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Abstract
Detergents enable the investigation of membrane proteins by mass spectrometry. Detergent designers aim to improve underly-
ing methodologies and are confronted with the challenge to design detergents with optimal solution and gas-phase properties. 
Herein, we review literature related to the optimization of detergent chemistry and handling and identify an emerging research 
direction: the optimization of mass spectrometry detergents for individual applications in mass spectrometry–based membrane 
proteomics. We provide an overview about qualitative design aspects including their relevance for the optimization of deter-
gents in bottom-up proteomics, top-down proteomics, native mass spectrometry, and Nativeomics. In addition to established 
design aspects, such as charge, concentration, degradability, detergent removal, and detergent exchange, it becomes apparent 
that detergent heterogeneity is a promising key driver for innovation. We anticipate that rationalizing the role of detergent 
structures in membrane proteomics will serve as an enabling step for the analysis of challenging biological systems.
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Introduction

Proteomics aims for the identification and quantification of 
the proteome (entirety of all proteins) in cells or organisms at 
a certain time point. On a cellular level, interactions between 
proteins and other molecules are frequently translated into 
biological function. Therefore, proteomics is an important 
tool for describing biological systems and plays a crucial 
role in disease-relevant research fields, such as the search 
for new biomarkers, drug discovery, and monitoring dis-
ease development [1, 2]. However, various parameters make 
the analysis of the proteome challenging. The proteome of 
cells is dynamic and changes in response to its environment 
[3]. Furthermore, cells are compartmentalized by mem-
branes. Water-insoluble membranes separate water-soluble 

compartments with different functions. Complementary, 
the proteome is divided into a water-soluble proteome and 
a membrane-bound proteome. Both sub-proteomes differ in 
terms of solubility and abundance. Even though the mem-
brane-bound proteome marks only 30% of the genetically 
encoded proteome, it accounts for 60% of current drug targets 
[4, 5]. Technologies that enable the investigation of interac-
tions between drugs and the membrane-bound proteome are 
of great interest in the pharmaceutical industry [4–7].

Mass spectrometry(MS)–based proteomics is frequently 
used to study interactions between the membrane-bound 
proteome and drugs [8, 9]. MS methods require analytes to 
be homogenously dissolved. However, this is the opposite 
to what cells are (Fig. 1). Sample preparation procedures 
are tailored to overcome problems associated with hetero-
geneity, low solubility, and abundance of the membrane-
bound proteome. Depending on the MS-based proteomics 
approach, sample preparation procedures include the use of 
chaotropic salts, organic solvents, organic acids, and deter-
gents [8, 10, 11].

In this review, we focus on detergents related to four 
established MS-based proteomics approaches: bottom-up 
proteomics (BUP), top-down proteomics (TDP), native mass 
spectrometry (nMS), and Nativeomics [12–14] (Fig. 1). In 
BUP, proteins or protein mixtures are digested by proteases. 
Peptide fragments are separated by liquid chromatography 
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(LC) and analyzed by tandem MS. Peptide fragment identity 
is confirmed by matching experimental gas-phase fragmen-
tation patterns with those available from databases or pre-
diction tools [15]. In TDP, proteins or protein mixtures are 

denatured, subunits are separated by LC, and identified by 
tandem MS (Fig. 1). BUP and TDP are used to study pro-
teome changes in response to stimuli, which recently enabled 
the analysis of the rising NQO1 abundance at increasing 

Fig. 1   Mass spectrometry detergents for mass spectrometry–based 
membrane protein analysis. Schematic overview about detergent 
classes, e.g., non-ionic (blue), cationic (orange), or anionic (purple), 
a cell, and applications in life sciences that require detergents and aim 

for a better understanding of how a cell works (upper panel). Further-
more, a schematic overview about possible applications and related 
MS detergent classes involved in mass spectrometry–based mem-
brane protein analysis is shown (lower panel)
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CTE stages [16], the protective role of Ola1p in yeast cells 
during heat shock [17], understanding kinase inhibitor 
mechanisms [18], identification of proteoforms and phos-
phorylation sites at kinase subunits [19], and age-dependent 
changes of the human pancreas proteome [20]. These appli-
cations demonstrate not only the utilities of BUP and TDP 
to analyze the proteome of target ecosystems, but also under-
line their relevance for clinical research and fundamental 
research in biology more widely.

