Skip to main content
Log in

Determination of lysophosphatidylcholine using peroxidase-mimic PVP/PtRu nanozyme

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lysophosphatidylcholine (LPC) can be used as a biomarker for diseases such as cancer, diabetes, atherosclerosis, and sepsis. In this study, we demonstrated the ability of nanozymes to displace the natural derived enzyme in enzyme-based assays for the measurement of LPC. Synthesized polyvinylpyrrolidone-stabilized platinum–ruthenium nanozymes (PVP/PtRu NZs) had a uniform size of 2.48 ± 0.24 nm and superb peroxidase-mimicking activity. We demonstrated that the nanozymes had high activity over a wide pH and temperature range and high stability after long-term storage. The LPC concentration could be accurately analyzed through the absorbance and fluorescence signals generated by the peroxidation reaction using the synthesized nanozyme with substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB) and 10-acetyl-3,7-dihydroxyphenoxazine (Ampliflu™ Red). LPC at a concentration of 0–400 µM was used for the analysis, and the coefficient of determination (R2) was 0.977, and the limit of detection (LOD) was 23.1 µM by colorimetric assay. In the fluorometric assay, the R2 was 0.999, and the LOD was 8.97 µM. The spiked recovery values for the determination of LPC concentration in human serum samples were 102–115%. Based on these results, we declared that PVP/PtRu NZs had an ability comparable to that of the native enzyme horseradish peroxidase (HRP) in the enzyme-based LPC detection method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baeza-Jimenez R, Lopez-Martinez LX, Otero C, Kim IH, Garcia HS. Enzyme-catalysed hydrolysis of phosphatidylcholine for the production of lysophosphatidylcholine. J Chem Technol Biot. 2013;88(10):1859–63.

    Article  CAS  Google Scholar 

  2. Kabarowski JHS, Xu Y, Witte ON. Lysophosphatidylcholine as a ligand for immunoregulation. Biochem Pharmacol. 2002;64(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto T, Kobayashi T, Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem. 2007;14(30):3209–20.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor LA, Arends J, Hodina AK, Unger C, Massing U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 2007;6:17.

  5. Zhang Q, Xu HR, Liu R, Gao P, Yang X, Jin W, et al. A novel strategy for targeted lipidomics based on LC-tandem-MS parameters prediction, quantification, and multiple statistical data mining: evaluation of lysophosphatidylcholines as potential cancer biomarkers. Anal Chem. 2019;91(5):3389–96.

    Article  CAS  PubMed  Google Scholar 

  6. Dong J, Cai XM, Zhao LL, Xue XY, Zou LJ, Zhang XL, et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics. 2010;6(4):478–88.

    Article  CAS  Google Scholar 

  7. Zhao ZW, Xiao YJ, Elson P, Tan HY, Plummer SJ, Berk M, et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J Clin Oncol. 2007;25(19):2696–701.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou XC, Lawrence TJ, He Z, Pound CR, Mao JH, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol. 2012;92(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  9. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA, et al. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One. 2012;7(7):e41456.

  10. Cho WH, Yeo HJ, Yoon SH, Lee SE, Jeon DS, Kim YS, et al. Lysophosphatidylcholine as a prognostic marker in community-acquired pneumonia requiring hospitalization: a pilot study. Eur J Clin Microbiol. 2015;34(2):309–15.

    Article  CAS  Google Scholar 

  11. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lee EH, Shin MH, Park JM, Lee SG, Ku NS, Kim YS, et al. Diagnosis and mortality prediction of sepsis via lysophosphatidylcholine 16:0 measured by MALDI-TOF MS. Sci Rep. 2020;10:13833.

  13. Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, et al. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res. 2003;44(4):754–61.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmmed MK, Carne A, Stewart I, Tian H, Bekhit AEA. Phosphorus-31 nuclear magnetic resonance (P-31 NMR) for quantitative measurements of phospholipids derived from natural products: effect of analysis conditions. LWT - Food Sci Technol. 2021;142:110991

  15. Bresler K, Pyttel S, Paasch U, Schiller J. Parameters affecting the accuracy of the MALDI-TOF MS determination of the phosphatidylcholine/lysophosphatidylcholine (PC/LPC) ratio as potential marker of spermatozoa quality. Chem Phys Lipids. 2011;164(7):696–702.

