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Abstract
Glycosylation is the most common post-translational modification of proteins, and glycosylation changes at cell surfaces are 
frequently associated with malignant epithelia including head and neck squamous cell carcinoma (HNSCC). In HNSCC, 
5-year survival remains poor, averaging around 50% globally: this is partly related to late diagnosis. Specific protein gly-
cosylation signatures on malignant keratinocytes have promise as diagnostic and prognostic biomarkers and as therapeutic 
targets. Nevertheless, HNSCC-specific glycome is to date largely unknown. Herein, we tested six established HNSCC cell 
lines to capture the qualitative and semi-quantitative N-glycome using porous graphitized carbon liquid chromatography 
coupled to electrospray ionisation tandem mass spectrometry. Oligomannose-type N-glycans were the predominant features 
in all HNSCC cell lines analysed (57.5–70%). The levels of sialylated N-glycans showed considerable cell line-dependent 
differences ranging from 24 to 35%. Importantly, α2-6 linked sialylated N-glycans were dominant across most HNSCC cell 
lines except in SCC-9 cells where similar levels of α2-6 and α2-3 sialylated N-glycans were observed. Furthermore, we 
found that HPV-positive cell lines contained higher levels of phosphorylated oligomannose N-glycans, which hint towards 
an upregulation of lysosomal pathways. Almost all fucose-type N-glycans carried core-fucose residues with just minor lev-
els (< 4%) of Lewis-type fucosylation identified. We also observed paucimannose-type N-glycans (2–5.5%), though in low 
levels. Finally, we identified oligomannose N-glycans carrying core-fucose residues and confirmed their structure by tandem 
mass spectrometry. This first systematic mapping of the N-glycome revealed diverse and specific glycosylation features in 
HNSCC, paving the way for further studies aimed at assessing their possible diagnostic relevance.
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Introduction

Head and neck cancer (HNC) refers to a heterogeneous 
group of malignant neoplasms, with over half a million new 
cases diagnosed annually across the globe [1, 2]. Major-
ity of them originate from lining mucosae and are collec-
tively described as head and neck squamous cell carcinoma 
(HNSCC). These tumours can originate from the hypophar-
ynx, oropharynx, lip, oral cavity, nasopharynx, or larynx 
with a range of well-established risk factors [3, 4]. Only 
about 50% of HNSCC patients live beyond 5 years [5].

Human papillomaviruses (HPV-16 and HPV-18; high-risk 
types) are small, double-stranded, circular DNA viruses that 
are responsible for a global epidemic of a subset of HNSCC, 
mainly originating in the lymphoid mucosa of the orophar-
ynx (oropharyngeal cancers, OPC) [6, 7]. Current diagnostic 
practise requires an expert visual examination and imaging 
by X-radiography, CT scan and MRI in conjunction with 
tissue biopsy staging [8, 9]. Less invasive means to iden-
tify, stage and monitor treatment response in HNSCC are 
required to improve patient outcomes [10]. Glycosylation, a 
common post-translational modification (PTM) of proteins, 
has frequently been reported to undergo major changes that 
are associated with malignant transformation of epithelial 
cells [10]. Understanding the glycosylation features in most 
widely used HNSCC cell lines is an important prerequisite 
to investigate how protein glycosylation can provide novel 
diagnostic and therapeutic opportunities [2].

Though no comprehensive studies of the HNSCC N-gly-
come have been published to date, glycosylation changes 
have been reported in several studies. As an example, in 
saliva, the total sialic acid/total protein ratio as well as the 
activities of α2-3 and α2-6 sialyltransferases were reported 
to be significantly higher in patients with metastatic oral 
cancer [11]. Additionally, in patient sera, tri-antennary and 
tetra-antennary N-glycans with varying degrees of sialyla-
tion and fucosylation have been reported to be a potential 
diagnostic biomarker for oral squamous cell carcinoma 
(OSCC) [12]. Multiple fucosyltransferases such as FUT1, 
FUT2, FUT3 and FUT6 have also been associated with the 
high abundance of Lewis Y (Ley) and sialyl Lewis X (SLex) 
epitopes, changes which are known to promote EGFR phos-
phorylation in OSCC cell lines [13, 14]. In OSCC tumour 
tissues, an overexpression of MGAT5 (also known as GNT-
V) enhanced CEACAM6 N-glycosylation, which in turn 
promoted EGFR signalling that correlated with poor progno-
sis [15]. Despite the above mentioned studies, a detailed map 
of the HNSCC cell N-glycome is still lacking. Furthermore, 
it is unknown if and how the expression of HPV infection 
impacts the HNSCC glycocalyx.