In contrast to BUP and TDP, nMS-based workflows aim 
for the preservation of non-covalent interactions in protein 
assemblies during sample preparation and MS analysis. The 
idea is to bring protein assemblies, including non-covalently 
bound ligands, intact into the vacuum of a mass spectrometer, 
to study structural organization on the level of the whole 
assembly (Fig. 1). This includes the analysis of protein oli-
gomer equilibria in response to ligand binding [21, 22], gas-
phase unfolding stability in response to PTMs or ligand bind-
ing [23, 24], relative dissociation constants of protein-lipid 
binding events [25], cooperativity in protein–ligand binding 
[25, 26], and the effect of salt microenvironment surrounding 
membrane proteins on ligand binding [27]. More recently, a 
multistage nMS method has been developed to identify and 
characterize lipids, peptides, or therapeutics in direct con-
tact with membrane proteins (Fig. 1) [14]. This method, also 
known as Nativeomics, uses an Orbitrap Eclipse Tribrid mass 
spectrometer to dissociate ligands from protein complexes 
and enables their detailed identification by tandem MS. Con-
veniently, what has been a combination of two methods, e.g., 
nMS and omics (lipidomics, proteomics, metabolomics), is 
now unified in one method, i.e., Nativeomics [14].

Regardless of the MS-based proteomics approach, deter-
gents are a critical enabling step for the analysis of the mem-
brane-bound proteome. Even though detergents enable life 
sciences in many ways, be it for the purification of biomol-
ecules, drug formulations, or biomolecular interactions stud-
ies, the best detergents are selected empirically (Fig. 1) [28]. 
This dogma also accounts for the selection of detergents in 
MS-based membrane proteomics [29].

Detergent designers face the challenge to identify design 
rules that lead to detergents with optimal solubilizing, dena-
turing, and MS-compatible properties for individual MS-
based membrane proteomics applications (Fig. 1). The desire 
to compromise this set of detergent properties is unique to 
MS-based membrane proteomics and encouraged us to coin 
a new category for related detergents in the field, namely 
mass spectrometry detergents (MS detergents). Herein, we 
identify an emerging research trend, i.e., the development 
of tailor-made MS detergents for individual applications in 
MS-based membrane proteomics. We review recent discov-
eries in the field to facilitate the predictable optimization of 
MS detergents for the MS-based analysis of the membrane-
bound proteome.

Methods

A PubChem-based search for English-written literature using 
the search term “detergents proteomics” [Title/Abstract] OR 
“surfactants proteomics” [Title/Abstract] AND 2018/01/01 
[Date—Publication]: 2022/06/20 [Date—Publication]” was 
performed on 20 June 2022. Additionally, scientific litera-
ture and reference lists of publications within the scope of 
the current article were mined to identify relevant, but not 
PubChem-listed publications. Literature related to nMS 
and Nativeomics has been selected based on the authors’ 
experience.

Results and discussion

Designing detergents for BUP and TDP

In BUP and TDB experiments, ideally, all proteins are 
solubilized and isolated from cells in the first step, since 
unwanted interactions with impurities or insolubilized 
material could interfere with the MS measurements. While 
cytosolic proteins are mostly water-soluble, membrane pro-
teins can pose an issue. Their low water solubility generally 
hinders quantitative solubilization and homogenization by 
mechanical means. Chaotropic salts, like urea or guanidine, 
can enhance solubility, but they often do not quantitatively 
solubilize hydrophobic membrane proteins and bias rela-
tive abundances of observable protein populations [8, 10]. 
Instead, ionic detergents are commonly used to solubilize 
hydrophobic membrane proteins [8, 11]. Like lipids and 
membrane proteins, detergents are amphiphilic. They con-
sist of a water-soluble head that contains polar, non-ionic, 
or ionic groups and a water-insoluble, non-polar tail. For the 
head groups, the following chemical motives are common: 
sulfates (anionic), sulfonates (anionic), carboxylates (ani-
onic), quaternary amines (cationic), saccharides (non-ionic), 
amine oxids (zwitter-ionic), phosphocholine (zwitter-ionic), 
polyglycerols (non-ionic), polyethylenglycols (non-ionics) 
(Figs. 2–3). The non-polar tail often consists of a saturated 
linear alkyl chain or a cholesterol-based structural motive 
(Figs. 2–3). Following the motto similia similibus solvuntur 
(similar substances will dissolve similar substances), ionic 
detergents can solubilize protein-containing membranes. 
However, drawbacks can become apparent when the work-
flow moves on to proteolytic digest, LC separation, and MS 
analysis.

