spot engineering. Plasmonic nanoma-
terial fabrication is a very active research area, and they 
can be obtained by bottom-up or top-down approaches [3, 
12]. Lithographic techniques are excellent examples of the 
latter, in which shapes are crafted on a solid platform. The 
main limitation with such techniques is the not cost-effective 
spatial resolution the patterns can be created. Alternatively, 
one can produce SERS substrates by adsorbing metal nano-
particles onto rigid surfaces to generate hot spots with large 
enhancement factors [13–15]. Wet chemistry synthesis is 
widely employed as a bottom-up methodology for obtain-
ing colloidal nanoparticles with different shapes (spheres, 
rods, prisms, stars, cubes, etc.) and sizes. Furthermore, hot 
spot engineering and self-assembly strategies allow the fab-
rication of ultrasensitive rigid SERS substrates from these 
nanoparticles [3, 12]. SERS measurements can be performed 
by direct analyte addition to the colloid or onto the rigid 
SERS substrate. In colloidal solution, nanoparticle aggrega-
tion yields strong SERS signals from the analyte because of 
the large number of hot spots created. Nevertheless, uncon-
trolled aggregation and natural shape dispersion of particles 
may decrease SERS repeatability. Controlled aggregation 
and self-assembly of nanoparticles have been reported in the 
literature to mitigate this problem [16–19].

Even under controlled conditions or the use of high-
quality rigid SERS substrates, intensity fluctuations may 
happen because of the hot spot spatial localization, espe-
cially at low analyte concentrations [20]. Figure 2B shows 
a 2D map simulation for the enhancement factor distribu-
tion in a hot spot at 633 nm excitation. A molecule in 
the hot spot region should display a large enhancement 
in the scattering intensities, making it possible to detect 
spectroscopic signals at ultra-low concentrations (e.g., 
below 10−12 mol L−1). However, moving a few nanom-
eters from the hot spot center is enough to decrease F by 
various orders of magnitude. This means that only mol-
ecules approaching the hot spot can produce significant 
SERS intensities to be detected at ultra-low concentra-
tions, imposing a spatial limitation to the SERS response. 
Moreover, once F is not homogeneously distributed on 
the metal surface, the SERS intensities do not show a lin-
ear behavior with the increase molecular surface coverage 
[20]. Therefore, SERS intensities do not linearly scale with 
analyte concentrations at trace levels.

The electromagnetic mechanism predicts the same 
enhancement regardless of the molecular structure, though 
the affinity for the metal surface can dramatically change 
from one molecule to another (e.g., mercaptobenzoic acid 
displays a much higher affinity for metallic surfaces than 
glucose). Since the electromagnetic mechanism is domi-
nant in most of the experiments, SERS is not considered a 

selective technique and depends on the competitive diffu-
sion/adsorption of the molecules onto the metal surface. 
Thus, a SERS spectrum may contain a highly complex 
mixture of bands associated to the components of the sam-
ple. One strategy to selectively adsorb an analyte present 
in a complex matrix is by modifying the metal surface with 
capture agents that possess strong interactions with the 
analyte [4, 5, 21]. However, this procedure is subjected to 
additional experimental steps and might require specific 
capture agents when interferences with similar chemical 
structures to the analyte are present.

All these pieces of evidence lead to the need for alterna-
tive metrics and protocols for using SERS in real-world 
applications. In this context, chemometrics and machine 
learning can be useful tools to extract relevant qualita-
tive and quantitative information with minimum sample 
preparation.

Multivariate data analysis: chemometrics 
and machine learning

In this section, we describe the fundamentals of multivari-
ate data analysis, with an emphasis on chemometrics and 
machine learning methods that have already been imple-
mented along with SERS. Although no sharp distinction 
can be assumed between chemometrics and machine learn-
ing, we adopt a terminology compatible with the literature: 
(1) we refer to chemometrics as those methods based on 
principal component and factor analysis, related to dimen-
sionality reduction (e.g., principal component analysis, 
partial least squares, and multivariate curve resolution), 
and (2) we refer to machine learning as a set of advanced 
algorithms that learn from data and are applicable for non-
linear/high complexity modelling (e.g., support vector 
machine, artificial neural networks, and random forest). 
Furthermore, most of the papers discussed in this review 
are focused on supervised methods, in which the data-
sets are labeled/tagged with actual answers/values (unlike 
unsupervised methods).

Data preprocessing

Preprocessing methods are useful to compensate for unde-
sired external sources of signal fluctuations apart from 
the chemical components of the sample [22]. They can 
be applied on rows (objects/samples) or columns (vari-
ables/Raman shifts) of a data matrix. The most common 
artifacts in SERS are baseline deviations, fluorescence, 
misalignment, and noise. Despite centering and autos-
caling being very popular preprocessing methods, autos-
caling is not always recommended since it might give 
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equal weights for spectral bands of different intensities 
and increase noise. Savitzky-Golay smoothing is a well-
known method for filtering noise and consists of a mov-
ing-average filter, in which a polynomial function is fit-
ted [23]. Filtering noise should be carefully used because 
important chemical information can be lost when using 
a too-large window size (e.g., more than 15 points per 
window). Moreover, this might introduce correlations into 
the noise structure, leading to worst model predictions 
when compared to the use of raw data [24]. SERS data 
may also contain linear baseline deviations, evidenced 
by a constant offset of instrumental variations, and/or 
non-linear ones, such as drifts caused by other physical 
effects. In offset correction, the baseline is estimated, 
for example, by asymmetric least squares or penalized 
least squares [25], and then subtracted from the spec-
trum. Derivatives are also useful preprocessing methods 
to improve the visualization of spectral differences [26], 
but they might also increase the spectral noise. The first 
and second derivatives remove linear and non-linear sam-
ple-dependent background signals, respectively. Although 
derivatives change the spectral format and might difficult 
the interpretation of informative vectors (e.g., spectral 
loadings and regression coefficients), they can still be 
associated to the original spectra.