We employed a well-established porous gra-
phitized carbon (PGC) glycomics platform [PGC liquid 

chromatography (LC) electrospray ionisation tandem 
mass spectrometry (ESI–MS/MS)] to establish the first 
N-glycan map of the most widely used HNSCC cell lines 
(SCC-25, CAL-27, SCC-9, FaDu, 2A3 and VU-147 T), of 
which 2A3 and VU-147 T considered as HPV ( +) cells. 
In addition, we have also investigated whether HPV infec-
tion affect the relative distribution of N-glycans. While 
the HNSCC cells analysed exhibited general similari-
ties, distinct cell line-specific N-glycosylation traits were 
identified that make each cell line an individual research 
resource. Distinct differences were identified in sialic acid 
linkage distribution. Various levels of phosphorylated oli-
gomannose, oligomannose and sialylated N-glycans were 
determined. We also confirmed that oligomannose N-gly-
cans can act as a substrate for FUT8, as demonstrated by 
the presence of several core-fucosylated oligomannose-
type N-glycan structures. This systematic N-glycome map 
of the most widely used HNSCC cell lines provides the 
first HNSCC-glycome reference dataset that builds the 
foundation for future glyco-biomarker research in HNSCC.

Materials and methods

Chemicals, reagent and equipment

Ethanol, methanol, glacial acetic acid and direct blue 71, 
polyvinylpyrrolidone (PVP40), ammonium hydroxide solu-
tion (≥ 25% (vol/vol) NH3 in H2O, sodium borohydride 
(NaBH4), potassium hydroxide (KOH), trifluoroacetic acid 
(TFA), LC–MS grade, water, fetuin from foetal calf serum, 
RPMI medium and foetal bovine serum (FBS) were obtained 
from Sigma-Aldrich. AG50W-X8 cation-exchange resin was 
purchased from BioRad. ZipTip with C18 resin and Immo-
bilon-PSQ (0.45 µm pore size) PVDF membranes were 
obtained from Millipore. RIPA buffer and Pierce™ BCA 
protein assay kit were purchased from Thermo Fisher Sci-
entific. PNGase F was from New England Biolabs. Porous 
graphitized carbon columns were obtained from New Objec-
tives (length 150 mm × 100 μm I.D., 5 μm particle size). The 
SpeedVac concentrator was from Thermo Fisher Scientific. 
Acetonitrile LC–MS grade was purchased from Merck.

Origin of cell lines and cell culture

All the HNSCC cell lines were STR profiled and authen-
ticated. This gave us the confidence that our cell lines are 
correctly identified, and not cross-contaminated with other 
cells. In addition, we have also performed mycoplasma 
testing using Lonza’s MycoAlert® Mycoplasma Detec-
tion Assays and were confirmed to be of mycoplasma free. 
Six HNSCC cell lines, including two HPV positive, were 
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purchased from ATCC (American Type Culture Collection) 
or a generous gift (Supplementary Table 1). Cell culture 
was performed according to ATCC guidelines. Cells were 
cultured under standard conditions in humidified incubators 
at 37 °C, 20% O2, 5% CO2. Briefly, 0.6–0.7 million cells 
were seeded into T75 mL flasks and incubated with medium 
consisting of RPMI-1640, 10% foetal bovine serum and 
penicillin/streptomycin, of which 2A3 cells were incubated 
with media consisting of hGlucose DMEM-10%FBS + 2 nM 
glutamine + G418 200 ug/mL. Once cells density reached 
to 85–90% confluence, we washed the cells twice with ice 
cold PBS. Cells were lysed and harvested (by scraping) 
in cold RIPA buffer with freshly added protease inhibitor 
cocktails. The next step was to vigorously vortex the cells 
thrice for 30 s followed by ultrasonication (an ultrasonic 
bath for 10 min). Cell lysates were centrifuged at 14,000 × g 
for 15 min at 4 °C. Supernatant was collected, and protein 
concentrations were measured using the BCA protein assay 
kit as per the manufacturer’s instruction. After protein quan-
titation, (glyco)proteins were precipitated using ice cold 
(− 20 °C) acetone. The resultant protein pellet was allowed 
to air dry at room temperature. The sample was resuspended 
using 8 M urea by intensive vortexing.

