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Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in 
the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an 
effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobic-
ity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment 
is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody 
purification, water treatment, and others are summarized. This review will provide value for the exploration and potential 
application of membrane chromatography.
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Introduction

Traditional column chromatography has high adsorption 
capacity and separation accuracy for protein [1, 2]; so 
far, the downstream processing of biological agents has 
been highly dependent on the use of packed bed resin 
columns [3, 4]. However, traditional column chroma-
tography generally suffers from a high-pressure drop; 
the intraparticle diffusion leads to the accumulation 
of solute molecules, which made the processing time 
increases, low ligand utilization, and long treatment 
time, which limits its productivity [5, 6]; meanwhile, 
column chromatography is expensive; more than 60% of 
the cost of the biopharmaceutical production process is 
concentrated in the downstream process of purification 

and recovery, in which the downstream purification of 
virus accounts for 70% of the total production cost [7, 
8].

Compared with traditional column chromatography, 
membrane chromatography is more suitable for large 
proteins of separation and purification (MR > 250,000); 
such proteins rarely enter the pores of chromatographic 
particle matrix [9]. For viruses and macromolecules with 
obvious diffusion restrictions in conventional chromato-
graphic media, it is particularly important [10]. Although 
the equilibrium binding capacity is generally low in the 
membrane, solutes in the membrane pores are mainly 
transported to the binding sites by convection, reducing 
the mass transfer resistance of the chromatography process 
(Fig. 1). Due to the advantage in mass transfer, membrane 
chromatography is an effective method for extracting trace 
proteins from large capacity feed, which can maintain 
their natural conformation by reducing the time in con-
tact with adsorbents, maintaining the biological activity of 
the required biomolecules while removing impurities [11, 
12]. Moenster et al. [13] used the SartobindQ exchange 
membrane adsorber method to separate and purify penicil-
lin G amidase from cell lysate in one step, compared with 
previous multiple purification steps, which reduced the 
operating units and significantly improved the downstream 
processing efficiency.©

The use of membranes changes the packing require-
ments and avoids bed compaction, reducing the amount of 
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buffer, which decreases the main burden of industrial-scale 
chromatographic treatment [14]. Membrane adsorption is 
easy to expand the scale compared with the packed bed 
system; the membrane can be rolled up like a coiled paper 
and wound spiral winding the module in around way, real-
ized in a very small volume with a large membrane sur-
face, and industrial mass production only by increasing 
the membrane area; meanwhile, the membrane adsorber 
can be integrated with the existing chromatographic equip-
ment, reducing the investment cost [15]. The membrane 
process based on biotechnology can be separated accord-
ing to the charge or size of protein under the condition of 
high flux and high purity. Although membrane chroma-
tography can be reused by elution and regeneration, most 
of the common membrane adsorbers on the market are 
disposable. These advantages make it possible for further 
research and practical application of membrane adsorbents 
in the process of biopharmaceutical production [16–18]. 
However, few binding sites on the membrane matrix and 
the specific surface area of the membrane are small, and 
the membrane binding strength is low, which hinders its 
practical application. Membrane chromatography on a 
commercial scale was not widely accepted until 2012. At 
present, membrane chromatography has been widely used 
in the fields of virus and endotoxins, monoclonal antibody 
purification, protein capture and intermediate purification, 
and water treatment [19].

Membrane chromatography separation 
mechanisms

Basic principles

The greatest advantage of the practical application of the 
membrane chromatography technique is that the bed height 
adsorption device in the millimeter range can be made under 
a very large cross-sectional area ratio and low back pressure. 
The following formula shows that the loading time depends 
on the maximum loading factor. LF* (matrix volumes loaded 
at 100% capacity utilization), the linear velocity (cm/min), 
and the bed height H (cm), the actual chosen capacity utili-
zation cu (%) used

Therefore, under the same capacity utilization and treat-
ment capacity, the membrane diffusion is faster than the 
resin diffusion. The typical process data show that the 
flux of the membrane adsorber is two orders of magni-
tude higher than that of the column chromatography in 
the flow mode [11].

The use of non-conventional geometric formats is 
another major advantage of membrane chromatography, 
which are hard to achieve for resins chromatography. 

t(min) =
cuLF∗H(cm)

�(cm∕min)

Fig. 1  Schematic diagram of 
different solution transfer mode: 
a membrane chromatography. b 
packed bed chromatography [9]
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Membrane adsorbers usually adopt hollow fiber, flat plate 
(usually disc shape), radial flow, spiral winding, cylindri-
cal plug, and other membrane forms (Fig. 2) [20, 21]. Most 
of the membrane adsorbents are stacked, among which 
hollow fiber and stacked disc membrane adsorbents have 
been used in commercial applications. The radial flow and 
cross-flow membrane modules are easier to be applied in 
large-scale industrial production because they are difficult 
to produce membrane fouling.

Membrane chromatography effectively combines the 
liquid chromatography of high resolution with the mem-
brane of high throughput. Functional macroporous mem-
brane or microporous membrane (pore size range: 0.65–3 
µ m [3]) instead of traditional resin beads as chromato-
graphic substrate [22]. The membrane pore contains func-
tional ligands that can bind to the target substance. Dur-
ing the separation process, smaller molecules are easier 
to bind to the inside of the membrane pore because they 
can enter the membrane pore, while larger biomolecules 
are more likely to bind to the inlet of the membrane pore 
[23, 24]. In this way, the target substance is separated 
from the complex mixture. Chromatographic packing 
usually consists of stacked chromatographic membranes, 

membrane adsorbent acting as a short, wide column with 
a shorter bed height that reduces the requirement for 
pressure-resistant equipment [25]. The ideal adsorption 
membrane should have a hydrophilic surface and be kept 
neutral to prevent non-specific binding; the membrane has 
stable physical and chemical properties and mechanical 
strength under harsh conditions of adsorption, elution, and 
regeneration.