Drawbacks associated with the use of detergents are 
related to the properties of the detergent itself. High deter-
gent concentrations can hinder protease activity which 
may limit protein digests required for BUP [8]. Further-
more, detergents can hamper MS analysis by inducing ion 
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suppression and electrospray instability [8, 30]. The latter 
aspects are critical for BUP and TDP experiments but are 
principally relevant for all MS-based proteomics applica-
tions. From the perspective of detergent designers, these 

problems can be addressed in two ways: (i) chemically, for 
example, by modifying the molecular structure of detergents 
to make them more compatible to proteolytic digests and 
MS analysis. (ii) Practically, by optimizing the detergent 

Fig. 2   Mass spectrometry detergents for denaturing BUP and TDP experiments. Overview about detergent classes employed for denaturing BUP 
and TDP experiments, which are mainly anionic, cationic, and zwitter-ionic
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handling, for example, by including detergent exchange or 
detergent removal steps prior to MS analysis. Recent MS 
detergent examples are discussed throughout the following 
sub-chapter.

New detergents for BUP and TDP

The general utility of all detergent classes has been tested 
for BUP and TDP experiments, including anionic, cationic, 

Fig. 3   Mass spectrometry detergents for nMS and Nativeomics experiments. Overview about detergent classes employed for non-denaturing 
nMS and Nativeomics experiments. Related detergent classes are mainly non-ionic or zwitter-ionic
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zwitter-ionic, and non-ionic detergents [8]. Today, the most 
established detergent for BUP and TDP applications is ani-
onic SDS. It efficiently denatures and solubilizes a multitude 
of proteins, including membrane proteins [8, 11]. However, 
it is not compatible to MS. Practically, the handling of SDS 
has been optimized to compromise its solubilizing proper-
ties and incompatibility to MS, for example, by lowering the 
concentration of SDS below 0.001% w/v prior to MS analysis 
or by applying detergent depletion strategies [31–33]. Among 
eight SDS depletion techniques, Kachuk et al. [33] identi-
fied acetone precipitation as an ideal strategy to increase the 
number of identifiable proteins and peptides in a proteomics 
workflow. Furthermore, SDS turned out to be compatible to 
suspension trapping (S-Trap)–based sample preparations and 
can improve BUP analysis [34]. Another method to remove 
SDS was developed by Kim et al. [35], where they coupled 
a membrane filter platform directly to the pump of their 
LC–MS device. Detergent depletion techniques can princi-
pally bias obtainable results, which is a motivation to chemi-
cally modify solubilizing detergents in such a way that they 
become MS-compatible upon degradation. Examples include 
acid-labile analogues of SDS, such as RapiGest, MaSdEs, 
and ProteaseMax (Fig. 2) [36–38]. These detergents are 
degraded post-trypsin digestion by acidifying followed by 
heating. Furthermore, these detergents show good solubiliz-
ing properties and can accelerate trypsin activity for the ben-
efit of the digest [38, 39]. The ability to obtain both optimal 
protein solubilization and trypsin activity is depending on the 
detergent concentration and determined empirically [38–40]. 
A challenge commonly faced with acid-labile detergents is 
that the acidic conditions required to stop the digest may not 
be sufficient to completely degrade the detergent. The latter 
aspect can lead to unintended MS interference [39]. Further-
more, the ability to quantitively digest detergents depends 
not only on acidity but also on temperature and incubation 
time [36–38]. Incubation times can range from minutes to 
24 hours [36–38]. Residues of degradable detergents may 
remain present in samples, including fragmentation products, 
and their effect on MS data quality cannot be generalized 
[39]. Alternatively, light has been established as a stimulus 
for detergent degradation. Brown et al. [41] designed an 
azo-containing analogue of SDS, namely Azo, with good 
solubilizing properties (Fig. 2). Upon irradiation with light, 
Azo degrades and the sample becomes MS-compatible, thus 
making it ideal for BUP and TDP experiments on membrane 
proteins [41, 42]. For example, Azo has enabled the compre-
hensive TDP analysis of ATP synthase subunit proteins from 
cardiac tissue and BUP analysis of membrane proteome from 
kidney cells [41, 42]. Recently Brown et al. [43] developed 
a non-ionic cleavable surfactant, containing a disulfide bond 
which can be cleaved by reduction prior to MS, reducing MS 
interference. Further studies will reveal the general utility of 
this approach for proteomics.

