Skip to main content
Log in

Enhanced peroxidase-like activity of 2(3), 9(10), 16(17), 23(24)-octamethoxyphthalocyanine modified CoFe LDH for a sensor array for reducing substances with catechol structure

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Improving the catalytic activity of artificial nanozymes to realize the real-time detection of small molecules becomes an important task. Herein, a highly active nanozyme, 2(3), 9(10), 16(17), 23(24)-octamethoxyphthalocyanine (Pc(OH)8) modified CoFe LDH microspheres (Pc(OH)8-CoFe LDH) have been prepared by the two-step hydrothermal method. The 3,3′,5,5′-tetramylbenzidine (TMB), a chromogenic substrate, was fast oxidized into blue oxTMB by H2O2 in the presence of Pc(OH)8-CoFe LDH, indicating that Pc(OH)8-CoFe LDH possesses high peroxidase-like activity rather than pure CoFe LDH. The enhancement peroxidase-like activity of the Pc(OH)8-CoFe LDH is ascribed to the synergistic action between Pc(OH)8 and CoFe LDH. Experimental results of radical scavenger and fluorescence probe verify that superoxide radical (•O2) plays an important role during the catalytic reaction. Interestingly, the absorption intensity of reaction system has been enhanced largely, due to adding of the reducing substances containing catechol structure. Based on this, the three reducing substances (dopamine, procyanidin B2, catechins) containing catechol structure were distinguished from other reducing substances without catechol structure. Thus, a colorimetric array has been constructed using reaction time as the sensing element to realize the sensitive and selective recognition of catechol structures at a certain concentration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ou K, Gu L. Absorption and metabolism of proanthocyanidins. J Funct Foods. 2014;7:43–53.

    Article  CAS  Google Scholar 

  2. Mohebi A, Pettibone JR, Hamid AA, Wong J-MT, Vinson LT, Patriarchi T, et al. Dissociable dopamine dynamics for learning and motivation. Nature. 2019;570(7759):65-+.

  3. Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of alpha-amylase and alpha-glucosidase activity. J Agric Food Chem. 2012;60(36):8924–8929.

  4. Zheng Y-Z, Deng G, Liang Q, Chen D-F, Guo R, Lai R-C. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep. 2017;7:2045–322.

    Google Scholar 

  5. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm. 2011;403(1–2):136–8.

    Article  CAS  Google Scholar 

  6. Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AGW, et al. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature. 2011;469(7329):241–4.

    Article  CAS  Google Scholar 

  7. Manavalan S, Govindasamy M, Chen S-M, Rajaji U, Chen T-W, Ali MA, et al. Reduced graphene oxide supported raspberry-like SrWO4 for sensitive detection of catechol in green tea and drinking water samples. J Taiwan Inst Chem Eng. 2018;89:215–23.

    Article  CAS  Google Scholar 

  8. Ma Z, Liu H, Wu B. Structure-based drug design of catechol-O-methyltransferase inhibitors for CNS disorders. Br J Clin Pharmacol. 2014;77(3):410–20.

    Article  CAS  Google Scholar 

  9. Feng J-H, Hu X-L, Lv X-Y, Wang B-L, Lin J, Zhang X-Q, et al. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson’s disease agents in vitro and in vivo. Bioorg Med Chem Lett. 2019;29(2):302–12.

    Article  CAS  Google Scholar 

  10. Fiorenzano A, Sozzi E, Birtele M, Kajtez J, Giacomoni J, Nilsson F, et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 2021;12(1):7302.

    Article  CAS  Google Scholar 

  11. Sauerzopf U, Weidenauer A, Dajic I, Bauer M, Bartova L, Meyer B, et al. Disrupted relationship between blood glucose and brain dopamine D2/3 receptor binding in patients with first-episode schizophrenia. Neuroimage-Clinical. 2021;32:102813.

  12. Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia. 2005;52(4):336–43.

    Article  Google Scholar 

  13. Wang Y, Zhao L, Huo Y, Zhou F, Wu W, Lu F, et al. Protective effect of proanthocyanidins from sea buckthorn (Hippophae Rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Nutrients. 2016;8(5):245.

  14. Yang CS, Zhang J. Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities. J Agric Food Chem. 2019;67(19):5446–56.

    Article  CAS  Google Scholar 

  15. Okamoto Y, Takei Y, Rose ME. Studies on spiroborate complexes .3. Fast atom bombardment mass-spectrometry of bis-catechol spiroborate and its analogs. Int J Mass Spectrom Ion Process. 1989;87(2):225–35.

  16. Liu F, Zhang J. Nano-second protein dynamics of key residue at position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study. J Biochem. 2020;168(4):417–25.

    Article  CAS  Google Scholar 

  17. Liu Y, Demirci A, Zhu H, Cai J, Yamamoto S, Watanabe A, et al. A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications. J Mater Chem C. 2016;4(38):8903–10.