Membrane chromatography modules’ velocity of flows 
ranges from 3.5 mL/min to 50 L/min, and volumes ranging 
from 0.35 mL to 5 L, thus contains from laboratory research 
to industrial-scale applications.

Ion exchange membrane chromatography

Ion exchange membrane chromatography uses reversible 
electrostatic interactions between the surface charge of the 
target protein and the charged group on the membrane by 
coupling charged ligands to a rigid mechanical substrate 
membrane; biomolecules with different charge conditions 
but similar molecular weight can be easily separated [26]. 
Even samples with a difference of only one amino acid can 
be separated under suitable packing and process conditions. 

Fig. 2  Common types of mem-
brane components: a stacked 
discs. b Cross-flow flat sheet. c 
Hollow- fiber. d Spiral wound. 
e Pleated sheet. The arrows 
represent the overall flow direc-
tion [20]
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As one of the last polishing steps in numerous downstream 
processes, anion exchange chromatography has been proved 
to effectively remove existing viruses [27]. At present, the 
anion exchange membrane is the major method for the puri-
fication of monoclonal antibodies [28].

Ion exchange chromatographic ligands determine the 
type and degree of exchange reactions between adsorbents 
and solute molecules. According to the ionic charge proper-
ties of ion exchange chromatographic ligands, ion exchange 
ligands can be divided into cation exchange ligands and 
anion exchange ligands (Table 1).

Ion exchange technology is a high-resolution purifica-
tion technology with strong versatility, low cost, and small 
non-specific capture, which can completely concentrate viral 
vectors and has a high dynamic binding capacity to viral 
vectors, which is twice that of any other chromatographic 
device and more than 40 times higher than that of particle 
packing chromatography equipment [27, 29, 30]. Studies 
have shown that the dynamic flow rate and volume of ion 
membrane chromatography are at least one order of mag-
nitude higher than that of ionic resin chromatography for 
the separation of E. coli solutions [25]. Lysozyme is usu-
ally positively charged and is often used as a template for 
studying the purification performance of ion-exchange mem-
branes [31, 32]. Lee et al. [33] modified polyacrylonitrile 
nanofibers through alkaline hydrolysis. The high density of 
carboxyl functional groups in a three-dimensional nanofiber 
weak ion exchange membrane could be achieved by chang-
ing the process parameters of alkaline hydrolysis with high 
porosity and high functional group density was obtained. 
The efficiency of the one-step purification of lysozyme was 
up to 98%, and the purification ratio reached 63%. Similar 

purification results were obtained during the amplification 
process, indicating the linear scalability of the purification 
technique [33].

Affinity membrane chromatography

The specific biological characteristics between the affinity 
ligand and the protein are determined by the main functional 
groups, besides the hydrogen bonding and hydrophobic mul-
timolecule interactions, which are also based on van der 
Waals forces and static electricity interaction [34]. It based 
on reversible biospecific interactions between proteins and 
specific ligands that confer biospecific separation selectiv-
ity at the molecular level [35]; this allows the separation 
of target proteins from a mixture of complex biomolecules, 
such as antibodies and antigens, enzymes and substrates, and 
hormones and receptors. Compared with other techniques 
for separating proteins based on physical or chemical proper-
ties, it is the only method based on the biological function of 
a protein [36]. Because of the powerful interaction between 
the desired protein molecule and the affinity ligand, affinity 
chromatography usually requires harsh operating conditions 
to release the protein molecules bound to the ligand [37].

Affinity patterns are classified according to ligand types, 
including immune affinity, immobilized metal affinity, and 
dye affinity (Cibacron Blue F3GA, [38] Reactive Orange 4 
[39]). The first belongs to the biologically specific model, 
and the latter two belong to the group-specific affinity type 
[40]. The selectivity of immobilized metal ion membranes 
can be changed and controlled by using specific metal ion 
immobilized membranes;  Ni2+,  Fe3+,  Cu2+, and  Zn2+ are 
usually used metal ions, which have specific interactions 

Table 1  Common ion-exchange chromatographic ligands and structures

Species Ligand Structure

Strong anion exchange group
Quaternary aminoethyl (Q)

Trimethylamine

Weak anion exchange group
Diethylaminoethyl

Amino

Strong cation exchange group

Sulfonic acid

Sulfopropyl

Phosphonic acid

Carboxyl
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with nucleic acids, amino acids, proteins, peptides, and other 
target substances [34]. It reported that the recombinant DIII 
antigen was successfully isolated from the compound feed 
solution by metal affinity membrane absorption, which has 
great potential in the field of vaccine development [41]. 
Braemer et al. [42] reported a  CO2+ fixed metal affinity 
chromatography. The purification of recombinant patchouli 
synthase from Escherichia coli lysate was optimized using 
three membrane adsorption units in a continuous chromato-
graphic system [42].

Dye ligands depend on the reversible binding and selec-
tivity of proteins and reactive dyes, and have the advantages 
of easy immobilization, low cost, high binding amount, and 
medium specificity. The ligand-ligand pair formed by CB 
F3GA and bovine serum albumin (BSA) is one of the clas-
sical models for affinity chromatography. Cibacron Blue 
F3GA is covalently immobilized on the nylon6-chitosan 
core–shell nanofiber mat prepared by coaxial solution blow 
molding. The experimental results show that the functional-
ized nanofiber mat has the advantages of high BSA adsorp-
tion capacity, high throughput, and low-pressure drop [43].