Principal component analysis (PCA)

PCA is the most popular unsupervised chemometric method 
for pattern recognition/exploratory analysis, and the basis of 
various chemometric models [22, 27]. In SERS, one often han-
dles data matrices containing hundreds or thousands of Raman 
shifts. PCA decomposes the data matrix by means of linear 
combinations of correlated original variables (Raman shifts) 
to create a reduced number of variables (principal components, 
PCs) containing valuable vibrational information. Figure 3A 
describes this dimensionality reduction strategy. Hence, a 

SERS dataset Xn,m ( n samples and m Raman shifts) can be 
expressed by matrices of scores Tn,A and loadings Pm,A:

where A is the selected number of PCs, t1 and p1 are the 
score and loading vectors of the first PC, respectively, 
and E contains the residual variance not described by the 
model. Scores ( T-matrix) provide the composition of each 
PC related to the samples, whereas loadings describe this 
composition in terms of variables ( P-matrix). For SERS 
data, one can plot the loadings for each PC as a function 
of Raman shifts to correlate them with differences or simi-
larities among samples visualized in the scores plot. Moreo-
ver, the PCs are modeled in descending order of explained 
variance, the columns of T are mutually orthogonal, and 
the columns of P are orthonormal, i.e., uncorrelated. The 
suitable number of PCs can be determined by assessing the 
explained/captured variance and the random behavior of the 
residuals. Occasionally, one can be interested in the informa-
tion representing a small part of the data variance (e.g., 10% 
or even less), but should be careful not to include spectral 
noise information in the model. Outliers can be identified 
in PCA models by using Hotelling’s T2 statistics and high 
Q residues. While the Q statistic measures the unexplained 
variance of each sample (sum of the squares of the residual 
vectors), Hotelling’s T2 statistic represents the variation in 
each sample within the model [27]. For objective decisions 
in outlier detection, confidence limits for these two param-
eters are estimated at a certain probability level. Neverthe-
less, outliers should carefully be handled and interpreted.

Soft independent modelling of class analogy 
(SIMCA)

SIMCA is a linear class modelling method introduced by S. 
Wold in 1976 [28] and used for supervised authentication 

(4)X = t1p
T
1
+ t2p

T
2
+⋯ + tAp

T
A
+ E = TPT + E

Fig. 3   A Dimensionality 
reduction using PCA in three 
steps: (1) estimate of PCs, (2) 
subspace representation, and 
(3) projection on the PCs of 
interest. B Schematic represen-
tation of PLS by maximizing 
the correlation between X and 
Y matrices
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and classification purposes. SIMCA may be considered as 
consisting of PCA models individually developed for pre-
defined target classes with the best numbers of PCs selected 
by cross-validation. As a class modelling algorithm, SIMCA 
defines multivariate enclosed class spaces at a predefined 
confidence level. Class distances are estimated as statistical 
probabilities and SIMCA allows for a straightforward detec-
tion of outliers as samples not fitting to any of the modeled 
classes. Moreover, new samples can be assigned to more 
than one class when there is class overlapping. SIMCA is 
also suitable for one-class modelling, required for authen-
tication purposes, mainly in food analysis. In this case, 
information from any non-targeted class should be avoided 
during modelling because it may introduce bias related to 
specific patterns of non-authenticity [29]. Thus, a rigorous 
one-class modelling considers only the target class informa-
tion. Criteria for sample assignment in SIMCA are based 
on both Q and Hotelling’s T2 statistics, which are useful for 
outlier detection and were introduced from the multivariate 
statistical process control [30].

Partial least squares (PLS) and partial least squares 
discriminant analysis (PLS‑DA)

PLS was introduced in the 1980s [31] and has become the 
most popular multivariate calibration method. PLS models 
can quantify analytes or properties in the presence of inter-
ferences, which are introduced in the calibration samples. 
PLS decomposes the dataset X in scores and loadings, but 
with the scores estimated in such a way as to maximize the 
correlation with a dependent variable y (or Y in the case of 
more than one). This is accomplished by the simultaneous 
decomposition of the two data blocks (see Fig. 3B). The 
factors in PLS are thus constrained and might deviate from 
orthogonality, giving origin to the so-called latent variables 
(LVs). An additional advantage of PLS is that a relationship 
between X and y may be detected even if the key variables 
have a small contribution to the first LV. The implementa-
tion of PLS in situations in which more than one dependent 
variable is predicted ( Y ), a.k.a. PLS2, is advisable only when 
there is a strong correlation between predicted variables 
[22]. The determination of the proper number of LVs is cru-
cial for developing robust PLS models and is performed by 
internal cross-validation based on minimizing the root mean 
square error of cross-validation (RMSECV). A very small 
number of LVs may result in underfitting because important 
information/variance is left out of the model. On the other 
hand, a very large number of LVs may render an overfitted 
model unable to provide accurate predictions for external 
validation/test samples. An indicative of overfitting is a 
much larger root mean square error of prevision (RMSEP) 
than the root mean square error of calibration (RMSEC). 
Some inadequate practices include the biased choice of the 

calibration/validation samples, the absence of an external 
validation set, or the expansion of the data set by incorpo-
rating replicates/virtual samples instead of true independent 
samples. An accurate PLS model should explain most of the 
variance of both X and y blocks.

PLS-DA is based on PLS regression and is suitable for 
discrimination/classification purposes [22]. Nevertheless, it 
is worth emphasizing that there is a key difference between 
PLS-DA and SIMCA. SIMCA is suitable for one-class mod-
elling, when having a well-defined class, training a model, 
producing a prediction rule, and proceeding to include future 
samples in this specific class, or a universe of less well-
defined target classes [32]. PLS-DA on the other hand is 
suitable for discrimination, when we have two or more well-
defined classes, train a model, produce a discrimination rule, 
and proceed to assign future samples to any of these previ-
ously defined samples. In the PLS-DA model, the response 
vector y (or matrix Y ) is constituted by values of 0 and 1 
(or more depending on the number of classes) indicating 
whether a sample belongs or not belongs to a defined class. 
The suitable threshold value for the class separation can be 
calculated using Bayes’ theory or the receiver operating 
characteristic curve (ROC).

Artificial neural networks (ANN)

Inspired by the human brain’s capacity to perform very com-
plex cognitive, perceptual, and control tasks, ANN was first 
proposed by McCulloch and Pitts in the 1940s [33]. ANN 
is a powerful mathematical tool used to accurately solve 
complex classification and regression problems [34]. ANN 
transforms a vector/SERS spectrum containing m input vari-
ables/Raman shifts, x�Rm , into an output signal y using an 
activation/transfer function f  , a threshold b , and the weight 
vector w�Rm:

The general idea of ANN is mathematical data process-
ing, which is performed by the weighted sum and application 
of an activation function. Alternative functions can also be 
considered, for instance, the rectified linear unit. The ANN 
model estimates the weight vector w and the threshold value 
b , such as they separate the classes or calculate the actual 
concentration/property value correctly. The predictive accu-
racy can be optimized by minimizing an error function of 
desired/actual and predicted values for all the calibration/
training samples. During the learning process, the error 
value is minimized by gradually updating the parameters 
w and b.