In clinical research, fresh frozen (FF) and formalin-fixed 
paraffin-embedded (FFPE) human tissues are stored for later 
analysis. Cross-linking and other reactions during sample 
preparation and storage hinder effective protein recovery. 
Dapic et al. [40] evaluated different acid-labile detergents 
and others in FF and FFPE human kidney tissue. Working 
on a similar issue, Liu et al. [44] recently presented a rapid 
digestion method, enabled by cationic C12Im-Cl (Fig. 2), 
which simplified the sample preparation of FFPE liver can-
cer tissues. Although the proteome coverage is slightly lower 
compared to the control, their findings pose a promising 
approach that enables the fast proteomics analysis of FFPE 
tissue within approximately 2 hours [44].

Alternative strategies for the optimization of MS deter-
gents consider that every sample preparation strategy pos-
sesses an individual bias on obtainable results. Following 
this rationale, Choi et al. [45] suggest that a combination 
of structurally different detergents is required to match the 
structural diversity of the entire proteome for the benefit of 
the observable proteome. Alternatively, Khanal et al. [46] 
established fluoroalcohol-induced coacervation biphasic 
systems (FAiC-BPS) as a novel approach for BUP analysis. 
Instead of reconstructing the proteome by combining the 
proteomes observable from different detergents, the authors 
established a mixture of zwitter-ionic DMMAPS, quater-
nary ammonium salt (QUATS), and hexafluoroisopropanol 
(HFIP) to improve proteome coverage of yeast cells by 18% 
compared to a urea control and for the benefit of the observ-
able membrane proteome[46].

Non-ionic detergents can be used for both, BUP 
and TDP [8]. Established non-ionic detergents include 
n-dodecyl-ß-D-maltoside (DDM), digitonin, Tween-
20, PEG-4000, Brij-55, NP-7, and Triton X-100 [8, 10, 
47–49]. For the analysis of the membrane-bound pro-
teome, Pham et  al. [47] outlined three characteristics 
that make Triton detergents useful for BUP and TDP 
analysis: (i) their wide use in membrane protein sample 
preparation, (ii) their phase separation properties which 
facilitate the enrichment of membrane proteins, and (iii) 
their non-ionic nature which makes them generally more 
MS-compatible than ionic detergents. Despite the latter 
beneficial characteristics, ionic detergents are currently 
the norm in BUP and TDP laboratories. To sum up, an 
optimal detergent for BUP and TDP solubilizes all pro-
teins and does not interfere with MS measurements. The 
main applicatory difference of detergent between BUP 
and TDP applications is the digest. In the case of BUP 
applications, it is important to optimizing detergents for 
the benefit of protein solubilization, protease activity 
during the digest, and low MS interference. In the cases 
of TDP applications, it is more important to optimizing 
detergents for the benefit of protein solubilization while 
simultaneously lowering MS interference.
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Detergent requirements for nMS and Nativeomics

Unlike BUP and TDP, the concept of nMS and Nativeomics 
is to study intact, non-denatured membrane protein com-
plexes (Fig. 1). Membrane proteins and their complexes are 
first purified in solution and then ionized and transferred into 
the vacuum of a mass spectrometer with the aim to maintain 
non-covalent interactions from solution species [50]. Since 
water-soluble proteins often ionize better than insoluble 
ones, membrane proteins are commonly overexpressed and 
purified from membranes with detergents to enable nMS 
and Nativeomics analysis[51]. The purified complexes can 
also be subjected to BUP and TDP analysis to validate pro-
tein identity and composition upon purification (Fig. 1). In 
addition, nMS and Nativeomics experiments can be used to 
confirm oligomeric states and to gain insights into identity 
and relative amounts of co-purified ligands. Once ligand 
identity is confirmed, biological relevance can be studied 
[14, 52–55]. In addition to detergents, the use of alterna-
tive membrane mimetics is gaining increasing attention in 
the field. For further insights into the utility of membrane 
mimetics for nMS and Nativeomics, we refer to the recent 
reviews on the topic [52–54, 56, 57].

Today, it is well established that the ability to study 
intact membrane protein complexes by nMS and Nativ-
eomics depends not only on MS instrumentations but also 
on detergents [14, 55, 58]. Like for BUP and TDP, deter-
gents need to compromise favorable solubilizing, denatur-
ing, and MS-compatible properties. Unlike BUP and TDP, 
detergents need to preserve non-covalent protein–protein 
and protein–ligand interactions in solution and gas phase. 
Furthermore, in nMS and Nativeomics, detergents are 
removed inside the mass spectrometer by thermal activa-
tion and need to be compatible to the ionization technique, 
such as electrospray ionization (ESI). These requirements 
are commonly fulfilled by non-ionic detergents. Recent find-
ings suggest that the use of submicron emitters can improve 
the applicability of ionic detergents for nMS of membrane 
proteins [59]. However, non-ionic detergents are still the 
norm for nMS and Nativeomics experiments, while ionic 
detergents are more common in BUP and TDP experiments 
(Fig. 1). Zwitter-ionic detergents represent a boarder case 
since they are formally charge-neutral but exhibit a stronger 
ionic character than non-ionic detergents. Some zwitter-
ionic detergents have been established for BUP and TDP, 
such as ASB14 [45], DMMAPS [46], Zwittergent 3–10 
[45], CHAPS [46], and PPS [40] (Fig. 2), while others are 
more common in nMS and Nativeomics, such as N-dodecyl-
N,N-dimethylamine-N-oxide (LDAO) [60] and Fos-Choline 
(Fig. 3) [61].