Mustafaoglu et al. [44] reported an affinity purification 
technique for capturing small antibody molecules using NBS 
(nucleotide-binding site) ligand-functionalized membranes, 
preparation an NBS targeting affinity membrane column 
through conjugating an NBS ligand, tryptamine, to regen-
erated cellulose membranes, purification of antibodies from 
compound culture medium samples containing variety of 
pollutants, the recovery and purity of antibody were above 
98%, NBS targeting affinity membrane column was realized 
on the membrane chromatography platform, which promoted 
the further research of small molecule affinity membrane 
chromatography [44].

Hydrophobic membrane chromatography

In the process of separation by hydrophobic membrane 
chromatography, the hydrophobic interaction between the 
hydrophobic ligand coupled on the membrane and the non-
polar region of the protein molecular surface is mainly 
considered. The hydrophobic ligand was connected to the 
substrate membrane, the biomacromolecules were adsorbed 
to the ligand by hydrophobic action, and the target macro-
molecule is separated by the interaction between the ligand 
and the biological macromolecule. Chromatographic pro-
cesses are usually loaded at high salt concentrations and 
eluted as the salt concentration decreases [45]. Hydrophobic 
membranes generally possess superior mechanical strength, 
stable physical and chemical properties, and good durability 
of the membrane. When dealing with high viscosity feed, 
the excellent mechanical properties of membrane adsorber 
are very significant [10]. However, hydrophobic membranes 
have low water permeability and scale resistance, and there 

are fewer active groups that can be coupled to the ligand. By 
introducing a hydrophilic polymer or an environment-spe-
cific polymer onto the membrane, the hydrophilicity can be 
increased and the active group can be provided to increase 
the protein adsorption capacity [46, 47].

Some stimulus-responsive ligands are used in hydro-
phobic membrane chromatography, and these ligands 
change their conformation with the change in environmen-
tal conditions, and can well adjust the three-dimensional 
structure of ligands [48, 49]; in recent years, environ-
mental responsive membranes have been widely used in 
hydrophobic interaction chromatography to improve the 
separation shortcomings of traditional hydrophobic mem-
brane chromatography [50–52]. Temperature is an easily 
controlled variable in the environment. Environmentally 
responsive polymers can flexibly switch between insoluble 
and soluble according to temperature changes. Environ-
mental responsive ligands exhibited hydrophobicity when 
heated, and hydrophilicity when releasing adsorbed target 
proteins at low temperatures [53, 54]. Poly(N-isopropyl 
acrylamide) is a classic temperature-sensitive polymer 
with a critical dissolution temperature of 31–32℃ in water. 
When the temperature was higher than the critical disso-
lution temperature, poly(N-isopropyl acrylamide) curled 
into an insoluble conformation; while the temperature was 
lower than the critical dissolution temperature, poly(N-
isopropyl acrylamide) showed extended conformation 
[55]. As a low-cost material with a simple source, filter 
paper possesses good compatibility with biomacromol-
ecules and good air permeability and is a suitable hydro-
phobic membrane matrix. Chen et al. [12] successfully 
grafted poly(N-isopropyl acrylamide) polymer onto the 
surface of wood fiber of filter paper and obtained a hydro-
phobic interaction membrane with temperature response 
function, which could regulate the binding and release of 
target proteins through controlling the temperature of the 
flowing water phase. Vu et al. [56] prepared hydrophobi-
cally interacting membrane adsorbents by grafting poly 
N-vinyl caprolactam from the surface of regenerated cel-
lulose membrane by atom transfer radical polymerization. 
When loaded under high ionic strength, the ligand showed 
dehydration conformation. At the elution process in a low 
ionic strength buffer, hydrated conformation was been 
showed of ligand, has excellent recoveries for lysozyme, 
IgG4, and bovine serum albumin [56].

Based on the higher binding capacity and larger mem-
brane surface area required for binding and elution. Kucze-
wski et al. [57] developed a Sartobind Phenyl™ membrane 
adsorber for large-scale purification of biomolecules; the 
hydrophobic membrane has almost no diffusion limitation, 
reduces the processing time, and is comparable to conven-
tional hydrophobic interaction chromatography resins in 
protein binding capacity, and also has excellent resolution.

49Recent development and application of membrane chromatography



1 3

Multimodal membrane chromatography

To improve the purity of proteins, several separations 
and purification methods are usually combined. Fan et al. 
[58] use two-step membrane chromatography to extract 
α1-antitrypsin from human plasma. First capture plasma pro-
teins in binding/elution mode by anion exchange membrane 
chromatography, further polished by hydrophobic inter-
action membrane chromatography in the flow mode [58]. 
Cordova et al. [59] reported a tandem membrane adsorber 
Sartobind® S and Phenyl for antibody–drug conjugate puri-
fication. Sartobind® S and Phenyl membranes are placed 
in tandem to integrate the whole antibody–drug conjugate 
purification process in a single-unit operation. Compared 
with the traditional purification method of antibody–drug 
conjugate, it consumes less time and saves the crude extract 
[59]. Multistage membrane chromatography, which com-
bines several membrane adsorbents to purify substances, 
can greatly reduce operation time and improve purification 
accuracy, and is a promising separation mode. Through com-
bined use, multiple modules can achieve higher dynamic 
binding capabilities or higher traffic, or both [10].