Sample preparation and data acquisition

50 µg of (glyco)proteins were immobilised onto a 0.45 µm pore 
size PVDF, washed and stained with direct blue 71. N-glycans 
were released from glycoproteins using PNGase F as described 
previously [16, 17, 18]. Released N-glycans were then further 
reduced and desalted before subjected to PGC-LC-ESI MS/
MS glycomics [16, 17, 18, 19] [see Supplementary Material 
(Supplementary Fig. 1) for experimental details reported in a 
MIRAGE (Minimum Information Required for A Glycomics 
Experiment) compliant manner [20, 21, 22, 23]].

Data analysis and availability

N-glycan structures were determined as previously described 
[16, 18, 19]. GlyConnect Compozitor (https://​glyco​nnect.​
expasy.​org/​compo​zitor/) was used to visualise the glycan 
network [24]. The relative intensities and statistical anal-
ysis (supplementary materials, pages 7–14) were deter-
mined using GraphPad Prism (v8.4.3) and presented with 
mean + SD. Bar graphs were generated from six replicates 
(two biological replicates, of which each group had three 
technical replicates).

The data is made available via GlycoPOST, accession num-
ber GPST000279, URL, https://​glyco​post.​glyco​smos.​org/​previ​
ew/​77025​99506​310db​315e4​be PIN CODE: 4365 [25].

Results

HNSCC N‑glycome features are cell line dependent

We profiled the N-glycome from six different, widely 
used HNSCC cell lines using PGC-nanoLC ESI MS/MS. 
Overall, we identified 99 different N-glycan structures that 
were present in 49 compositions (Supplementary Table 2). 
The integrity of the dataset was first verified using gly-
Connect compozitor network analysis to understand the 
biosynthetic connections between the identified N-glycans 
and to uncover any potential gaps in the acquired dataset 
(Fig. 1A) [24]. These data confirmed the majority of vir-
tual nodes (not present in our dataset, generated by the 
software) to be derived from compositions unlikely to 
occur due to currently understood biosynthetic constrains 
[e.g. Hex4-HexNAc2-dHex1-NeuAc1 (H4N2F1S1)] 
or from known intermediate structures that are usually 
quickly processed into other structures (e.g. H4N4, or 
H5N3, Fig. 1A). This led us to conclude that the acquired 
dataset was not missing any glycans and that identified 
N-glycans were in good agreement with our current under-
standing of the N-glycan biosynthesis.

While the overall compositional profile was similar 
between the analysed cell lines, we observed a consider-
able diversity with respect to the quantitative distribution 
of the individual N-glycan structures (Table 1, Fig. 1B, 
Supplementary Table  3 and Supplementary Table  9). 
Oligomannose-type N-glycan levels ranged between 
57.5–70% across all analysed cells lines, while complex-
type N-glycans made up between 24 and 36% (Fig. 1B, 
Supplementary Table  5 and Supplementary Table  7). 
Overall, these two glycan families constituted the major 
components of the HNSCC cell line N-glycome. The lev-
els of pauci-mannose and hybrid-type N-glycans were low 
and did in average not exceed 6% of the total N-glycome 
(Fig. 1B, Table 1 and Supplementary Table 4 and Sup-
plementary Table 6).

The impact of HPV infection on HNSCC cell 
glycosylation

Infection with HPV has been associated with an increased 
risk of developing HNSCC. It is well known that the HPV-
positive HNSCC and HPV-negative HNSCC are biologi-
cally and clinically different [26, 27]. We then next inves-
tigated whether the presence of HPV genome or fragments 
thereof could impact the overall HNSCC cell N-glycome. 
VU-147 T is an HPV + cell line, while 2A3 is originally 
derived from FaDu cells and transfected with HPV type 
16 E6 and E7 genes under control of the Moloney murine 
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leukaemia virus (MoMuLV) promoter-enhancer sequence 
[28]. Interestingly, VU-147 T exhibited the highest level 
of complex-type N-glycans (35.6%), while the opposite 
was found for 2A3, which was the cell line with the low-
est level of complex-type N-glycans (23.7%; Table 1). The 
high level of complex-type N-glycans found in VU-147 T 
is particularly due to the higher levels of tri antennary and 
larger, not further structurally defined N-glycans (Fig. 2).