Ideal detergents for nMS and Nativeomics enable the 
extraction and affinity purification of membrane proteins. 
Furthermore, they are compatible to ESI and can be readily 

removed from protein complexes inside the vacuum of a 
mass spectrometer. Like with other applications, the utility 
of detergents for membrane protein purification and nMS has 
initially been determined by empirical screening [13, 58, 60, 
62]. To rationalize the role of the detergents, Reading et al. 
[60] found that the chemical nature of detergent head groups 
is a determining factor for the purification and nMS analy-
sis of membrane proteins. Detergents commonly employed 
in purifications, for example, saccharide detergents, like 
n-dodecyl-ß-D-maltoside (DDM), n-dodecyl-ß-D-maltoside 
(DM), and lauryl maltose neopentyl glycol (LMNG), are not 
ideal for nMS [58, 60]. They require harsh activation con-
ditions to be removed from protein complexes inside mass 
spectrometers, which can lead to unintended loss of non-
covalent protein–protein and protein–ligand interactions in 
the gas phase [58, 60]. Other detergents, like tetraethylene 
glycol monooctyl ether (C8E4) and LDAO, require softer 
activation conditions compared to saccharide detergents and 
are more compatible to nMS [58, 60]. However, they tend to 
promote the loss of non-covalent protein–protein and pro-
tein–ligand interactions in solution. In summary, detergents 
that exhibit both favorable solution and gas-phase properties 
rarely exist [58]. From the perspective of detergent design-
ers, these problems can be addressed in two ways: (i) chemi-
cally, for example, by modifying the molecular structure of 
detergents to outbalance optimal solution and gas-phase 
properties. (ii) Practically, by optimizing the detergent han-
dling, for example, by using detergent mixtures or detergent 
exchange strategies. Recent MS detergent examples are dis-
cussed throughout the following sub-chapter.

Designing detergents for nMS and Nativeomics

Keener et al. [57] recently summarized a general overview 
about common non-ionic and zwitter-ionic detergents and 
their utility for nMS of membrane proteins. Here, we com-
plement this knowledge through a discussion of different 
perspectives that enable detergent designers to tune the 
performance of MS detergents for individual application in 
nMS and Nativeomics, including (i) delipidation, (ii) charge 
reduction, (iii) stickiness, (v) detergent exchange, and (vi) 
heterogeneity.

Stabilizing membrane proteins in solution during purifica-
tion is an important requirement for MS detergents in nMS and 
Nativeomics. Membrane protein instability has been linked to 
the loss of protein-lipid interactions during purification [63, 
64]. This suggests that detergents that efficiently co-purify 
lipids, such as DDM or LMNG, may provide better mem-
brane protein stability than detergents that efficiently delipidate 
membrane proteins, such as n-octyl-β-D-glucoside (OG) and 
C8E4. Extensive lipid co-purification, however, can also ham-
per nMS experiments [65]. Lipids can strongly bind to mem-
brane proteins in the gas phase. Consequently, the harshest 
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possible activation conditions enabled by MS instruments may 
not be sufficient to obtain resolved spectra of heavily lipidated 
membrane proteins [58, 65]. This problem can be addressed in 
three ways: first, delipidation protocols with mildly delipidat-
ing detergents are applied until sufficiently resolved spectra 
are obtained [65]. Second, delipidation protocols based on 
the detergent exchange into strongly delipidating detergents 
are applied until sufficiently resolved spectra are obtained 
[66]. More quantitative detergent exchange is typically done 
by means of size-exclusion columns. More partial detergent 
exchange is done by means of Zeba Spin desalting columns 
or drop dilution [14, 67]. Third, a detergent is used that is 
designed to co-purify lipids and to be compatible to nMS so 
that sufficiently resolved spectra are obtained [51, 58, 68–70].