A simple artificial neuron (a.k.a. perceptron) is shown in 
Fig. 4A and can solve only a very limited number of linearly 

(5)

y = f (wx − b) = f
��m

i=1
wixi − b

��
1, if

∑m

i=1
wixi − b ≥ 0

0, if
∑m

i=1
wixi − b < 0
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separable problems. However, the use of specific activation 
functions, the backpropagation method, and more elabo-
rated ANN architectures enable solving of highly complex 
problems. The basic architecture of an ANN consists of 
input, hidden, and output layers, and the number of hidden 
neurons directly affects the model performance [34]. For 
example, Fig. 4B shows a fully connected ANN with two 
hidden layers. A very large number of hidden neurons may 
ensure correct learning but poor predictions, whereas a very 
small number of them may imply a poor learning process or 
the error may not achieve an acceptable value. Modelling 
ANN with several hidden layers is sometimes required to 
solve highly complex qualitative and quantitative problems, 
thereby giving origin to deep learning. ANN architectures 
can be divided into four main groups [34]: (1) single-layer 
feedforward networks, (2) multilayer feedforward networks, 
(3) recurrent networks, and (4) mesh networks.

Support vector machine (SVM) and support vector 
regression (SVR)

SVM is a machine learning algorithm originally proposed 
by Vapnik and consists of finding a suitable hyperplane to 
maximize class separation [35]. Such hyperplane can be esti-
mated using a set of n samples (e.g., one SERS spectrum per 
sample) and m measurable variables/Raman shifts. The data-
set of n individual samples xi�Rm with labels yi�{−1,+1} is 
assumed to be separable by a hyperplane ( wx + b = 0 , b is 
a constant) using the decision rule:

A geometrical representation of SVM for linearly separa-
ble classes is shown in Fig. 5A. Assuming a separation mar-
gin M between the class boundary and the training samples, 
the objective of SVM is to find a hyperplane that maximizes 
M . This is an optimization problem that can be solved by 
using Lagrange functions. Additionally, in the case of not 
fully separable classes, a slack variable � is introduced:

A SVM soft margin is built, and the misclassified data 
points have a penalty that increases with the distance. To 
minimize the number of misclassified points, a new parameter 
C is introduced to balance � and M . Hence, the objective is to 
minimize the Lagrangian with respect to w , b , and � consider-
ing the Lagrangian multipliers. The parameters are calculated, 
and the model can then be tested for new objects/samples.

In the case of SVR, the SVM algorithm is adapted to per-
form regression and it is necessary to predict a real output 
yi�R:

SVR uses sophisticated penalty functions and there is no 
penalty if the predicted value ŷi is similar (tolerance value 
of � ) to the actual value yref ,i (i.e., |||�yi − yref ,i

||| < 𝜖 ). The 
region yi ± � is called the �-insensitive tube and the output 
variables that are outside have a slack variable penalty above 

(6)f
(
x
i

){wx
i
+ b ≥ 0 for yi = +1

wx
i
+ b ≤ 0 for yi = −1

or yi f
(
x
i

)
≥ 1

(7)yi
(
wx

i
+ b

)
− 1 + �i ≥ 0where �i ≥ 0∀i

(8)yi = wxi + b

Fig. 4   A Representation of signal processing by ANN. B ANN architecture with multiple hidden layers, which is the basis of deep learning
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( �+ ) or below ( �− ) the tube ( 𝜉+ > 0, 𝜉− > 0∀i ). After calcu-
lating the parameters, new predictions are estimated.

In general, to apply SVM for non-linear data, a new dot 
product is defined by using a family of functions called ker-
nel functions [36]. The direct calculation of the dot product 
�(xi)�(xj) without the need for converting each object x to 
the higher dimension object �(x) is called the kernel trick. 
It is very useful because several systems are not linearly 
separable in the original space (see Fig. 5B). Some of the 
most popular kernel functions are linear, polynomial, radial/
Gaussian, and sigmoidal functions.

Analytical validation

Though analytical validation of multivariate methods is 
not thoroughly well-established, especially for quantitative 
models, it is essential to show that the developed method 
fulfills its purpose by estimating proper figures of merit 
(FOM). For qualitative methods [37, 38], FOM are based on 
evaluating predicted discrete categorical/dummy variables 
including the rates of false positive (FP) and false nega-
tive (FN) predictions. Important FOM are sensitivity (STR) 
rate, complementary to FN rate, and specificity (SPR) rate, 
complementary to FP rate. Predictive accuracy and F1-score 
are also important FOM for global comparison of qualita-
tive methods. Although accuracy is a more intuitive value, 
the F1 score deals better with imbalanced datasets (classes 
with very different numbers of samples). ROC curves can 

also be used to evaluate the classification model capability 
and the area under the curve (AUROC) is calculated for each 
class after plotting STR versus SPR rates. This approach 
searches for a threshold value that simultaneously minimizes 
the number of FP and FN predictions.

For multivariate calibration models [22, 39], it is neces-
sary to corroborate whether the method has adequate FOM 
for its specific application. FOM evaluated for multivariate 
calibration methods include accuracy (trueness and preci-
sion), linearity, analytical sensitivity, confidence intervals, 
bias, residual prediction deviation, and limits of detection 
(LOD) and quantification (LOQ). Furthermore, any model 
must be rigorously validated by carefully and systematically 
using calibration and internal and external/test validation 
sets. Trueness indicates the agreement between reference 
and predicted values, and RMSEP is the main parameter 
to express it. Relative errors for calibration and validation 
samples, as well as precision, should also be estimated and 
mentioned. For quantitative multivariate methods, the fit is 
evaluated through the correlation coefficient (R) of a plot of 
reference/actual versus predicted values. To assess linear-
ity, an R value close to one and the random behavior of the 
residuals should be verified by several tools, such as visual 
inspection ANOVA, or appropriate statistical tests (checking 
for normality, homoscedasticity, and independency).