    Article  CAS  PubMed  Google Scholar 

  16. Nishikimi M, Yagi T, Shoaib M, Takegawa R, Rasul R, Hayashida K, et al. Phospholipid screening postcardiac arrest detects decreased plasma lysophosphatidylcholine: supplementation as a new therapeutic approach. Crit Care Med. 2022;50(2):E199–208.

    Article  CAS  PubMed  Google Scholar 

  17. Wang JX, Lu XN, Zhang JE, Xiao ZH. Simultaneous quantification of the lipids phosphatidylcholine, 3-sn-phosphatidylethanolamine, sphingomyelin, and L-alpha-lysophosphatidylcholine extracted from the tissues of the invasive golden apple snail (Pomacea canaliculata) using UHPLC-ESI-MS/MS. Food Chemist. 2021;343:128427

  18. Kishimoto T, Soda Y, Matsuyama Y, Mizuno K. An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin Biochem. 2002;35(5):411–6.

    Article  CAS  PubMed  Google Scholar 

  19. Lopes GR, Pinto DCGA, Silva AMS. Horseradish peroxidase (HRP) as a tool in green chemistry. Rsc Adv. 2014;4(70):37244–65.

    Article  CAS  Google Scholar 

  20. Krainer FW, Glieder A. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biot. 2015;99(4):1611–25.

    Article  CAS  Google Scholar 

  21. Zhai GJ, Pelletier JP, Liu M, Aitken D, Randell E, Rahman P, et al. Activation of the phosphatidylcholine to lysophosphatidylcholine pathway is associated with osteoarthritis knee cartilage volume loss over time. Sci Rep 2019;9:9648

  22. Fan SN, Jiang XX, Yang MH, Wang XG. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem. 2021;413(15):3955–63.

    Article  CAS  PubMed  Google Scholar 

  23. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Liu SW, Sun HY, Lu QF. Synthesis and intrinsic peroxidase-like activity of sisal-like cobalt oxide architectures. Ind Eng Chem Res. 2014;53(19):7917–22.

    Article  CAS  Google Scholar 

  25. Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem. 2012;13(5):1199–204.

    Article  CAS  PubMed  Google Scholar 

  27. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  28. Son SE, Gupta PK, Hur W, Choi H, Lee HB, Park Y, et al. Determination of glycated albumin using a Prussian blue nanozyme-based boronate affinity sandwich assay. Anal Chim Acta. 2020;1134:41–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tran VK, Gupta PK, Park Y, Son SE, Hur W, Lee HB, et al. Functionalized bimetallic IrPt alloy nanoparticles: multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose. J Taiwan Inst Chem E. 2021;120:336–43.

    Article  CAS  Google Scholar 

  30. Gupta PK, Son SE, Seong GH. Functionalized ultra-fine bimetallic PtRu alloy nanoparticle with high peroxidase-mimicking activity for rapid and sensitive colorimetric quantification of C-reactive protein. Microchimica Acta. 2021;188(4):119.

  31. Qiao FM, Chen LJ, Li XN, Li LF, Ai SY. Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sensor Actuat B-Chem. 2014;193:255–62.

    Article  CAS  Google Scholar 

  32. Fan J, Yin JJ, Ning B, Wu XC, Hu Y, Ferrari M, et al. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials. 2011;32(6):1611–8.

    Article  CAS  PubMed  Google Scholar 

  33. Arsalan M, Qiao XJ, Awais A, Wang YH, Yang SY, Sheng QL, et al. Enhanced sensitive electrochemical sensor for simultaneous catechol and hydroquinone detection by using ultrasmall ternary pt-based nanomaterial. Electroanal. 2021;33(6):1528–38.