While the overall level of complex-type N-glycans dif-
fered significantly between cell lines (Table 1), almost all 
these structures carried one or more sialic acid(s). Notably, 
a strong reduction in complex-type N-glycans was found in 
2A3 cells, while their originator cell line (FaDu) showed 
essentially similar levels to, e.g. VU-147 T cells (33.9%; 
Table 1). It remains unclear if that is the consequence of 
insertion of HPV type 16 E6 and E7 genes or a secondary, 
off-target effect. Such off-target effects impacting cellular 
glycosylation as a consequence of gene-editing have been 
reported earlier in ovarian cancer cells [29]. CRISPR-Cas9-
mediated disruption of B3GNT5, a key transferase in the 
(neo-) lacto series glycosphingolipid biosynthesis, led to the 
unexpected depletion of α2-6 sialylated N-glycans due to the 
lack of ST6GAL1 expression in the ∆B3GNT5 cells [29]. It 
is conceivable that insertion of the E6 and E7 genes in com-
bination with the neomycin resistance, which is associated 
with the used vector, led to a modulation of the glycosylation 

features now observed for the 2A3 cell line that differs sig-
nificantly from the parental FaDu cells (Fig. 1B).

Sialylation is a major feature of complex‑type 
N‑glycans in HNSCC cells

With exception of SCC-25, where slightly higher levels of 
neutral complex-type N-glycans were identified (3.7%), 
the levels of neutral, complex-type N-glycans were around 
1% or lower in all other cell lines (Fig. 3A). Thus, sialyla-
tion can be considered to be a major feature of complex 
N-glycans in all analysed HNSCC cell lines (Table 1). 
To better understand the type of N-acetylneuraminic acid 
(NeuAc) linkages across the different cell lines, we used 
PGC-LC glycomics approach that allows for an easy differ-
entiation of NeuAc linkages on N-glycans [30, 31]. While 
SCC-9 showed an almost balanced ratio between α2-6 and 
α2-3 linked N-glycans (Fig. 3B), the levels of α2-6 linked 
NeuAc was up to four times the one of α2-3 linked NeuAc 
in all other cell lines (Fig. 3B). These higher levels of α2-6 
linked NeuAc was largely independent of core-fucosylation 
except in VU-147 T, where non-core fucosylated N-glycans 
were four times more likely to carry α2-6 linked NeuAc, 
while core-fucosylated ones exhibited almost equal levels 
of α2-3 and α2-6 NeuAc (Fig. 3B). Interestingly, a similar 
link between NeuAc linkage and core-fucosylation has been 
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previously observed for glycoproteins obtained from non-
melanoma skin cancer biopsies [32], hinting towards some 
form of higher-level connection between core-fucosylation 
and sialylation linkage.

Core fucosylation is the major form of fucosylation 
in HNSCC N‑glycans

Fucose plays a major role as a component of cancer-asso-
ciated glyco-epitopes such as (but not limited to) Lewis X 
or Lewis Y [10, 33]. Core fucose was the major form of 
fucosylation found across all analysed HNSCC cell lines, 
ranging from 8 (VU-147 T) to 18% of all N-glycans (SCC-
9). Less than 1% of N-glycans carried Lewis-type fucose 

residues (Fig. 4A), making this just a very minor propor-
tion of glyco-epitopes in HNSCC cells. The levels of core-
fucosylation, however, were distinctly different between cell 
lines and glycan-types.

Almost all paucimannose-type N-glycans were core-
fucosylated (Fig. 4B). In Cal-27, SCC-9 and SCC-25, about 
one-third of all complex N-glycans carried a core-fucose. 
These levels were slightly lower in FaDu and 2A3 cells 
(around a quarter of all complex ones), but significantly 
lower in VU-147 T cells, where in average just one tenth of 
all complex N-glycans was core fucosylated (Fig. 4C). This 
clearly indicates towards a reduced expression of FUT8 in 
VU-147 T. While it is impossible to speculate about the 
cause for the indicated lower transcript or protein expression 

Table 1   Average relative abundances (derived n = 6) of different N-glycan classes for six different HNSCC cell lines. Cell lines labelled with an 
* are considered HPV + cell lines. Fuc considered as fucose. Standard deviation of data is included