Membrane matrix

Natural polymer materials

Cellulose separation membrane has strong hydrophilicity 
because of abundantly hydroxyl groups, as a natural polymer, 
which has the advantages of being cheap, widely available, 
porous structure, and highly resistant to non-specific adsorp-
tion, and can minimize the non-specific binding between 

fiber surface and solute. Therefore, most of the membrane 
matrix comes from the cellulose membrane. However, the 
chemical and physical properties of cellulose membranes 
are unstable, which limits the reusability and service life 
of these membranes [10, 60]. Grafting onto the membrane 
surface and chemical modification of the membrane surface 
are the major approaches for preparing chromatographic 
membranes [61]. Ma et al. [32] attached maleic anhydride 
to the cellulose support membrane to prepare the modified 
cellulose nanofiber membrane, which showed high lysozyme 
adsorption capacity and realized the efficient purification 
of protein. Tafta et al. [62] reported a cellulose membrane 
adsorber modified with cellulose sulfate, which shows high 
selective pseudo-affinity with influenza virus, and the sur-
face area is designed to be as close as possible to the virus, 
which greatly improves the selectivity and recovery of the 
product. The binding ability of the membrane to influenza 
virus was 5 times that of the commercial membrane under 
the condition of the same recovery and purity (Fig. 3). This 
has the potential to provide a new platform for the optimiza-
tion and innovation of the vaccine industry [62].

Chitosan and chitin have unique degradability and bio-
logical effects. By using a natural chitosan/carboxym-
ethylchitosan blend membrane as the matrix, we set up a 
chitosan-based membrane chromatography; ovalbumin and 
lysozyme were successfully separated from their binary mix-
ture through the membrane chromatography [26]. Chitosan 
membrane adsorbers have been successfully used for the 
separation of some high-value-added biological products 
[63], and have great application potential in wastewater 
treatment [64]. Chitin membrane can stably exist in acidic, 
alkaline, and common organic solvents. Meanwhile, an 
important characteristic of the chitin membrane is that it 

Fig. 3  a Adsorption model of the virus on traditional resin surface and SCMA membrane. b Comparative evaluation of SCMA membrane and 
commercially available sulfated cellulose resins [62]
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contains N-acetyl-D-glucosamine units, which is affinity 
ligands for wheat embryo lectin and lysozyme; therefore, the 
N-acetyl-D glucosamine unit can be directly used for affinity 
separation of protein without chemical modification. Chi-
tosan has drawn much attention because of its performance 
in membrane formation and fiber-forming ability and good 
hydrophilicity [65]. Chitin and chitosan are commonly used 
as membrane substrates or membrane coatings, and have 
been proved to improve membrane properties on other poly-
mer carriers. It has been shown that chitosan-modified pol-
yacrylonitrile (PAN) nanofiber membranes can effectively 
filter calcium phosphate from complex algal solutions [66].

Polymer membrane

The membranes prepared with polymer materials with good 
chemical resistance, mechanical stability, material surface 
modification ability, and pore properties are more advanta-
geous than other membrane matrices, which usually include 
aliphatic polyamides (nylon 6, nylon 66), cellulose (cellulose 
acetate, cellulose nitrate), aromatic copolymers (polysulfone, 
polyether sulfone), hydrocarbon polymers (polyvinylidene 
fluoride), polyvinyl alcohol, synthetic copolymers [40].

Polysulfone ion imprinted porous adsorber membrane was 
used to remove mercury(II) from water [67]. Yu et al. [68] 
grafted a poly(glycidyl methacrylate) layer on the surface of 
a polyethersulfone membrane by UV-initiated free radical 
polymerization method, and covalently immobilized lysine 
molecule on the membrane surface via a zinc perchlorate-
catalyzed, epoxide ring-opening reaction, and synthesized 
an amino acid-functionalized, lanthanide-binding membrane 
adsorber. Hamzah et al.’s [69] base membrane was prepared 
by phase conversion technology with 15% polysulfone, and 
the surface of the membrane was modified by soaking the 
base membrane in chitosan solution. Then, glutaraldehyde 
was used to activate the membrane and hydrophilic chain 
segments were led into the surface of the membrane by 
self-assembly of hydrophobic polysulfone and chitosan. A 
trypsin affinity membrane with high specificity was devel-
oped [69].

Liu et al. [70] deposited polydopamine on the surface 
of nylon film as an intermediate connecting layer, and 
covalently grafted polyethyleneimine molecules onto the 
polydopamine layer through Michael’s addition reaction 
and/or Schiff base reaction. Then, polyethyleneimine-poly-
dopamine/nylon membrane was modified by L-cysteine, 
and a thiol-functionalized nylon membrane adsorber was 
prepared, which has good removal ability and reusability 
for patulin [70].

Polymer blending coating is a promising strategy in 
membrane preparation, improving membrane properties by 
applying some or all of the properties of the two polymers 
at the same time or complementing each other, producing 

competitive membranes with protein binding capacity, 
which proved superior to commercial resins [71].

Commercial membrane matrix

The development of commercial membrane matrix is 
relatively mature; polypropylene (PP), polyethylene (PE), 
and PVDF are commonly used commercial polymer mem-
branes with good mechanical strength, which are hydro-
phobic membranes with poor hydrophilicity and lack of 
reaction sites, and prone to specific binding [72–74]; thus, 
most of the polymer membranes used after modification 
are rarely directly used for separation and purification. The 
hydrophobicity of inert membranes can be improved by 
introducing hydrophilic functional polymers by coating 
or radiation induction. Coating dopamine on the surface 
of various polymer membranes is a common method to 
improve hydrophilicity. Because dopamine coating has 
a strong covalent chemical bond, the dopamine coating 
base membrane successfully connects to ligands such 
as polyethyleneimine, dodecyl mercaptan, and histidine, 
which enhances the adsorption capacity of the membrane 
[75]. Under alkaline operating conditions, dopamine can 
self-polymerize to form a polydopamine layer by form-
ing strong non-covalent bonds on various substrates [76]. 
Fan et al. [46] adopt polydopamine intermediate layers 
formed on a commercial hydrophobic PVDF porous mem-
brane for coupling polyallylamine-containing primary 
amine groups. The mechanical performance of commer-
cial PVDF membranes was promoted after polydopamine 
deposition. Because dopamine is easy to deposit on the 
membrane surface and enter the membrane pores, the 
effective functionalization and hydrophilicity of the PVDF 
membrane are realized, and a salt-resistant anion exchange 
membrane is obtained (Fig. 4). Repeatedly binding and 
elution of proteins showed that the salt-tolerant anion-
exchange membrane adsorber had a higher reuse rate and 
better mechanical properties than the commercial adsorp-
tion membrane, and possesses excellent potential in the 
efficient polishing of monoclonal antibodies (mAb) [46].