Qualitative data analysis in SERS 
applications

Multivariate methods and qualitative analysis have estab-
lished a vibrant relationship in the last years, overcoming 
quantitative applications in the literature [40]. Taking advan-
tage of the high sensitivity of SERS, qualitative multivariate 
applications have focused on the discrimination and detec-
tion of pathogens [41–59], cancer studies and medical diag-
nosis [60–83], and food and forensic analysis [84–96]. To 
systematically validate the multivariate models, external 
sets of independent samples should be used based on clear, 
systematic, and representative criteria. Only internal cross-
validation or permutation tests are not sufficient to establish 
a reliable validation, though it may seem tempting in some 
situations, providing a performance that can look better for a 
non-specialist at first sight [97]. Unfortunately, a significant 
number of papers have not adopted an external validation. 
Another key point often absent in the literature is the spec-
tral interpretation of the model to understand the underlying 
chemical phenomena. Particularly for PLS-DA, the so-called 
informative vectors, such as regression coefficients and var-
iable importance in projection (VIP) scores [98], contain 
important model information that should be interpreted. 
Authors using multivariate analysis should not be restricted 
to the question “what is there?” but rather should search 

Fig. 5   A Basic elements in SVM for classification. B Geometrical 
representation of SVM for non-linearly separable classes
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to answer other queries: “what is its/their relation to?” and 
“what is the difference between?” [99].

Discrimination and detection of pathogens

An example of proper PLS-DA model interpretation has 
been reported for the rapid discrimination of bacteria using 
filter paper–based SERS substrates [50]. PLS-DA was built 
with 180 samples (120 for training and 60 for validation), 
providing 100% of accuracy for discriminating genera. 
Uncertainties for model predictions were calculated by a res-
ampling bootstrap strategy, and an in-deep model interpreta-
tion was carried out using VIP scores. This allowed the asso-
ciation of discriminant information to specific SERS bands 
of purine bases and the identification of possible metabolic 
pathways. Finally, a potentially new species of bacteria, not 
present in the training dataset, was correctly identified as 
an outlier using Q residues and Hotelling’s T2 statistic. The 
combination of SERS, PLS-DA, and suitable model valida-
tion to discriminate gram-positive and gram-negative bacte-
ria [42] and sensitive and resistant E. coli strains [46] have 
also been reported. Spectral interpretations were performed 
using the loadings of the PCA models and PLS-DA results 
were discussed by comparing ROC curves, which is a very 
useful tool in qualitative analysis. Score plots of the first two 
LVs were used to show PLS-DA results, like in unsupervised 
PCA models. However, some authors have argued this is not 
the most reliable way to represent the results of supervised 
models [97, 100]. The interpretation of these scores can also 
be misleading if the number of variables far exceeds the 
number of samples, which is a common situation in SERS.

SERS analysis of bacteria using Au nanoparticles (NPs) 
oligomers and ANN has been reported for rapid antimicro-
bial susceptibility testing [52]. The authors proposed the 
use of a variational autoencoder, an interesting approach 
inspired by natural language processing that projected the 
data in a latent space to improve the visualization of the 
results. Analogously to PCA, this latent space represents 
the distribution of the samples and allows the identification 
of SERS fingerprints of the main metabolites. Following 
this idea, discrimination of multidrug-resistant bacteria has 
been performed by combining SERS and autoencoder-SVM 
(see Fig. 6) [41]. The autoencoder consisted of feedforward 
neural networks with non-linear activation functions to 
introduce the data in the SVM model. In contrast to the lin-
ear combination established in PCA-based dimensionality 
reduction, this method can directly adjust non-linear data. 
However, a much higher computational cost is required.

SERS and multivariate analysis have also been applied 
to the detection of viruses. Serum samples containing hepa-
titis B virus (HBV) from clinically diagnosed patients have 
been discriminated from controls with excellent accuracy 
(98%) and proper spectral interpretation of biomarkers [43]. 
A limitation of this method was the small number of samples 
analyzed (30 HBV-positive and 11 healthy individuals) that 
might compromise the reliability and robustness of the pro-
posed PLS-DA model. Additional multivariate methods used 
along with SERS to discriminate and detect pathogens are 
highlighted in Table 1. This table includes, for example, the 
use of linear discriminant analysis (LDA) and decision trees 
(DT). In LDA, a linear function is calculated by maximiz-
ing and minimizing the interclass and intraclass variances, 

Fig. 6   A Schematic description of a SERS-based protocol for bacterial resistant assessment using SVM. Figures of merit for the discrimination 
analysis using B autoencoder-SVM and C PCA-SVM. Reprinted from [41], with permission from Elsevier
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respectively, thus dividing the space into regions/classes. 
DT is a non-parametric supervised algorithm that uses a 
flowchart-like tree model and is constituted by a root node, 
internal nodes (tests), branches (outcomes of the tests), and 
leaf nodes (class labels) [101].

Cancer studies and medical diagnosis

Portability is an important trend in spectroscopy for rapid and 
in situ sample analysis. For example, incorporating portable 
methods in consumer devices, point-of-care tests, and smart 
appliances to become part of the internet of things [102]. As 
can be seen in Fig. 7A–C, a portable SERS-based breatha-
lyzer has been designed for the rapid diagnosis of COVID-
19 using PLS-DA [71]. Breath samples were collected for 
501 participants, 15% of them COVID-positive, and the 
method displayed an excellent performance (sensitivity and 
specificity greater than 96%). It is worth mentioning that such 
an imbalanced ratio of classes may lead to reliability prob-
lems when the models are built using only accuracy as the 
response. The portable SERS device successfully detected 
breath volatile organic compounds, whose concentrations 
were affected by the immune response and metabolic changes 
of COVID-19 patients. Orthogonal PLS-DA (OPLS-DA) is a 
variant of PLS-DA widely used in metabolomics that alleg-
edly provides better prediction ability and easier model inter-
pretation [103], although this is not a consensus. OPLS-DA 
has been applied to detect cervical and breast cancer in serum 
by SERS, jointly with LDA and PCA-SVM [82]. The pro-
posed methods presented excellent accuracies (in the range 
of 93–98%) and allowed for non-invasive cancer diagnosis.