    Article  CAS  Google Scholar 

  34. Lee HB, Son SE, Gupta PK, Venkatesan J, Hur W, Park J, et al. Mesoporous platinum nanozyme-based competitive immunoassay for sensitive detection of 25-hydroxyvitamin D. Mater Lett. 2023;330:133286

  35. Cao GJ, Jiang X, Zhang H, Croley TR, Yin JJ. Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. Rsc Adv. 2017;7(82):52210–7.

    Article  CAS  Google Scholar 

  36. Khan MA, Al Mamun MS, Ara MH. Review on platinum nanoparticles: synthesis, characterization, and applications. Microchem J. 2021;171:106840

  37. Park Y, Gupta PK, Tran VK, Son SE, Hur W, Lee HB, et al. PVP-stabilized PtRu nanozymes with peroxidase-like activity and its application for colorimetric and fluorometric glucose detection. Colloid Surface B. 2021;204:111783

  38. Liu C, Guo YQ, Zhang JM, Tian B, Lin OK, Liu YW, et al. Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment. Rsc Adv. 2019;9(31):17766–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hasa B, Kalamaras E, Papaioannou EI, Vakros J, Sygellou L, Katsaounis A. Effect of TiO2 loading on Pt-Ru catalysts during alcohol electrooxidation. Electrochim Acta. 2015;179:578–87.

    Article  CAS  Google Scholar 

  40. Porter DJT, Bright HJ. The mechanism of oxidation of nitroalkanes by horseradish-peroxidase. J Biol Chem. 1983;258(16):9913–24.

    Article  CAS  PubMed  Google Scholar 

  41. Sychantha D, Clarke AJ. Peptidoglycan modification by the catalytic domain of Streptococcus pneumoniae OatA follows a ping-pong bi-bi mechanism of action. Biochemistry-Us. 2018;57(16):2394–401.

    Article  CAS  Google Scholar 

  42. Nazifi M, Ahmadi R, Ramezani AM, Absalan G. Introducing hierarchical hollow MnO2 microspheres as nanozymes for colorimetric determination of captopril. Anal Bioanal Chem. 2021;413(28):7063–72.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Tang CL, Liu JJ, Zhang HZ, Wang J. Ultra-small CuS nanoparticles as peroxidase mimetics for sensitive and colorimetric detection of uric acid in human serum. Chinese J Anal Chem. 2018;46(5):E1825–31.

    Article  Google Scholar 

  44. Li J, Zhao J, Li SQ, Chen Y, Lv WQ, Zhang JH, et al. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021;14(12):4689–95.

    Article  CAS  Google Scholar 

  45. Zhou DD, Zeng K, Yang MH. Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid. Microchim Acta. 2019;186:121

  46. Chen LJ, Wang N, Wang XD, Ai SY. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim Acta. 2013;180(15–16):1517–22.

    Article  CAS  Google Scholar 

  47. Ming J, Zhu TB, Li JC, Ye ZC, Shi CR, Guo ZD, et al. A novel cascade nanoreactor integrating two-dimensional Pd-Ru nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small. 2021;17:2103645

  48. Cai SF, Xiao W, Duan HH, Liang XX, Wang C, Yang R, et al. Single-layer Rh nanosheets with ultrahigh peroxidaselike activity for colorimetric biosensing. Nano Res. 2018;11(12):6304–15.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea (2018R1A6A1A03024231 and 2021R1A2C1003566).

Author information

Authors and Affiliations

Authors

Contributions

Ji Yeon Park and Han Been Lee, conceptualization, methodology, investigation, formal analysis, visualization, and writing, original draft. Seong Eun Son, investigation. Pramod K. Gupta, investigation. Yosep Park, investigation. Won Hur, investigation. Gi Hun Seong, supervision; visualization; writing, review and editing; and funding acquisition.

Corresponding author

Correspondence to Gi Hun Seong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Lee, H.B., Son, S.E. et al. Determination of lysophosphatidylcholine using peroxidase-mimic PVP/PtRu nanozyme. Anal Bioanal Chem 415, 1865–1876 (2023). https://doi.org/10.1007/s00216-023-04590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04590-1

Keywords

Navigation