Alginate dialdehyde is an excellent biological adhe-
sive. Metal chelating ligands, peptides, sulfonic acid, 
and histidine were bonded to the commercial nylon 
membrane by Schiff base reaction using alginate dial-
dehyde as an intermediate layer without any solvent. 
Metal-affinity (Me-affinity), peptide-affinity (Pep-
affinity), cation exchange, and histidine-affinity (His-
affinity) membrane adsorbers were prepared, which 
created more platforms for the preparation of different 
membrane adsorbers [77].

Unlike other common commercial membrane substrates, 
the Natrix HD-C membrane is a polyacrylate porous hydro-
gel. Hydrogels have interconnected porous three-dimensional 
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structures, which provide convenient pores for the high per-
meability of feed fluid and an accessible surface area for 
protein binding. Compared with traditional anion exchange 
resin, the Natrix HD-C membrane has the obvious prepon-
derance of high load capacity and fast operation speed [78]. 
The following table summarizes some types of membrane 
adsorbers currently on the market (Table 2).

Electrospinning membrane matrix

Polymers can be made into nanofibers by electrospinning, 
which has larger specific surface area and higher poros-
ity than traditional membranes, which has tunable tortu-
ous open-porous structures and scalable synthesis from 
various materials, enhances immobilization efficiency, and 

Fig. 4  Schematic diagram of the preparation of salt-resistant anion exchange membrane adsorber [46]

Table 2  Several types of commercial membrane adsorbers

NC cellulose nitrate, CA cellulose acetate, PAGG  polyacrylamide hydrogel

Membrane adsorber Type Membrane material Pore size Application

Mustang® Q Anion exchange Modified PES 0.8 µm Removal viruses, HCPs, DNAs, etc
ChromaSorb™ UHMWPP 0.65 µm
Mustang® E Modified PES 0.8 µm Reduction of endotoxins
Mustang® S Cation exchange Modified PES Removal IgG, factor VIII, positively charged 

HCPs
Sartobind® S Cation exchange RC  > 3 µm Removal HCPs with positive charge
Sartobind® C
Sartobind® STIC Anion exchange  > 3 µm Removal viruses, negatively charged HCPs, 

DNAs, nendotoxinsSartobind® D
Sartobind® Q
Protein A Affinity 0.45 µm Purification IgG
Sartobind® Phenyl HIC  > 3 µm Removal of aggregates
IDA-Ni2 + or Co2 + Immobilized metal affinity His-tag proteins purification
Sartobind epoxy Affinity 0.45 µm Purification of antibodies
Nitrocellulose membrane Affinity NC 1.0–5.0 µm Removal of HCPs, viruses, DNAs, etc
Mixed cellulose ester membrane NC/CA 0.2–3.0 µm
Regenerated cellulose membrane RC 0.2–1.0 µm
Natrix C Cation exchange Hydrogel 0.45 µm Removal of HCPs, viruses, DNAs, etc
Natrix S
Natrix Q Anion exchange Hydrogel 0.40 µm
Natrix IMAC-Ni2 + Immobilized metal affinity 0.45 µm
Natrix aldehyde Affinity
NatriFlo® HD-Q Anion exchange PAAG 0.40 µm Removal of HCPs, DNAs, and viral clearance
Natrix HD-Sb Multimodal Hydrogel High-binding capacity for proteins virus and 

DNA
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increases the reusability and long-term stability. Based on 
different driving forces involving electrostatic interaction, 
dye − ligand affinity, hydrophobic affinity, and targeted 
affinity, various new types of electrospun nanofibrous 
chromatographic materials have been developed for use 
as protein adsorbents.

Yang et  al. [79] through blending and electrospin-
ning integrated the prefunctionalized quaternary amine 
PAN copolymer into the traditional PAN homopolymer, 
and designed an electrospun PAN-based composite mem-
brane with a strong anion exchange function, which could 
be easily customized for different separation purposes. 
Tris(hydroxymethyl)aminomethane-functionalized electro-
spinning PAN nanofiber membrane prepared affinity mem-
brane chromatography with powerful binding specificity and 
well adsorption ability for the corresponding target [80]. 
Electrospinning PAN nanofiber membrane was modified by 
grafting bromoacetic acid and ethylenediamine dihydrochlo-
ride for functionalization; polyacid ion exchange nanofiber 
membrane was prepared for the purification of lysozyme in 
egg white [81]. Ng et al. [39] immobilized Reactive Orange 
4 on electrospinning PAN nanofiber membrane modified 

with chitosan molecule, and successfully prepared dye-
affinity nanofiber membrane.