One can also take advantage of the excellent predictive 
accuracy of ANN in medical diagnosis. By using ANN and 
ultrasensitive Ni-NiO SERS substrates, it has been possible 
to identify the type of cancer (lung, breast, and colorectal and 
brain cancer), and even the stage and location of brain cancer 
with accuracies of 100% and 96%, respectively (see Fig. 7D) 
[78]. Importantly, the liquid biopsy of a serum instead of con-
ventionally invasive and time-consuming tissue biopsy high-
lights the capability of SERS to characterize trace levels of 
cancer biomarkers in complex matrices. Following a similar 
idea, breast, lung, and colorectal cancer have been discrimi-
nated with 100% accuracy by using ANN and a tridimensional 
SERS nanosensor. Although ANN provided better predictions 
than PLS-DA, associating discriminant results to chemically 
meaningful SERS bands is easier in PLS-DA models (e.g., 
by evaluating the VIP scores). A DNA-target functionalized 
surface has been combined with SERS in a decision system 
for detecting a specific oligonucleotide sequence identical to 
a gene fragment responsible for β-lactam antibiotic resistance 
[72]. The decision system was composed of a Siamese neu-
ral network (a class of neural network architectures contain-
ing two or more identical subnetworks) coupled with robust 

statistics and Bayes decision theory. This strategy was com-
plex but very sensitive, being able to detect target oligonu-
cleotides at a picomolar level.

SVM has also shown excellent performance in medi-
cal diagnosis using SERS. SVM-based applications have 
included the diagnosis of lung and colon [74], and colorectal 
cancer [75], with accuracies greater than 80%. In the lat-
ter application, differences between the mean SERS spectra 
of healthy individuals and colorectal cancer patients were 
assessed by PCA before supervised modelling. The prelimi-
nary PCA approach allowed the identification of differences 
in the SERS spectra of the classes by evaluating scores and 
loading plots. It is worth empathizing that, in addition to the 
advisable unsupervised exploratory analysis (e.g., by PCA), 
the correlation between the discriminant results of the super-
vised model (e.g., SVM) and SERS bands should be per-
formed to validate the method. A comparison of SVM with 
other machine learning algorithms has been performed for 
the diagnosis/prognosis of coronary artery disease at different 
stages with 92% of overall accuracy [66]. The authors used a 
Ti/Au SERS substrate to enhance the signal of small extracel-
lular vesicles (EVs) from plasma samples, a new trend in liq-
uid biopsy–based diagnosis. The use of simple and efficient 
supervised methods for discriminant analysis, such as LDA 
and decision trees, is a parsimonious alternative to SVM and 
ANN. For example, the comparison among SVM, RF, DT, 
and LDA has indicated the superior accuracy of LDA for 
detecting breast cancer in serum (83%), whereas DT pre-
sented the best accuracy in urine (89%) [81]. Importantly, the 
authors found that the SERS spectra of serum and urine are 
dominated by the purine metabolites, and not sugars, lipids, 
or coenzymes, as previously suggested in the literature.

SVM, RF, and convolutional neural networks have been 
compared in cancer studies using a magnetically assisted 
sandwich assay with ultrasensitive SERS nanotags made of 
Au@Ag cages [70]. Convolutional neural networks displayed 
the highest predictive accuracy and were capable to recognize 
specific miRNA cancer biomarkers extracted from tissue sam-
ples for potential head and neck cancer diagnosis. Although 
RF displayed a lower predictive accuracy than SVM and 
ANN, it provided a lower risk of overfitting. SERS has also 
been employed to differentiate and characterize EVs derived 
from pancreatic tissue and bone marrow using machine learn-
ing [68]. Logistic regression provided better sensitivity (89%) 
and specificity (88%) than SVM, random forest (RF), and 
naïve Bayes and CN2 rule induction. Logistic regression is 
a linear method that estimates class membership probabil-
ity, whereas RF (an algorithm that combines several DT) and 
naïve Bayes (a family of classifiers based on Bayes’ theory) 
are non-linear. Moreover, naïve Bayes works better for an 
uncorrelated and small number of variables, which is not the 
case with SERS data. Though no external validation was per-
formed, the authors suggested the development of a platform 
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for detecting cancer-derived EVs. Additional complementary 
papers using multivariate models in cancer studies and medi-
cal diagnosis are highlighted in Table 1.

Food and forensic analysis

Another important field of SERS is food analysis, with the 
potential to implement these methods in portable sensors for 

real-life end-user applications. Although discriminant clas-
sification models (PLS-DA and LDA) have been commonly 
used, class modelling by SIMCA and its variants were also 
implemented. This is in connection with the controversy in 
the literature, mainly in food application, about discriminant 
and one-class modelling [32, 104]. SERS and data-driven-
SIMCA (DD-SIMCA) have also been combined to detect 
the pesticide thiabendazole in water extracts of mango peels 

Table 1   Complementary recent and relevant applications combining SERS and qualitative multivariate methods

*The supervised qualitative method with the best accuracy is placed first

Scientific field Multivariate methods* Analytical scope and highlights Maximum 
accuracy 
(%)

Reference

Discrimination and detection 
of pathogens

SVM, LDA, QDA Lectin-modified cellulose nanocrystals and Au 
NPs to differentiate 19 bacterial strains

88 [45]

Least squares SVM, PCA-KNN Colloidal Ag NPs to discriminate bacteria with 
phylogenetic analysis as reference method

100 [48]

KNN, SVM, DT, naïve Bayes Discrimination of antibiotic-resistant and sus-
ceptible bacteria using colloidal Ag NPs

98 [49]

SVM, naïve Bayes, KNN, logistic 
regression

2D arrays of Au NPs to discriminate wild and 
mutant cyanobacteria

97 [51]

ANN, SVM, DT, KNN, LDA Direct analysis of methicillin-resistant and sensi-
tive bacteria using colloidal Ag NPs

98 [54]

LDA Ultrasensitive S-protein expressed coronavirus 
sensor based on Au nanoneedles array trap

100 [57]

SVM, ANN, KNN Odor SERS sensor based on self-assembled Au 
NPs for Escherichia coli detection

92 [58]

Cancer studies and medical 
diagnosis

Lasso-DA, PLS-DA, PCA-LDA Diagnosis of an immune-related complica-
tion using a capillary tube SERS substrate 
(AUROC value of 0.908)