    Article  CAS  Google Scholar 

  18. Yue X, Pang S, Han P, Zhang C, Wang J, Zhang L. Carbon nanotubes/carbon paper composite electrode for sensitive detection of catechol in the presence of hydroquinone. Electrochem Commun. 2013;34:356–9.

    Article  CAS  Google Scholar 

  19. Qiu N, Liu Y, Guo R. Electrodeposition-assisted rapid preparation of Pt nanocluster/3D graphene hybrid nanozymes with outstanding multiple oxidase-like activity for distinguishing colorimetric determination of dihydroxybenzene isomers. ACS Appl Mater Interfaces. 2020;12(13):15553–61.

    Article  CAS  Google Scholar 

  20. Zhang L-p, Xing Y-p, Liu L-h, Zhou X-h, Shi H-c. Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles. Sens Actuators B Chem. 2016;225:593–9.

    Article  CAS  Google Scholar 

  21. Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, et al. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sens Actuators B Chem. 2017;240:726–34.

    Article  CAS  Google Scholar 

  22. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–7.

    Article  CAS  Google Scholar 

  23. Wu K, Yang B, Zhu X, Chen W, Luo X, Liu Z, et al. Cobalt and nickel bimetallic sulfide nanoparticles immobilized on montmorillonite demonstrating peroxidase-like activity for H2O2 detection. New J Chem. 2018;42(23):18749–58.

    Article  CAS  Google Scholar 

  24. Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48(19):2540–2.

    Article  CAS  Google Scholar 

  25. Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, et al. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/immunotherapy. Biomaterials. 2021;268:120545.

  26. Zhang L, Fan C, Liu M, Liu F, Bian S, Du S, et al. Biominerized gold-Hemin@MOF composites with peroxidase-like and gold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA and gold-catalytic silver staining. Sens Actuators B Chem. 2018;266:543–52.

    Article  CAS  Google Scholar 

  27. Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron. 2019;142:111495.

    Article  CAS  Google Scholar 

  28. Chen Y, Ren J, Yin X, Li Y, Shu R, Wang J, et al. Vanadium disulfide nanosheet boosts optical signal brightness as a superior enzyme label to improve the sensitivity of lateral flow immunoassay. Anal Chem. 2022;94(24):8693–703.

    Article  CAS  Google Scholar 

  29. Cheng X, Huang L, Yang X, Elzatahry AA, Alghamdi A, Deng Y. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: a synergistic CeO2/zeolite Y nanocomposite. J Colloid Interface Sci. 2019;535:425–35.

    Article  CAS  Google Scholar 

  30. Hu X, Chen J, Hu R, Zhu Z, Lai Z, Zhu X, et al. Synergistically catalytic nanozymes based on heme-protein active site model for dual-signal and ultrasensitive detection of H2O2 in living cells. Sens Actuators B Chem. 2021;333.

  31. Huang L, Sun DW, Pu H. Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction-like quasi metal-organic framework interface for boosting biocatalytic disinfection. Small. 2022;18(20):e2200178.

    Article  Google Scholar 

  32. Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, et al. A perylenediimide modified SiO2@TiO2 yolk-shell light-responsive nanozyme: improved peroxidase-like activity for H2O2 and sarcosine sensing. J Hazard Mater. 2022;436:129321.

  33. Lyu H, Zhao X, Yao X, Chen W, Liu Z, Gao L, et al. 3,4:9,10-perylene tetracarboxylic acid-modified zinc ferrite with the enhanced peroxidase activity for sensing of ascorbic acid. Colloids Surf A Physicochem Eng Asp. 2020;586:124250.

  34. Singh S, Aggarwal A, Bhupathiraju NV, Arianna G, Tiwari K, Drain CM. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem Rev. 2015;115(18):10261–306.

    Article  CAS  Google Scholar 

  35. Morlanés N, Takanabe K, Rodionov V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016;6(5):3092–5.

    Article  Google Scholar 

  36. Forrest FYaSR. Photocurrent generation in nanostructured organic solar cells. ACS NANO. 2008.

  37. Chen Y, Su W, Bai M, Jiang J, Li X, Liu Y, et al. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J Am Chem Soc. 2005;127(45):15700–1.

    Article  CAS  Google Scholar 

  38. Suanzes Pita J, Urbani M, Bottari G, Ince M, Kumar SA, Chandiran AK, et al. Pyridyl- and picolinic acid substituted zinc(II) phthalocyanines for dye-sensitized solar cells. ChemPlusChem. 2017;82(7):1057–61.

    Article  CAS  Google Scholar 

  39. Youssef TE. Efficient green procedures for the preparation of novel tetraalkynyl-substituted phthalocyanines. Polyhedron. 2010;29(7):1776–83.