Ethylene–vinyl alcohol copolymers (EVOH) have water 
insolubility and good hydrophilicity, easy to functional mod-
ification, corrosion resistance, and biocompatibility; plenty 
of active hydroxyl groups can also be used for further deri-
vatization, and is an ideal choice for the preparation of chro-
matographic materials. Fu et al. [31, 82] combined in situ 
modification technique with blend electrospinning technol-
ogy; butane tetracarboxylic acid (BTCA) as the grafting 
agent was introduced into the EVOH solution to prepare the 
spinning solutions; after the spinning process, the pristine 
BTCA and EVOH blend nanofibrous membranes were dried 
and then thermally cured at 100 °C; BTCA-modified EVOH 
nanofibrous membrane (BTCA@EVOH NFM)–based cat-
ion-exchange chromatographic media were prepared for pro-
tein adsorption and separation (Fig. 5a). Meanwhile, they 
also used citric acid (CCA) as a modifier and the mixture 
of water and isopropanol as the spinning solution to pre-
pare the EVOH nanofiber membrane; after vacuum drying, 
immersed in citric acid solution to modify the membrane 
surface; subsequently, the CCA-modified EVOH nanofibrous 

Fig. 5  The preparation and functionalization process of BTCA, CCA 
grafting agent EVOH nanofibrous membranes, and adsorption capac-
ity. a Prepared BTCA@EVOH NFM and modification principle. b 
BTCA@EVOH NFM comparison of adsorption capacities with flat 

film and blended membranes. c Prepared EVOH-CCA NFM and 
modification principle, and protein adsorption process. d EVOH-
CCA NFM comparison of adsorption capacities with flat film and 
blended membranes [31, 82]
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membranes (EVOH-CCA NFM) was obtained by heat treat-
ment (Fig. 5c); these two membranes showed an exception-
ally excellent adsorption capacity for lysozyme (Fig. 5b, d), 
which are attributed to the synergistic effects of introduc-
ing plentiful carboxyl groups adsorption groups (carboxyl 
groups) to the nanofibrous matrix; relatively long carbon 
chains can also serve as spacer arms that can decrease the 
steric hindrance between the adsorbed proteins and adsorp-
tion groups, thus greatly improving the conjugation between 
protein molecules and availability of active adsorption sites 
[31, 82].

Surface modification and a higher specific surface area 
of the new membrane technology provide a new prospect 
for the development of membrane chromatography; elec-
trospinning nanofiber membranes have been used in con-
tinuous simulated moving bed processes, which increase the 
capacity compared to traditional membrane adsorbents while 
maintaining high throughput.

Membrane equipment

At present, the membrane equipment is generally in the 
form of radial flow, and the radial flow membrane chroma-
tography channel is complex and the void volume is large 
[5]. Membrane thickness, uneven membrane porosity, and 
ligand grafting may lead to changes in flow resistance and 

inappropriate convection, resulting in premature saturation 
of binding sites in macropores; underutilization or non-use 
of small pores will reduce the binding capacity of mem-
branes [20]. At the same time, the traditional membrane 
chromatography equipment has the advantages of wide elu-
tion peak, low resolution, large invalid volume, complex 
flow path, and poor separation performance. Most devices 
are designed for laboratory scale only, and are not used on 
a large scale.

Laterally fed membrane chromatography

To solve the above problems, the researchers proposed lat-
erally fed membrane chromatography (LFMC). The trans-
verse feeding device is better than the laminated disc device 
in flow distribution, utilization rate of film binding capac-
ity, and peak resolution. Its advantages include low invalid 
volume and easy back mixing, which helps to form clearer 
and better peak resolution [83], suitable for combination-
elution mode of high resolution, and multicomponent pro-
tein separation [84]. The flow path of the radial flow device 
and the LFMC is shown in the illustration (Fig. 6). LFMC-
based technologies are capable of operating at pressures of 
approximately 165 kPa, and in less than 1.5 min analyze 
the aggregation content and type in different monoclonal 
antibody samples. Compared with HPLC, this method is 

Fig. 6  a Radial-flow membrane 
chromatography device. b 
LFMC membrane chromatogra-
phy device [15]
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more efficient. In addition, LFMC working pressure is less 
than 200 kPa, no need for expensive high-pressure pumps for 
chromatographic systems [85]. LFMC has been proved to be 
a flow mode suitable for fast and efficient separation, and can 
in the maximum extent possible minimize sample dilution 
[5, 83, 86]. Such is the separation of PEGylated proteins and 
monoclonal antibody aggregates [87].

Kawka et al. [88] used a comprehensive approach that 
considered the enzyme chromatography and DNA digestion 
steps; purification of adenovirus using LFMC equipment 
containing Sartobind Q membrane was performed. The 
designed integrated process development approach improved 
DNA removal by approximately 80 times, and the flexible 
elution operation yielded good DNA removal and high viral 
recovery [88].

Other improvements

Chen et al. [89] designed an annual flow hollow fiber mem-
ber chromatography device, which ensures narrow solute 
residence time distribution, low dead volume, and minimum 
fluid back mixing from the point of view of hydrodynam-
ics. The introduction of inserts in the annular-flow hollow-
fiber membrane chromatography equipment can reduce the 
invalid volume at the feed side. The introduction of inserts 
also results in annular flow at the feed side, which improves 
the flow performance on both sides of the hollow fiber 
membrane (Fig. 7). Annular-flow hollow-fiber membrane 
chromatography device can achieve fast and high-resolution 
separation of proteins with near isoelectric points, and is an 
effective substitute for stacked disc assembly [89].

Fig. 7  a Exploded view of the 
AHMC. b Flow path diagram of 
AHMC [89]

Fig. 8  a Ideal fluid path diagram of  Z2LFMC device at three levels. b Z.2LFMC device [28, 90]
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Ghosh et al. [90] proposed a flow distribution of the  Z2 
chromatography device, and combined LFMC and  Z2 to 
improve the separation efficiency of membrane chromatogra-
phy; the fluid flow path in the device has three levels (Fig. 8). 
The direct channel design minimizes back-mixing, and the 
inclined combination of membrane stacks reduces the resi-
dence time of the solute in the equipment. Experiments have 
shown that the resolution of the device is similar to that 
of packed resin chromatography, and the flow rate is 40 
times higher than that of column chromatography, suitable 
for high-resolution separation of biological pharmaceutical 
under the same flow rate and column chromatography, the 
significantly higher degree of separation [91]. Roshankhah 
et al. [28] purified trastuzumab by cation-exchange  Z2 later-
ally fed membrane chromatography  (Z2LFMC); the purity of 
trastuzumab obtained by the  Z2LFMC method is equivalent 
to that of protein A chromatography method, but recovery 
rate of the  Z2LFMC method is significantly higher than that 
of the protein A method, and elution speed of  Z2LFMC is 
faster. The productivity of the monoclonal antibody obtained 
by the  Z2LFMC process is more than three times that of the 
column-based purification process [28].