- [61]

PLS-DA Discriminating drug-resistant and susceptible 
tuberculosis patients by a PCR-SERS assay

95 [62]

SVM, XGBoost, logistic regression, 
DT, RF

Spectral interpretation and discrimination of 
receptor-binding domains of SARS-CoV-2 
spike proteins

99 [63]

PLS-DA, SIMCA Si/Ag SERS platforms for the diagnosis of sexu-
ally transmitted diseases

100 [65]

PCA-SVM Papers-based SERS substrate for potential point-
of-care diagnosis of prenatal diseases

93 [69]

ANN, PLS-DA 3D titanium nanosensor to differentiate cancer 
stem cells EVs by liquid biopsy

100 [76]

SVM, LDA Gastric cancer detection using Au nanopyramids 
and tissue, blood, and saliva EVs

90 [79]

PLS-DA SERS provided greater AUROC values than 
Raman spectroscopy (0.94 vs 0.83) for breast 
cancer diagnosis in serum

- [80]

Food and forensic analysis KNN, DT, SVM, AdaBoost Discrimination of pesticides using filter paper 
coated with Ag dendritic nanostructures

92 [84]

SVM Self-assembled Ag nanocubes modified with 
capture agents for discrimination of wine 
flavors

100 [87]

PCA-SVM Colloidal Ag NPs as SERS substrate to detect a 
psychedelic drug in wines

100 [91]

DD-SIMCA 2D-correlation SERS discrimination of struc-
tural changes in edible bird’s nest samples

100 [95]
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using Au NPs-coated paper as substrate [90]. The one-class 
DD-SIMCA model was rigorously validated by incorporat-
ing an outlier detection step and showed good selectivity 
(95%) and sensitivity (92%) in classifying samples accord-
ing to the limit established by the Brazilian Health Regu-
latory Agency. SIMCA and SERS have also been applied 
in forensic analysis in which a preliminary liquid–liquid 
extraction step compensated for the matrix effect in the 
detection of clonazepam in beer, juice, and energy drink 
samples [94]. The estimated sensibility and efficiency were 
92 and 96%, respectively. In another forensic application, 
eleven anti-inflammatory and analgesic drugs typically used 
in China as adulterants in anti-rheumatic health foods have 
been detected by thin-layer chromatography coupled with 
portable SERS and hybrid multivariate methods (PC-LDA, 
PCA-KNN, and PCA-SVM) [89]. The PC-LDA model pre-
sented the best performance in terms of predictive accuracy 
(100%). However, replicated samples were used in the con-
struction of discriminant models, which might lead to biased 
results, and the chemometric discussion was not extensive.

Residues of four different pesticides have been detected in 
tea by SERS and a one-dimensional convolution neural net-
work (1D-CNN) [85]. The 1D-CNN model showed a supe-
rior predictive accuracy (100%) in comparison to SVM, PLS-
DA, and KNN. However, an in-deep model interpretation 
was not presented, probably because of the limited capacity 
of 1D-CNN to associate outputs with chemically meaningful 
variables. Alternatively, the trade-off between computational 
cost and interpretability of hybrid methods (e.g., PCA-ANN 
or PCA-SVM) may help to partially compensate for such 
limitations. For example, urine samples have been analyzed 
to detect drugs by combining SERS and various architectures 
of ANN (deep learning networks) with a maximum accuracy 
of 98% [96]. Although CNN displayed a greater predictive 
accuracy than PCA-ANN hybrid model, the latter provided 
an easier chemical interpretation of the results. Additional 
papers about the use of SERS and multivariate methods in 
food and forensic analysis are highlighted in Table 1.

In general, machine learning methods display excellent 
performances to solve classification problems. Nevertheless, 

Fig. 7   A SERS-based sensor for breath analysis, B detection mecha-
nism by surface modification, and C discriminant analysis of healthy 
and infected individuals. D Deep learning architecture used for SERS 

diagnostic of brain cancer location. Figures reproduced with permis-
sion. Adapted with permission from [71] and [72]. Copyright 2022 
American Chemical Society
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the criteria and real need to use them instead of simpler 
chemometric methods are still unclear and, in most of the 
cases, not systematically justified. Therefore, investigations 
beyond conventional comparison of predictive accuracy will 
help to clarify these points.

Quantitative data analysis in SERS 
applications

Currently, one of the main challenges in SERS applications 
is performing reliable and reproducible quantitative analy-
sis [3]. In the univariate strategy, the height of a SERS band 
or the ratio between two bands is used; nevertheless, this is 
limited by the need for identifying and isolating pure signals. 
When univariate analysis fails, multivariate analysis arises as 
an excellent alternative to circumvent this issue [105]. Quan-
titative SERS methods using multivariate analysis have been 
mainly focused on the determination of organic compounds, 
including pesticides [106–116], drugs [96, 117–125], biomol-
ecules [19, 126–130], and metallic ions [131–137].

PLS has been the most widely used multivariate calibra-
tion method in the literature for pesticide residue detec-
tion, probably because of its simplicity, speed, good per-
formance, and easy accessibility. Moreover, some modified 
PLS regression models are available for non-linear calibra-
tion purposes. In a recent publication, dynamic SERS was 
employed to detect acephate, an organophosphate pesticide, 
in rice samples [115]. Measurements were collected during 
the transition from wet to dry state of colloidal Au nanorods 
modified with cysteamine dropped on a silicon chip. PLS, 
RF, and SVM algorithms were tested for building multivari-
ate calibration models, with 82 samples randomly split into 
calibration and internal and external validation sets. Alter-
natively, systematic methods to split the most representa-
tive samples are also advisable [138]. PLS displayed the 
best performance, evidenced by the lowest RMSEP value. 
Therefore, machine learning/non-linear algorithms should 
not always be the first option for data analysis. As a good 
practice, preference should be given to the most straight-
forward and parsimonious model. Furthermore, linearity 
should preliminarily be evaluated in the concentration range 
of interest, for example, by using ANOVA and plotting the 
X scores against y.