Traits VU-147 T* SCC-25 CAL-27 SCC-9 FaDu 2A3*

Paucimannose 5.57(0.43) 4.97(0.66) 4.52(1.53) 4.62(1.42) 1.96(0.20) 4.45(2.11)
Paucimannose Fuc 4.12(0.24) 3.76(0.38) 3.39(0.95) 3.96(1.28) 1.48(0.13) 3.54(1.71)
Oligomannose 57.53(2.19) 66.36(2.26) 60.89(2.38) 61.07(1.07) 62.73(3.06) 70.27(0.66)
Oligomannose Fuc 0.42(0.07) 0.07(0.04) 0.23(0.02) 0.63(0.34) 0.16(0.05) 0.31(0.20)
Oligomannose Pho 5.85(0.85) 1.33(0.51) 3.65(0.31) 5.68(2.10) 2.80(0.68) 4.59(1.10)
Hybrid 1.27(0.18) 1.06(0.04) 2.28(0.61) 3.85(1.17) 1.42(0.11) 1.56(0.38)
Hybrid Fuc 0.32(0.07) 0.27(0.02) 0.86(0.30) 2.21(0.94) 0.42(0.04) 0.67(0.16)
Hybrid Sialyl 0.53(0.10) 0.47(0.04) 1.46(0.37) 2.16(0.62) 1.00(0.09) 1.07(0.21)
Hybrid Neutral 0.74(0.14) 0.59(0.04) 0.82(0.25) 1.68(0.62) 0.41(0.02) 0.50(0.19)
Hybrid α2-6 0.37(0.10) 0.36(0.03) 1.10(0.43) 0.92(0.20) 0.68(0.12) 0.57(0.14)
Hybrid α2-3 0.16(0.02) 0.11(0.02) 0.33(0.08) 1.20(0.48) 0.30(0.05) 0.45(0.07)
Hybrid ND 0.00(0.00) 0.00(0.00) 0.03(0.01) 0.04(0.01) 0.02(0.00) 0.04(0.02)
Hybrid, α2-6 NeuAc, Fuc 0.01(0.01) 0.07(0.01) 0.38(0.22) 0.57(0.28) 0.19(0.01) 0.22(0.04)
Hybrid α2-3 NeuAc, Fuc 0.03(0.01) 0.02(0.01) 0.14(0.05) 0.89(0.42) 0.10(0.04) 0.21(0.03)
Complex 35.63(2.21) 27.61(1.94) 32.31(0.86) 30.46(3.14) 33.90(3.06) 23.71(1.47)
Complex Fucosylated 3.29(0.32) 8.52(1.04) 10.28(0.69) 10.03(2.45) 7.54(1.81) 6.43(1.03)
Complex Sialylated 34.52(2.24) 23.88(2.28) 31.24(0.93) 29.75(3.16) 33.12(3.18) 22.93(1.42)
Complex Neutral 1.11(0.10) 3.73(0.36) 1.07(0.08) 0.71(0.05) 0.77(0.17) 0.78(0.08)
Complex α2-6 NeuAc 5.40(0.55) 8.30(0.33) 9.84(1.91) 6.19(1.71) 9.04(0.46) 5.58(0.74)
Complex α2-3 NeuAc 1.49(0.20) 1.93(0.20) 4.11(1.48) 7.04(2.03) 3.69(1.01) 3.49(0.71)
Complex ND 20.93(1.32) 9.80(1.22) 11.96(0.72) 11.00(2.01) 13.83(2.15) 9.74(0.53)
Complex Mix 6.70(0.45) 3.86(1.20) 5.32(0.44) 5.52(1.43) 6.56(1.75) 4.13(0.29)
Complex, α2-6 NeuAc, Fuc 0.31(0.04) 4.13(0.48) 4.97(1.21) 2.36(0.58) 3.65(0.75) 2.50(0.47)
Complex, α2-3 NeuAc, Fuc 0.70(0.04) 1.08(0.19) 2.74(1.12) 5.76(2.12) 2.17(0.77) 2.51(0.45)
Sialylation total 35.05(2.22) 24.35(2.30) 32.70(1.09) 31.91(2.58) 34.13(3.22) 24.00(1.58)
α2-6 NeuAc total 5.77(0.55) 8.66(0.29) 10.94(2.32) 7.12(1.64) 9.71(0.53) 6.15(0.93)
α2-3 NeuAc total 1.65(0.22) 2.04(0.18) 4.43(1.54) 8.24(2.50) 3.99(1.05) 3.94(0.78)
α2-6 NeuAc + Fuc total 0.33(0.01) 4.20(0.56) 5.35(1.81) 2.93(1.29) 3.84(0.92) 2.72(0.63)
α2-3 NeuAc + Fuc total 0.73(0.01) 1.10(0.24) 2.88(1.37) 6.65(0.05) 2.27(0.98) 2.72(0.54)
Sialylation ND 20.93(1.41) 9.80(1.27) 12.00(0.54) 11.04(0.18) 13.86(2.46) 9.79(0.38)
Mix α2-6,α2-3 6.70(0.47) 3.86(1.54) 5.32(0.18) 5.52(0.42) 6.56(2.17) 4.13(0.25)
Neutral 1.85(0.03) 4.32(0.45) 1.89(0.29) 2.39(0.40) 1.18(0.17) 1.28(0.32)
Fucosylation 8.15(0.32) 12.62(1.15) 14.76(2.42) 16.83(2.02) 9.61(2.41) 10.95(0.96)
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(or fucosyltransferase activity) of FUT8 in VU-147 T, the 
different origins of these cells (floor of mouth) might be a 
possible explanation as essentially all other cells are derived 
from epithelial origins (Supplementary Table 1).