The first and second strategies require empirical testing 
of detergents and delipidation protocols. The third strategy 
requires newly designed detergents which have not yet been 
commercialized but can be synthesized by chemists [51, 58, 
68–70]. Oligoglycerol detergents (OGDs) are one exam-
ple of a newly designed detergent class for the purification 
and nMS analysis of membrane proteins. The key principle 
behind OGDs is that synthetic protocols enable chemists to 
readily change their molecular structure for structure–prop-
erty studies [71]. The role of varying the OGD structure in 
protein experiments was understood retrospectively, i.e., after 
comparing protein purification and nMS analysis outcomes 
obtained from detergent screenings [58]. The outcome was 
condensed into design guidelines with which the structure of 
OGDs can now predictably be tuned for individual experi-
mental parameters, including protein yields, delipidation, and 
charge reduction inside the vacuum of a mass spectrometer 
[58]. Conveniently, OGDs enable the straightforward nMS 
analysis of membrane proteins and their lipid complexes, 
which represents a new enabling step for the investigation of 
drug targets [27, 51, 58, 68–70, 72, 73].

Since delipidation can be a critical parameter, an alterna-
tive view on the optimization of detergents for membrane 
protein delipidation has recently been explored, which bases 
on the manipulation of the critical aggregation concentration 
(cac) [70]. The cac is the minimum concentration of a deter-
gent required to form aggregates in solution. In this regard, 
the abbreviation for the critical micelle concentration (cmc) 
is more common in literature. The cmc is the minimum con-
centration of a detergent required to form micelles in solution. 
However, methods for the determination of the cac usually do 
not provide direct evidence for the aggregate morphology that 
is formed above the cac. However, since the minimum infor-
mation required for the solubilization of membrane proteins 
is the cac of a detergent, regardless of the formed aggregate 
morphology, we preferred to use this abbreviation.

To prevent membrane protein precipitation in the absence 
of membranes, detergent concentrations in purification buffers 
are commonly kept above the cac [74]. At the beginning of a 

purification, higher detergent concentrations are used, typi-
cally in the amount of 1% w/v. During affinity purification, 
detergent concentrations are reduced to two times cac. Deter-
gents compete with lipid molecules for binding to membrane 
proteins in a concentration-dependent manner [70]. Therefore, 
detergents with higher cac values, such as C8E4, [G1] OGD, 
OG, or LDAO, delipidate membrane proteins more efficiently 
than detergents with lower cac values, such as DDM, LMNG, 
and [G2] OGDs [70, 75]. This knowledge has recently been 
harnessed to tune the structure of OGDs and hybrid detergents 
for the benefit of reduced cac values and optimal delipidation 
for the nMS analysis of membrane protein-lipid complexes 
[58, 70]. Following this rationale, membrane proteins can also 
be delipidated with a mildly delipidating detergent by increas-
ing its concentration in purification buffers [66] or by applying 
purification steps with the same detergent repetitively, such as 
in the case of multiple ultrafiltration steps [65, 76].

Furthermore, Urner et al. [69] found that the relative 
amount of co-purifying lipids is biased by the composition 
of the starting material used for purifications, i.e., protein-
containing membrane suspensions. The authors found that 
E. coli membrane suspension contains small, water-soluble 
membrane structures and large, water-insoluble membrane 
structures. The co-solubilization of small and large mem-
brane structures with detergents led to a substantial increase 
in the co-purification of membrane protein-lipid complexes 
compared to purifications in which membrane proteins were 
selectively solubilized from small, water-soluble membrane 
structures [69]. We expect this knowledge to be important 
for studies in which protein-lipid interactions detected by 
nMS and Nativeomics after purification from membrane sus-
pensions with detergent are evaluated regarding their role in 
membrane protein structure and function.

