Skip to main content
Log in

Evaluation of absorbent cotton for glycopeptide enrichment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Selecting proper and efficient glycopeptide enrichment approaches are essential for mass spectrometry-based glycoproteomics since glycopeptides are usually with microheterogeneity and low abundance in most biological samples. Herein, we introduced a cotton hydrophilic interaction liquid chromatography (HILIC) approach for large-scale glycopeptide enrichment with 80% acetonitrile/1% trifluoroacetic acid as the optimal sample loading buffer. The comparison of cotton HILIC with Venusil HILIC and mixed anion-exchange (MAX) approaches indicated that cotton HILIC was superior in overall glycopeptide enrichment, whereas Venusil HILIC preferred in complex glycan structures and MAX performed better with high mannose glycans. Exploration of capacity and recovery rate of cotton HILIC illustrated that 5mg cotton packed in a 200μL tip achieved a reasonable glycopeptide enrichment performance (~6% recovery) from ~0.5mg peptides. In conclusion, cotton HILIC can be used as an optional glycopeptide enrichment approach in glycosylation analysis with its specific merit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The mass spectrometry data and results have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository [36] with the dataset identifier PXD035078 (username, reviewer_pxd035078@ebi.ac.uk; password, 4gDBebpX).

References

  1. Sprovieri P, Martino G. The role of the carbohydrates in plasmatic membrane. Physiol Res. 2018;67(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Moremen K, Tiemeyer M, Nairn A. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fournet M, Bonte F, Desmouliere A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis. 2018;9(5):880–900.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu A, Zhao J, Peng W, Banazadeh A, Williamson SD, Goli M, et al. Advances in mass spectrometry-based glycoproteomics. Electrophoresis. 2018;39(24):3104–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bondt A, Rombouts Y, Selman MH, Hensbergen PJ, Reiding KR, Hazes JM, et al. Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics. 2014;13(11):3029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wieczorek M, Braicu EI, Oliveira-Ferrer L, Sehouli J, Blanchard V. Immunoglobulin G subclass-specific glycosylation changes in primary epithelial ovarian cancer. Front Immunol. 2020;11:654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, et al. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol. 2022;16(11):2135–52.

    Article  CAS  PubMed  Google Scholar 

  8. Kratz EM, Kaluza A, Zimmer M, Ferens-Sieczkowska M. The analysis of sialylation, N-glycan branching, and expression of O-glycans in seminal plasma of infertile men. Dis Markers. 2015;2015:941871.

    PubMed  PubMed Central  Google Scholar 

  9. Cao L, Qu Y, Zhang Z, Wang Z, Prytkova I, Wu S. Intact glycopeptide characterization using mass spectrometry. Expert Rev Proteomics. 2016;13(5):513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods. 2015;12(6):561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 2015;8:463–83.

    Article  CAS  PubMed  Google Scholar 

  12. Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science (New York, NY). 2001;291(5512):2351–6.

    Article  CAS  Google Scholar 

  13. Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35(18):2341–72.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A. 2016;1455:147–55.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Shah P, De Marzo AM, Van Eyk JE, Li Q, Chan DW, et al. Identification of glycoproteins containing specific glycans using a lectin-chemical method. Anal Chem. 2015;87(9):4683–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Jiang H, Yao J, Wang Y, Fang C, Yang P, et al. Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers. Chem Commun (Camb). 2014;50(8):1027–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Ren L, Liu Z. A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun (Camb). 2011;47(17):5067–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Liu M, Xie L, Fang C, Xiong H, Lu H. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64.

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Shah P, Hu Y, Toghi Eshghi S, Sun S, Liu Y, et al. Comparison of enrichment methods for intact N- and O-linked glycopeptides using strong anion exchange and hydrophilic interaction liquid chromatography. Anal Chem. 2017;89(21):11193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen J, Jia L, Dang L, Su Y, Zhang J, Xu Y, et al. StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods. 2021;18(8):921–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dong X, Qin H, Mao J, Yu D, Li X, Shen A, et al. In-depth analysis of glycoprotein sialylation in serum using a dual-functional material with superior hydrophilicity and switchable surface charge. Anal Chem. 2017;89(7):3966–72.