Phosphorylated oligomannose N‑glycan levels vary 
across cell lines

Mannose 6-phosphate (Man6P) is a common modification 
important to guide glycoproteins towards the lysosome 
via the Man-6-P receptor (M6PR) [34]. Thus, the levels 
of Man6P containing N-glycans could indicate towards an 
increased activity of lysosome. SCC-9 cells as well as the 
HPV + cell lines VU-147 T and 2A3 contained significantly 
higher levels of Man6P oligomannose-type N-glycans (up to 
6% of the total N-glycan pool) compared to the other three 
cell lines that were between 1.5 and 3% (Fig. 5A). Independ-
ent of the overall level, all cell lines shared the same pattern 
that Man7 was by far the most abundant phosphorylated 
oligomannose N-glycan modified with up to two phosphate 
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residues, while phosphate attached to Man8 and Man6 was 
detected in far lower amounts (Fig. 5B). Given that Man8 
was clearly the most abundant oligomannose structure across 
all cell lines, this clearly indicates that for lysosomal gly-
coproteins Man7 carrying one or two phosphate residues 
appears to be the major N-glycan involved in lysosomal tar-
geting by the M6PR (Fig. 5B).

Using glycomics to dissect glycosyltransferase 
specificity: FUT8 core‑fucosylates a variety 
of oligomannose‑type N‑glycans

The substrate specificities of glycosyltransferases have tra-
ditionally been investigated in highly defined conditions that 
hardly can be considered to mimic the complex environment 
in which they have to act within the cell [35]. Core fuco-
sylated oligomannose-type N-glycans have previously been 
reported in MGAT1-deficient (Lec1) Chinese hamster ovary 
(CHO) [36] and HEK293S cells [37], as well as in other-
wise genetically unmodified porcine islet cells [38] and on 
human placental arylsulfatase A (though not confirmed by 
any MS2 fragmentation data) [39]. Yang et al. also identified 
that attachment of the N-glycan to a peptide/protein was a 
prerequisite for FUT8 to transfer a core-fucose onto an oli-
gomannose-type N-glycan even in the absence of a GlcNAc 
on the α1-3 arm of the core mannose, while free oligoman-
nose N-glycans remained unmodified by FUT8 in vitro [40]. 
In the analysed HNSCC cells, we found that core-fucose was 
attached to on Man4, Man5 and Man6 in up to 0.8% of all 
N-glycans (in SCC-9), while the levels of these N-glycans 

were less than 0.1% in SCC-25 (Fig. 6A, Supplementary 
Table 2 and Supplementary Table 5). Next to SCC-9, both 
HPV expressing cell lines (VU-147 T and 2A3) showed 
slightly higher levels of these core fucosylated, oligoman-
nose-type N-glycans, while the levels in the remaining two 
(CAL-27 and FaDu) were around 0.2% or lower (Fig. 6A). 
To the best of our knowledge, these data for the first time 
confirm by tandem MS data that MGAT1-independent core 
fucosylation on oligomannose-type N-glycans can occur in 
otherwise unmodified human cells in low levels (Fig. 6B).