    Article  CAS  Google Scholar 

  40. Sun D, Li C, Lu S, Yang Q, He C. Magnetic Fe3O4@CoFe-LDH nanocomposite heterogeneously activated peroxymonosulfate for degradation of azo-dye AO7. RSC Adv. 2021;11(33):20258–67.

    Article  CAS  Google Scholar 

  41. Yang R, Zhou Y, Xing Y, Li D, Jiang D, Chen M, et al. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl Catal B Environ. 2019;253:131–9.

    Article  CAS  Google Scholar 

  42. Ang W, Li J, Yang J, Liu Y, Xu Z, Sun X, et al. Biomass-derived hierarchically porous CoFe-LDH/CeO2hybrid with peroxidase-like activity for colorimetric sensing of H2O2 and glucose. J Alloys Compd. 2020;815:152276.

  43. Feng D, Yang H, Guo X. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem Eng J. 2019;355:687–96.

    Article  CAS  Google Scholar 

  44. Wang X, Nan Z. Normal spinel structure ZnFe2O4/g-C(3)N(4)enhanced catalytic activity for photo-Fenton degradation of methylene blue. Funct Mater Lett. 2019;12(1):1850108.

  45. Alali KT, Lu Z, Zhang H, Liu J, Liu Q, Li R, et al. P-p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front. 2017;4(7):1219–30.

    Article  CAS  Google Scholar 

  46. Yang Y-j, Sun B-w, Qian D-j, Chen M. Fabrication of multiporphyrin@g-C3N4 nanocomposites via Pd(II)-directed layer-by-layer assembly for enhanced visible-light photocatalytic activity. Appl Surf Sci. 2019;478:1027–36.

  47. Yin S, Chen Y, Hu Q, Li M, Ding Y, Shao Y, et al. In-situ preparation of iron(II) phthalocyanine modified bismuth oxybromide with enhanced visible-light photocatalytic activity and mechanism insight. Colloids Surf A Physicochem Eng Asp. 2019;575:336–45.

    Article  CAS  Google Scholar 

  48. Liu Q, Bian Y, Liu H, Wang X, Chen Y, Li X, et al. Metal-cation-mediated nanocrystal arrays of sandwich-type (phthalocyaninato) [tetrakis(4-pyridyl)porphyrinato] cerium complex formed at the water-chloroform interface. J Colloid Interface Sci. 2006;304(2):431–6.

    Article  CAS  Google Scholar 

  49. Zhang X, Zhang Y, Jiang J. Towards clarifying the N-M vibrational nature of metallo-phthalocyanines. Infrared spectrum of phthalocyanine magnesium complex: density functional calculations. Spectrochim Acta A Mol Biomol Spectrosc. 2004;60(10):2195–200.

  50. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  Google Scholar 

  51. Dong W, Huang Y. CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Microchim Acta. 2020;187(1):11.

  52. Chen L, Sun K, Li P, Fan X, Sun J, Ai S. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing. Nanoscale. 2013;5(22):10982–8.

    Article  CAS  Google Scholar 

  53. Gao Y, Jin C, Chen M, Zhu X, Fu M, Liu Z, et al. Preparation of porphyrin modified CO9S8 nanocomposites and application for colorimetric biosensing of H2O2. J Porphyr Phthalocyanines. 2018;22(09n10):935–43.

  54. Liu X, Cao X, Zhao S, Liu Z, Lu G, Liu Q. N, S co-doped Co3O4 core-shell nanospheres with high peroxidase activity for the fast colorimetric detection of catechol. Anal Methods. 2021;13(44):5377–82.

    Article  CAS  Google Scholar 

  55. Ken-ichi Ishibashi AF, Toshiya Watanabe , Kazuhito Hashimoto. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A Chem. 2000;134:139–142.

  56. Li Y, Zhu T, Zhao J, Xu B. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling. Environ Sci Technol. 2012;46(18):10302–9.

    Article  CAS  Google Scholar 

  57. Zanta CL, Friedrich LC, Machulek A Jr, Higa KM, Quina FH. Surfactant degradation by a catechol-driven Fenton reaction. J Hazard Mater. 2010;178(1–3):258–63.

    Article  CAS  Google Scholar 

  58. Li Q, Hu B, Yang Q, Cai X, Nie M, Jin Y, et al. Interaction mechanism between multi-layered MoS2 and H2O2 for self-generation of reactive oxygen species. Environ Res. 2020;191:110227.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21971152) and Shandong Key Laboratory of Biochemical Analysis (SKLBA2207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijiang Li, Min Xie or Qingyun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Liu, Y., Dong, S. et al. Enhanced peroxidase-like activity of 2(3), 9(10), 16(17), 23(24)-octamethoxyphthalocyanine modified CoFe LDH for a sensor array for reducing substances with catechol structure. Anal Bioanal Chem 415, 289–301 (2023). https://doi.org/10.1007/s00216-022-04404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04404-w

Keywords

Navigation