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Liu J, Liu Z, Tan Y, Liu X, Wang F. Detecting proteins glycosylation by a homogeneous reaction system with zwitterionic gold nanoclusters. Anal Chem. 2017;89(8):4339–43.

    Article  CAS  PubMed  Google Scholar 

  23. Pan Y, Ma C, Tong W, Fan C, Zhang Q, Zhang W, et al. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment. Anal Chem. 2015;87(1):656–62.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Wang J, Gao M, Zhang X. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B. 2015;3(44):8711–6.

    Article  CAS  PubMed  Google Scholar 

  25. Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, et al. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: a review. Anal Chim Acta. 2018;1000:20–40.

    Article  CAS  PubMed  Google Scholar 

  26. Selman MH, Hemayatkar M, Deelder AM, Wuhrer M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem. 2011;83(7):2492–9.

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Jin S, Mei P, Zhou P. Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta. 2019;203:58–64.

    Article  CAS  PubMed  Google Scholar 

  28. Han J, Chen Q, Jin W, Zou M, Lu Y, Liu Y, et al. Purification of N- and O-glycans and their derivatives from biological samples by the absorbent cotton hydrophilic chromatographic column. J Chromatogr A. 2020;1620:461001.

    Article  CAS  PubMed  Google Scholar 

  29. Xin M, Xu Y, You S, Li C, Zhu B, Shen J, et al. Precision structural interpretation of site-specific N-glycans in seminal plasma. J Proteome Res. 2022;21(7):1664–74.

    Article  CAS  PubMed  Google Scholar 

  30. Xin M, You S, Xu Y, We S, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision mapping of glycosite-specific glycans reveals distinctive N-glycosylation on human spermatozoa. Mol Cell Proteomics. 2021;21(4):100214.

    Article  Google Scholar 

  31. Sun S, Shah P, Eshghi ST, Yang W, Trikannad N, Yang S, et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat Biotechnol. 2016;34(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  32. Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl. 2015;9(7-8):745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;40(1):13.20.1–13.20.14.

    Article  Google Scholar 

  34. Zhu J, Wang F, Chen R, Cheng K, Xu B, Guo Z, et al. Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis. Anal Chem. 2012;84(11):5146–53.

    Article  CAS  PubMed  Google Scholar 

  35. Sha Q, Wu Y, Wang C, Sun B, Zhang Z, Zhang L, et al. Cellulose microspheres-filled pipet tips for purification and enrichment of glycans and glycopeptides. J Chromatogr A. 2018;1569:8–16.

    Article  CAS  PubMed  Google Scholar 

  36. Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41(Database issue):D1063–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2019YFA0905200), the Natural Sciences Foundation of Shaanxi Province (Grant No. 2021JQ-447), and the National Natural Science Foundation of China (Grant No. 91853123, 81773180, 81800655, and 21705127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shisheng Sun.

Ethics declarations

Ethics approval

Mice-related experiments were conducted in compliance with ethical regulations and approved by the ethics committee of Northwest University, China. Human seminal plasma-related experiments were approved by the ethics committee of Xi’an Fourth Hospital and Northwest University.

Source of biological materials

Three mice, strain C57BL/6, male, aged 3 months, were obtained from the Central Animal Breeding House of Xi’an Jiaotong University, Xi’an, Shaanxi. Seminal plasma from six healthy men were collected in Xi’an Fourth Hospital. Semen was collected through masturbation in sterile containers after 3–7 days of sexual abstinence according to the criteria of the WHO laboratory manual. Then seminal plasma was obtained by centrifugation of semen.

Statement on animal welfare

Mice were anesthetized with intraperitoneal injection of chloral hydrate, and brain tissue was removed from each mouse and cut up in PBS buffer following internationally recognized guidelines.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 140 kb)

ESM 2

(XLSX 4511 kb)

ESM 3

(XLSX 3841 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, M., You, S., Wu, J. et al. Evaluation of absorbent cotton for glycopeptide enrichment. Anal Bioanal Chem 414, 8245–8253 (2022). https://doi.org/10.1007/s00216-022-04353-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04353-4

Keywords

Navigation