Discussion

Despite the increasing prevalence of HNSCC and its known 
association with HPV infection, the N-glycome of the cell 
lines most widely used in HNSCC research has not been 
studied. For the first time, we demonstrated that while these 
cell lines exhibit similar general profile, significant quantita-
tive differences in their N-glycosylation features exist that 
make each of them unique research resources (Fig. 1B). 
As reported in comparable studies for colon cancer [41] or 
breast cancer cell lines [42], oligomannose-type N-glycans 
were the most prevalent N-glycans in HNSCC cells. The 
levels of complex-type N-glycans ranged between 24 and 
36% (Fig. 1B), with most of them being sialylated (Table 1). 
Interestingly, the levels of paucimannose N-glycans, which 
were found to be a signature of many human cancer types 
[43], were low and below 5% except in VU-147 T cells 
(Fig. 1B). The levels of phosphorylated oligomannose-type 

Fig. 5   Phosphorylated oli-
gomannose N-glycan levels 
vary across cell lines. Dissect-
ing oligomannose-type glycan. 
A Quantitation of phosphate 
attached oligomannose glyacns. 
B Quantitative distribution 
of different categories of 
oligomannose types across the 
cell lines. Man6p = Mannose 6 
phosphate
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N-glycans, which are associated with lysosomal glycopro-
teins, were significantly higher just in SCC-9 and VU-147 T 
cells (≈6%, Fig. 5A). This could indicate differences in the 
levels (and thus likely also activity) of lysosomal degra-
dation pathways. The same two cell lines also exhibited 
the highest levels of core-fucosylated oligomannose-type 
N-glycans (Fig. 6A), despite the fact that these cell lines also 
showed comparably high levels of complex-type N-glycans 
(30.5% and 35.6%, respectively). Attachment of the N-gly-
can to a protein is a known prerequisite for FUT8 to transfer 
a fucose onto an oligomannose N-glycan [40], and the fact 
that these were highest in cell lines that also exhibited high 
levels of complex-type N-glycans could indicate that this 
modification is just restricted to specific glycoproteins.

Sialylation of tumour tissues has been correlated with 
cancer progression, metastatic spreading and poor progno-
sis across many different cancer types [44, 45, 46]. Most 
complex-type N-glycans in the analysed HNSCC cell lines 
carried at least one sialic acid, with α2-6 linked NeuAc 
residues being the dominant form of sialylation in all cell 
lines except SCC-9, where almost equal levels of α2-3 
and α2-6 linked NeuAc residues were observed (Table 1, 
Fig. 3B). This could impact recognition of these HNSCC 
cell surface glycoproteins by Galectins, given that α2-3 
NeuAc carrying LacNAc epitopes can be recognised by 
Galectin 1 and 3, while the α2-6 NeuAc capping blocks 
this recognition [47]. In oral squamous cell carcinoma 

(OSCC), inhibition of Galectin-3 has been shown to 
overcome cetuximab‑resistance in murine animal models 
[48]. Yin et al. showed that in cetuximab‑resistant OSCC 
tumours, increased expression of Galectin‑3, p‑ERK1/2 
and p‑Akt was observed. The use of a Gal‑3 inhibitor 
decreased the proliferation and invasion, while increasing 
the apoptosis of cetuximab‑resistant HSC3 cells. These 
data clearly demonstrate an intrinsic role of these cell 
surface glycoconjugates and their interactions within the 
tumour microenvironment in immunotherapy.

The interplay between the different sialyltransferases 
known to add NeuAc residues onto N-glycans, such as 
ST6GAL1 or the ST3GAL4/5/6, clearly plays a major role 
in this context of the tumour microenvironment. The inhibi-
tion of α2-3 NeuAc expression has been demonstrated to 
suppress the migration and metastasis in melanoma cells 
[49]. ST6GAL1 has been reported earlier to be associated 
which enhanced growth, survival and metastasis in multiple 
cancers (including pancreatic, prostate, breast and ovarian 
cancer) [50]. Increased α2-6 NeuAc levels on the human epi-
dermal growth factor receptor 2 (HER2) have been reported 
to facilitate gastric cancer progression and resistance via 
activation of the Akt and ERK pathways [51]. While there 
is some information about Galectin expression levels in head 
and neck and thyroid carcinomas [52, 53], their specific role, 
interaction partners and contributions to HNSCC pathogen-
esis and precision treatment remains still unknown.
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This study provides for the first time a comprehensive 
mapping of the N-glycome from in six widely used HNSCC 
cell lines. Our data constitute the basis for further studies 
aiming at better understanding how changes in the HNSCC 
glycome may contribute to the pathogenesis of these highly 
heterogenous cancers. Moreover, identification of HNSCC-
specific glycome modifications may be exploited to improve 
the predictive and prognostic definition of these patients and 
provide novel targets for improved treatments.
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