Madadkar et al. [92] proposed to set a flow-directing layer 
on the front or back of the disc. Re-directing the liquid flow 
could solve the problem of the long solute stay time in the 
disc membrane chromatography and thus improve the separa-
tion efficiency [92]. Chen et al. [89] reported an annular-flow 
hollow-fiber membrane chromatography installation designed 
from the perspective of fluid; this device solves poor fluid 
dynamics and invalid volume. Borneman et al. [93] designed a 
novel particle-loaded membrane adsorption module by wind-
ing the adsorption fiber, by rearranging the absorbent fiber 
fillers. By raising the interval between two adjacent annulus 
fibers during winding, the porosity of the module is increased. 
The larger layout spacing produces less flow resistance, and 
facilitates the flow of fluid around the fibers, and the adsorp-
tion performance and flow rate height correlation, thus a faster 
adsorption process can be achieved [93].

Ligand optimization

To obtain ideal chromatographic results, the membranes 
need advanced porous materials with high internal surface 
area, easy functionalization, high porosity, diverse functions, 
and adjustable porosity. The membrane pore size should be 
at least 5 times bigger than the average diameter of the target 
substance [94]. However, excessively large holes can also 
lead to reducing the total surface area of ligand grafting, 
or the target material not having enough time to bind to the 
ligand on the membrane and lose target substance [23].

The binding capacity of membrane adsorbers depends not 
only on the size of target biomolecules and membrane pore 

size but also on the ligand design. Studies have shown that 
when viral vectors are purified by ion exchange membrane 
chromatography, increasing the ligand density does not 
lead to the corresponding virus increase in binding ability 
[95]. However, the increase in ligand density was positively 
related to the binding capacity when purified by membrane 
affinity chromatography [96]. These phenomena can be 
attributed to steric hindrance and spatial repulsion between 
biological macromolecules; the efficient three-dimensional 
structure of ligands is important for maximizing recovery 
and capacity [56].

Yoshimoto et al. [98] reported a cation-exchange mem-
brane containing mixed ligands. The composite membrane 
contains not only hydrophobic ligands but also enhanced ion 
exchange groups containing cellulose. Compared with the 
traditional cation-exchange membrane, it has higher protein 
binding ability at higher conductivity. Although the exact 
interaction and separation mechanism for such phases have 
not been fully elucidated, a double interaction mechanism 
is proposed [97, 98]. This technique has been effectively 
used to separate high-value proteins from high-salt solutions.

Compared with the traditional membrane adsorber, mem-
brane matrix ligand optimization has a larger specific sur-
face area, higher ligand density, and better three-dimensional 
binding environment.

Spacer arms

The membrane surface has micropores or microporous struc-
tures for mixture flow, and spacer arms or active groups for 
coupling functional ligands [99]. When the ligand ratio is 
quite small, the target protein biological site is difficult to 
contact with the ligand on the membrane because of the 
steric hindrance. A too-long spacer arm will lead to non-
specific adhesion, and a spacer arm too short is ineffective. 
Meanwhile, the spacer arm promotes the ligand to rotate 
and advances the favorable orientation of the ligate-ligand 
complex. The too-long spacer arm will result in non-specific 
binding and the too-short spacer arm is ineffective. Most 
choose spacer arms with 6–10 carbon atoms [100, 101]. 
The spacer arm of choice is necessarily able to interact with 
the ligand and membrane matrix, but no other active sites 
for non-specific adsorption should be present [40]. Stud-
ies have shown that spacer arms significantly affect related 
properties, such as recovery, selectivity, and binding ability; 
however, systematic experiments have not been carried out 
to study the effect of the spacer arm itself on non-specific 
binding, thus affecting protein recovery [96].

Polymer brush

The polymer brush is a polymer chain with high grafting 
density [102]; a strong repulsive force made the unique 
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tensile structure, increasing the volume of the internal 
three-dimensional structure. Proteins bind to the polymer 
brush through hydrophobic or electrostatic non-specific 
interactions, or through specific interactions between 
receptors and ligands [103–106]. As a potential protein-
binding medium, a polymer brush–modified membrane 
surface can increase the surface concentration of affinity 
ligand and optimize the quality of purification, which is 
an important tool for protein purification [107]. Hu et al. 
[108] worked by immobilizing a cholic acid-containing 
polymer brush on a poly-2-hydroxyethyl methacrylate 
grafted microporous polypropylene membrane. A modified 
membrane containing a polymer brush containing cholic 
acid was prepared for affinity adsorption of albumin. The 
modified microporous polypropylene membrane has a high 
affinity for albumin and has poor non-specific adsorption 
of hemoglobin. Affinity membrane is about 24 times more 
binding than a single layer.

Applications

Protein capture and intermediate purification

Membrane chromatography is a large-scale separation 
method for separating, purifying, and recovering proteins 
and enzymes, which is a comprehensive protein purifica-
tion technology. Honjo et al. [35] synthesized several sur-
factant-like ligands by using the affinities between proteins 
and ligands; the affinity membrane was prepared by intro-
ducing them into a porous polymer membrane by thermally 
induced phase separation. The modification functionalized 
membrane can selectively purify target proteins from cell 
lysates [35].