The non-linear relationship between the SERS intensity 
and thiabendazole pesticide concentration has been demon-
strated by Li et al. [108], as the signal depends on the number 
of nanoparticle clusters and molecules captured in the hot 
spots. Taking this into consideration, the self-assembly of Au 
NPs by supramolecular host molecules (acting as bridges) was 
employed to selectively capture methylxanthine compounds 
[120]. The advantage of this approach is the generation of 
hot spots with selective affinity for molecules with similar 

chemical structures (e.g., theobromine, theophylline, and 
caffeine). Quantitative analyses were performed by using a 
non-linear ANN model with excellent predictive accuracy (in 
terms of RMSE) and LODs down to 50 nmol/L. A bootstrap-
ping random resampling procedure with 1000 iterations was 
performed to partially compensate for the small number of 
calibration samples. Machine learning and SERS have also 
been implemented for indirect monitoring of pH by measure-
ment changes in the SERS spectra of 4-mercaptopyridine (see 
Fig. 8) [139]. As non-linear dependence of the pH against the 
analytical SERS signal was observed, SVM, regression trees, 
and the Gaussian regression process were assessed, with the 
latest displaying the best performance (lowest RMSE). Never-
theless, the number of samples analyzed was relatively small, 
which is a limitation for method generalization.

As an alternative to PLS, multivariate curve resolution with 
alternating least squares (MCR-ALS) has also been used in 
quantitative SERS applications [19, 110, 126, 128]. MCR-
ALS is a factor analysis method that aims at solving mixture 
signals, thus providing information from the components of 
the sample [140]. MCR-ALS decomposes the data matrix ( X ) 
into scores associated to relative SERS intensities and load-
ings associated to the pure SERS spectra. Combining MCR-
ALS and SERS results in versatile and chemically meaning-
ful pseudo-univariate models, which are compatible with 
the standard addition strategy and require a small number of 
samples for calibration [129]. Additionally, similar predictive 
accuracies in terms of RMSE have been reported for MCR-
ALS and PLS-DA models built with SERS data [19].

Variable selection is a valuable strategy to improve the 
model performance by removing uninformative/interfering 
variables. In a recent SERS application, genetic algorithm 
(GA), competitive adaptive reweighted sampling (CARS), 
and ant colony optimization (ACO) were combined with PLS 
to determine the pesticide thiabendazole in citrus using Au 
nanorods [109]. The GA-PLS model showed better perfor-
mance (in terms of RMSEP) than CARS-PLS, ACO-PLS, 
and full spectra PLS model, and the LOD was 0.33 µg/
mL. The coffee-ring effect was proposed to build label-free 
SERS methods to quantify patulin and alternariol, primary 
mycotoxin contaminants, in fruits (see Fig. 9A) [118]. The 
coffee-ring effect is mostly employed to preconcentrate the 
analyte and nanoparticles at the edge of the ring by capillarity 
without any external force [141, 142]. Synergy interval-PLS 
(Si-PLS), GA-PLS, and uninformative variable elimination-
PLS (UVE-PLS) models were evaluated. Si-PLS and GA-
PLS yielded the best performances (greatest R values) for 
patulin and alternariol, respectively. Note that there is not 
an absolute best model for selecting variables, as this will 
depend on the interaction between the method and the data 
properties. Highlights of additional interesting SERS applica-
tions using multivariate and variable selection methods are 
shown in Table 2.



3958	 dos Santos D. P. et al.

1 3

A methodology employing thin-layer chromatography 
with surface-enhanced Raman scattering (TLC-SERS) has 
been proposed to quantify histamine, a seafood allergen, in 
tuna samples [125]. TLC plates coated with gold nanoparti-
cles served simultaneously as SERS substrate and as the sta-
tionary phase to separate histamine from the sample matrix. 
A PCA-SVR hybrid model showed a better performance 
than PLS, demonstrated by the higher R value and lower 
RMSEP in the concentration range of interest. Advanced 
mathematical modelling based on machine learning algo-
rithms seems to fit better a complex non-linear SERS signal 
behavior. However, it should not be generalized because an 
in-depth discussion is necessary to provide systematic crite-
ria to select the suitable machine learning method.

SERS has also found applicability in the quantification 
of metallic ions, present in drinking water and contami-
nated food. Indirect SERS detection strategies have mainly 
been adopted for this purpose. For instance, the Au(III) 
reduction to produce Au NPs in the presence of aptamers 
and graphene oxide allowed the indirect detection of Pb2+ 
ions in black tea. SERS signals were monitored using the 
Raman reporter 4-mercaptobenzoic acid and PLS method 
with variable selection (CARS-PLS, siPLS, GA-PLS, and 
Si-GA-PLS) and were compared [135]. In terms of R val-
ues, the CARS-PLS model provided the best performance 
and a LOD of 0.1 µg/L. RMSEP values were in some cases 
significantly lower than the RMSEC values, which might 
indicate a biased choice of validation samples. Interestingly, 
some reports have reinforced the excellent performance of 
CARS-PLS for the label-free determination of Cd2+ ions 

[132] and total arsenic [131] in tea samples with LODs of 
23 pg/L and 27 ng/g, respectively.

Although several recently published articles have com-
bined PLS with variable selection methods, some important 
aspects have not been systematically discussed. For example, 
the criteria for selecting a suitable number of LVs, which 
may lead to building underfitted or overfitted models. In a 
recent publication, a SERS method for quantitatively detect-
ing Zn2+ ions at nmol/L level using a complexometric indica-
tor was reported (Fig. 9B–C) [134]. In this work, the model 
was properly built using PLS with 10 VLs, determined by 
leave-one-out cross-validation. Additionally, the authors fol-
lowed the ASTM recommendations, and samples were split 
into about two-thirds for the calibration set and one-third 
for the validation set. Other important aspects often absent 
in papers using SERS and multivariate calibration models 
are spectral interpretation and outlier detection. Informative 
vectors generated for PLS models should be critically inter-
preted and associated with the respective spectral bands, and 
the identification of outliers is crucial for the development of 
calibration models with good prediction ability.