Tuning delipidating to make co-purifying protein-lipid 
interactions analyzable by nMS and Nativeomics becomes 
increasingly important for integrated research approaches that 
aim for the investigation of complex membrane environments 
[52]: (1) the ability to design mildly delipidating detergents 
can provide insights into the lipid environment that co-purifies 
with membrane proteins. (2) The ability to design strongly 
delipidating detergents can be used to remove the lipidome 
surrounding membrane proteins, thus providing a source of 
lipid-free proteins for the reconstitution into in vitro mem-
brane environments to unravel the roles of lipids in protein 
structure and function. In addition to delipidation, the sticki-
ness of detergents in the gas phase of a mass spectrometer can 
be a determining factor for the ability the release membrane 
proteins from detergent micelles. It is generally accepted that 
electrostatic interactions between membrane proteins and 
detergents become significantly stronger during the transfer 
from solution into the vacuum of a mass spectrometer. Read-
ing et al. [60] found that saccharide detergents require harsher 
activation conditions for detergent removal than LDAO or 
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polyethylene glycol detergents. Urner et al. [77] confirmed 
that the energy required to break complexes formed between 
proteins and non-ionic detergents decreases when the number 
of hydroxyl groups in detergent head groups is reduced. Con-
sequently, one design strategy for MS detergents for nMS and 
Nativomics is to reduce the stickiness by reducing the number 
of hydroxyl groups in detergent head groups. Detergent head 
groups with four hydroxyl groups or less, such as in the cases 
of C8E4, OG, or [G1] OGDs, are easier to remove from pro-
tein ions in the vacuum of mass spectrometer than detergents 
with seven hydroxyl groups or more, such as in the cases of 
DDM, LMNG, or [G2] OGDs (Fig. 3) [58, 60, 77]. In this 
regard, it is not only the number of hydroxyl groups in deter-
gent head groups that matters. Also, the absolute concentra-
tion of detergents is important. For example, concentrating 
membrane proteins in detergent solutions in centrifugal filters 
frequently results in over-concentration of detergents even if 
the molecular weight cutoff of centrifugal filters is similar to 
or higher than the molecular mass of purified membrane pro-
tein-detergent complexes. Gobet et al. [78] recently outlined 
a solid framework to investigators to improve biochemical 
and structural studies of membrane proteins by considering 
the non-Newtonian behavior of detergents in context with the 
centrifugal force employed when working with centrifugal fil-
ters. We anticipate that avoiding detergent over-concentration 
can help to improve spectral quality in nMS and Nativeomics 
experiments and is particularly important when working with 
detergents that are referred to as sticky detergents, for example, 
[G2] OGDs, DDM, or LMNG.

A complementary design strategy for MS detergents is 
to employ functional groups that are capable of capturing 
charges in the gas phase, e.g., protons or sodium ions. For 
example, when ESI is operated in positive polarity mode 
(ESI +), charge-repulsive interactions between positively 
charged membrane protein ions and detergent ions lower 
the energy that is required to break protein-detergent com-
plexes [77]. Tuning membrane protein charge states can be 
interesting for nMS and Nativeomics experiments for differ-
ent reasons: first, charge-reducing detergents are often more 
MS-compatible than non-charge-reducing detergents due to 
charge-repulsive interactions that facilitate detergent removal 
inside the vacuum of a mass spectrometer [60, 77]. Second, 
charge reduction helps to prevent Coulomb-driven unfolding 
and dissociation processes, which can be a critical enabling 
step for the analysis of intact membrane protein complexes 
[79]. Third, charge reduction can increase the difference in 
the mass-to-charge ratio (m/z) between signals of membrane 
protein apo form, ligand-bound states, and post-translational 
modifications. The latter aspect can be important for the 
analysis of individual protein–ligand complexes or proteo-
forms whose m/z channels would overlap in the case of highly 
charged membrane protein ions [80]. Methods for membrane 
protein charge reduction include (i) increasing the basicity of 

the detergents’ functional groups to increase the affinity for 
capturing charge, for example, through the implementation 
of triazole, amine-oxide, or cis/trans azobenzene [58, 60, 68, 
77], (ii) implementing charge-chelating groups into the deter-
gent head group, such as in the case of C8E4 or OGDs, to 
increase the affinity for capturing charge [60, 77], (iii) treating 
the ESI plume with acetonitrile vapor [79], (iv) adding solu-
tion additives, such as imidazole and its derivatives [79, 81], 
amine oxides [82–84], amines [85, 86], and alkali metal ace-
tate salts [87], and (v) detergent exchange from non-charge-
reducing detergent into a charge-reducing detergent [60]. In 
addition, switching the ESI polarity can be an option to invert 
the charge-reducing properties of detergents [88]. Membrane 
protein charge reduction can be readily monitored by nMS 
when using the approaches described above. However, the 
underlying mechanisms are still under debate [61, 86] and it 
appears that the detergent tail has currently less relevance for 
MS compatibility compared to the detergent head group [61].