Benchmarking and considerations 
for method selection

The main characteristics of the chemometric and machine 
learning methods successfully incorporated in SERS applica-
tions are summarized in Table 3. Note that non-supervised 
models, such as PCA, were not included because they should 

Fig. 8   Schematic representation of the pH sensing by the modified SERS substrate and the use of non-linear calibration strategy. Adapted with 
permission from [139]. Copyright 2022 American Chemical Society
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Fig. 9   A Utilization of the coffee-ring effect in SERS detection of 
mycotoxins. B Surface modification of AuNPs for metal ion detec-
tion and C comparison of actual and predicted concentrations for the 

quantitative PLS model. Reprinted from references [118] and [134], 
with permission from Elsevier

Table 2   Complementary recent and relevant applications combining SERS and quantitative multivariate methods

*The supervised quantitative method with the best performance is placed first

Analytical determination SERS substrate Multivariate methods* LOD Reference

2,4-Dichlorophenoxyacetic acid in 
green tea

Paper coated with Ag NPs UVE-PLS 0.1 ng/g [106]

Flusilazole in oolong tea Ag NP–coated cellulose nanofiber PLS 0.5 mg/kg [111]
Carbendazim in tea and rice Ti2C MXene/Au–Ag nanoshuttles Relevance vector machine, SVM, 

ANN
10 nmol/L [112]

Acetamiprid in green tea Graphene oxide–Au nanostar com-
posite

GA-PLS, PLS 20 ng/L [114]

Ganciclovir, penciclovir, and valacy-
clovir in rat plasma and tablets

Colloidal Ag NPs ANN, PLS 10 µmol/L [119]

Chloramphenicol in pork Paper coated with flower-like Ag NPs CARS-PLS, UVE-PLS, ACO-PLS, 
PLS

10 ng/L [121]

Norfloxacin in fish Bimetallic Au@Ag NPs GA-PLS 20 ng/L [123]
Hg2+ in fish and water samples Au@Ag NPs modified with R6G GA-PLS, successive projection 

algorithm-PLS, ACO-PLS
1 ng/g [133]

Pb2+ in water samples NaYF4@Yb,Ho,Au nanohybrid mate-
rial

GA-PLS 1 µg/L [136]
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always be performed before supervised modelling. The first 
aspect to consider is the dimensionality of the SERS data, 
where the number of variables/Raman shifts frequently 
exceeds the number of samples. Therefore, models of low 
variance and dimensionality reduction are good options (e.g., 
PLS, PLS-DA, SIMCA, linear SVM, and MCR-ALS). On the 
other hand, if the number of samples is similar or higher than 
the number of variables/Raman shifts, high variance models 
may be a suitable first choice (e.g., RF, kernel SVM, SVR, 
and ANN). Moreover, one can consider the following key 
criteria: (1) predictive accuracy, (2) simplicity/parsimony, 
(3) interpretability, (4) linearity, and (5) computational cost. 
For example, the diagnosis of diseases such as cancer and 
COVID-19 demands highly accurate results because errors 
could have a dramatic impact on the population. Here, the 
use of flexible ANN architectures would be a good choice to 
fulfil such a requirement, despite the complexity (less parsi-
mony), the poor ability to explain what is behind the outputs, 
and the high computational cost. Obtaining excellent accu-
racy is always desired; nevertheless, it is just one criterion to 
decide whether a model is useful or not to solve a particular 
problem. Accordingly, the study of potential biomarkers or 
biological pathways underlying medical conditions by SERS 
demands interpretable models (e.g., PLS-DA and RF). In this 
sense, great efforts are being made to improve the interpret-
ability of machine learning algorithms aiming to change 
their “black box” nature (e.g., ANN and SVM) [143, 144]. 
In food analysis, supervised classification and authentica-
tion problems have been usually faced. Classification and 
discrimination analysis can be performed by using PLS-DA, 
LDA, or KNN with good predictive accuracies. On the other 
hand, rigorous authentication demands the use of SIMCA or 
other one-class modelling approaches, in which the authen-
tic class is modeled without including the adulterated/non-
authentic class information in the training set [29, 32]. This 
is because the adulterated samples can dramatically change 
over time and an infinite number of new types of adulteration 
may occur. Although it has not yet been applied in the SERS 
field, the use of machine learning for food authentication 
(e.g., one-class SVM and RF) has gained attention in recent 
spectroscopic applications [145, 146].

As can be seen in Table 3, SVM/SVR and PLS/PLS-DA 
have been the most used methods in SERS applications, 
probably because of their good predictive accuracies and 
availability in several software packages. PLS/PLS-DA 
outperforms SVM/SVR in terms of interpretability and 
simplicity/parsimony. However, the non-linear behavior of 
the SERS signals may negatively affect the performance of 

PLS models and restrict their applicability to narrow lin-
ear ranges. It is therefore advisable to test the linearity in 
the concentration range of interest before going through 
complex SVR or ANN modelling, which is less parsimo-
nious, reduces the interpretability, and increases the com-
putational cost. Finally, after choosing the suitable multi-
variate method, only a rigorous validation step will assure 
the robustness and generalization of the SERS-multivariate 
method in real-world applications.

Conclusions and outlook

Recent works implementing chemometrics and machine 
learning in SERS have been described and discussed in this 
review. These multivariate techniques allow the performing 
of SERS analysis with excellent predictive accuracy, espe-
cially when using ANN. Most of the qualitative applications 
have been focused on the characterization of pathogens, 
human health care, and food and forensic analysis. Complex 
machine learning models with limited interpretability and 
high computational cost should be avoided to solve simple 
discrimination/classification problems (principle of parsi-
mony). For example, PLS-DA and SIMCA are interpret-
able, and good options for classification and authentication, 
respectively, despite they might provide lower prediction 
accuracy for complex SERS data. In quantitative applica-
tions, most of the published SERS applications have focused 
on monitoring pesticides, drugs, biomolecules, and metallic 
ions. Methods based on PLS, SVR, and ANN provide excel-
lent performances in terms of predictive accuracy; neverthe-
less, the linearity should previously be assessed for choosing 
a suitable/parsimonious multivariate method. Although RF 
is not yet frequently used in SERS, it combines important 
advantages, such as good prediction accuracy and interpreta-
bility. Future improvements in the interpretability of accurate 
machine learning algorithms, such as SVM and ANN, will 
certainly improve the quality of future smart SERS sensors. 
Moreover, the rigorous validation of multivariate models, by 
estimating FOM and by using external validation/test sets 
with independent samples, should become a general practice 
because it will guarantee the robustness and reproducibility 
of SERS methods in real-world applications. Therefore, com-
bining SERS and multivariate analysis significantly improves 
selectivity and allows for extracting crucial spectroscopic 
information, albeit sensing of metallic ions or molecules 
with very low affinity for metallic surfaces is still limited 
and needs preliminary surface modifications.
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