Since detergents that are suitable for nMS often provide 
more denaturing solution environments for membrane pro-
teins than those that are suitable for purification, the detergent 
exchange can be beneficial to ensure the best detergent for an 
individual application is in place [66, 70]. For example, the 
detergent C8E4 provides a more denaturing solution environ-
ment for membrane proteins than the saccharide detergent 
DDM. However, DDM tends to be less suitable for the nMS 
analysis of membrane proteins. To compromise, membrane pro-
teins can be purified by DDM followed by a detergent exchange 
into C8E4 to facilitate the nMS analysis. Detergent exchange 
strategies, including dialysis, size-exclusion chromatography, 
and drop dilution, usually do not enable a quantitative detergent 
exchange [89, 90]. After partial detergent exchange into a nMS-
friendly detergent, membrane proteins can be sufficiently stable 
in solution over the time frame of a nMS experiment, i.e., min-
utes. In this way, the detergent exchange can be used to ensure 
the best detergent for an individual application is in place.

Finally, designing the heterogeneity of detergent batches 
that are used for the purification of membrane proteins and 
their analysis by nMS and Nativeomics did become more 
popular over the past years. Detergents are commonly 
designed to be homogenous. A traditional detergent batch 
contains one sort of molecule with defined head group and 
tail structure. This is the opposite of what lipid membranes 
surrounding membrane proteins are: heterogenous.

Attempts to increase detergent batch heterogeneity by 
mixing structurally different detergents turned out to be 
beneficial for the analysis of challenging membrane pro-
tein targets, such as G-protein-coupled receptors (GPCRs). 
Yen et al. [91–93] established the utility of a mixed micelle 
containing n-dodecyl-β-d-maltoside (DDM), cholesterol, 
and foscholine, for the purification and analysis of the 
human purinergetic receptor P2Y1 [91], the role of lipids in 
G-protein coupling and active states of GPCRs [92], and to 
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decipher the biased and allosteric modulation of the ß1-adr-
energic receptor in response to various ligands by nMS [93].

Urner et al. [58, 94] established a new synthesis strat-
egy for the preparation of mixtures of OGDs regioisomers, 
which differ in terms of connectivity between glycerol units 
in their head groups (Fig. 3). OGD regioisomer mixtures 
turned out to be suitable for the extraction of large mem-
brane protein quantities from biological membranes [58, 
94]. More recently, Urner et al. [70] demonstrated that 
fusing different detergent head groups into hybrid deter-
gents can serve as a new enabling step for the preparation 
of nMS-friendly detergents that can retain the beneficial 
properties of individual detergents and neglect some of their 
disadvantages (Fig. 3).

Summary

In summary, a broad repertoire of design concepts for the 
optimization of MS detergents in BUP, TDP, nMS, and Nati-
veomics has been established (Fig. 4). Since the charge of 
the detergent head group is a determining factor for util-
ity, MS detergents can be separated into two categories, 
e.g., those that are more suitable for denaturing BUP and 
TDP and those that are more suitable for nMS and Nativ-
eomics (Fig. 1). Increasing the heterogeneity, charge, cac, 
degradability, and the implementation of detergent removal 
strategies are established design aspects for the optimiza-
tion of MS detergents for individual steps in BUP and TDP 
experiments (Fig. 4). Varying the heterogeneity and cac of 

Fig. 4   Rationalizing the design of mass spectrometry detergents. 
Schematic showing an overview about qualitative design aspects for 
MS detergents and their relevance for individual steps in BUP, TDP, 

nMS, and Nativeomics. The optimal design of MS detergents depends 
on the application, e.g., denaturing BUP and TDP (left) or nMS and 
Nativeomics (right)
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detergents, decreasing the charge and number of hydroxyl 
groups, and implementing basic or chelating groups are 
established design aspects for the optimization of MS deter-
gents for individual steps in nMS and Nativeomics experi-
ments (Fig. 4). We anticipate that the overview of qualita-
tive design aspects provided by this review will support the 
optimization of MS detergents with tailor-made properties 
for the analysis of challenging biological systems (Fig. 4).

Outlook

The development of design guidelines for the predict-
able optimization of detergent mixtures is still in its early 
stages. Recent case studies clarified that the use of heterog-
enous detergent batches can be more beneficial compared 
to the use of homogenous detergent batches. However, in 
the case of non-covalent detergent mixtures, optimal mix-
ing ratios are determined empirically. Furthermore, in the 
case of covalent detergent mixtures, i.e., hybrid detergents, 
synthetic effort can be huge. Therefore, methodological 
improvements facilitating either the rationalization of the 
design in heterogenous detergent mixtures or the synthetic 
access to hybrid detergents will be key to unlock further 
advances. The ability to predictably tune detergent hetero-
geneity for the benefit of individual applications in BUP, 
TDP, nMS, and Nativeomics will serve as enabling step for 
future applications in biology and drug discovery research.
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