Phycocyanin of high purity is usually obtained by several 
purification processes; different column chromatography 
ways are involved, discouraging large-scale development. 
Mah et al. [49] use a commercial PVDF membrane and 
obtained phycocyanin of analytical grade in a few minutes 
by two-step hydrophobic interaction; a simple and efficient 
purification method is provided [109].

Eldin et al. [110] grafted methyl methacrylate (MMA) 
and methacrylate (MAA) onto cellophane membranes, 
respectively, and further immobilized  Cu2+ on the grafted 
membranes to prepare two kinds of immobilized metal affin-
ity membranes, separation of the His-tag chitinase enzyme 
from BSA protein mixture. The PMAA-grafted membrane 
showed a higher affinity for chitinase enzyme separation than 
the PMMA-grafted membrane, but the affinity advantage of 
the PMAA-grafted membrane was smaller. In addition,  Cu2+ 
leakage was not detected in the two kinds of affinity mem-
branes during protein elution, which solved the problem of 
metal ion leakage [110].

Teepakorn et al. [111] successfully separated two pro-
teins with different isoelectric points but similar molecular 
weights by using strong cation and anion exchange mem-
brane chromatography. For mixtures of lactoferrin (LF) and 
bovine serum BSA, when using a cation exchange mem-
brane, LF is completely adsorbed to the membrane, and the 
flux per unit area of BSA is the largest; the opposite is true 
when using an anion exchange membrane. Membrane chro-
matography separation of BSA-LF mixtures can be operated 
at high flow rates without affecting any selectivity [111].

Pegylated protein can enhance the acceptability and 
clinical of therapeutic proteins, most PEGylated proteins 
purified by column chromatography. Yu et al. [112] iso-
lated mono-pegylated lysozyme from natural lysozyme 
and other PEGylated forms using commercial cation 
exchange Sartobind S membranes. The results show that 
the Sartobind S membrane can well separate single 
PEGylated lysozyme, high-order PEGylated form, and 
natural lysozyme, which is an effective replaceable to the 
PEGylated protein purification technology [112].

Shi et al. [113] prepared composite membranes with 
uniform thickness, and uniform porosity distribution by 
depositing silica on anodic aluminum oxide (AAO) mem-
brane by the sol–gel method. Through activation of glutar-
aldehyde, lysine was attached to the AAO-SiO2 composite 
membrane as a ligand. The dynamic adsorption results 
showed that the affinity membrane has been successfully 
used to remove bilirubin from plasma [113].

Monoclonal antibodies play an important role in the 
current biopharmaceutical industry because they can 
greatly extent reduce the side effects of drugs [10, 114]. 
Masuda et  al. [115] found mAb1 asymmetric surface 
charge distribution, under the condition of standard chro-
matographic mAb1 bind to anion exchange resin and una-
ble to achieve separation and purification effect. They used 
the Natrifo HD-Q anion exchange membrane adsorber 
under standard chromatographic norms and successfully 
isolated mAb1 from the virus, which solved the problem 
that mAb1 could not be separated from anion exchange 
resin, and achieved a satisfactory virus clearance rate 
[115]. Hydrophobic charging-induction chromatography, 
as a multimodal chromatography technique, is an effective 
way for antibody purification [116, 117]; Ma et al. [118] 
put forward a scalable surface modification method for the 
preparation of hydrophobic charging-induction chroma-
tography mixed-mode membrane absorbers. First, com-
mercially regenerated cellulose membranes were modified 
by the cationic ring-opening polymerization of diethylene 
glycol diglycidyl ether; then, it was modified by the ring-
opening reaction between the epoxy group and the sulf-
hydryl group in the four mercapto heterocyclic ligands. A 
membrane adsorber with typical hydrophobic charging-
induction chromatography performance was obtained. The 
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experimental results showed that the membrane adsorber 
could achieve up to 96% antibody recovery for IgG mono-
mer [118]. Sadavarte et al. [73] used hydrophobic mem-
brane chromatography technology not only to directly 
purify humanized chimeric heavy chain monoclonal anti-
body from cell culture supernatant in one step but also to 
separate aggregates from humanized chimeric heavy chain 
monoclonal antibody in monomer form, greatly improving 
purification efficiency [73].

Virus

Membrane chromatography as an effective technique for 
the purification of viruses has been successfully used 
in industrial biopharmaceuticals [27]. Hejmowski et al. 
[119] used Mustang Q membrane anion exchange chroma-
tography to enrich full adeno-associated particles. During 
the elution process, the conductivity gradient increased by 
around 1 mS  cm–1 step gradient can more effectively sep-
arate full and empty adeno-associated virus serum in the 
membrane medium. This elution method can be applied to 
a scalable process, providing a reference for the develop-
ment of elution methods for other adeno-associated virus 
serotypes [119].

Fortuna et al. [120] used a three-column periodical 
counter-current device with Sartobind® SC membrane 
adsorber in combined elution mode continuous purifi-
cation of influenza A virus A/PR/8/34 virus particles. 
The effective usage of binding capacity can be increased 
to 80%, which can be successfully used as a continuous 

mode for the purification of cell-derived influenza virus 
particles [120].

Lee et al. [121] reported the polishing of adenovirus 
by metal affinity membrane chromatography (immobili-
zation of  Zn2+ ions on the membrane unit as an affinity 
ligand). The average yield of the membrane is signifi-
cantly higher than that of resin chromatography with the 
same buffer system. More importantly, the membrane can 
well separate defective adenovirus particles and intact 
adenoviruses [121].

Water treatment

Membrane adsorber, which combines the advantages f 
adsorption and membrane separation, has received great 
attention in the removal of pollutants from aqueous solu-
tions. Fan et al. [122] coated polydopamine on the base 
membrane, and then grafted polyethyleneimine to prepare 
a membrane adsorber. In the flow mode, laccase was cap-
tured from the crude fermentation solution, and laccase was 
selectively immobilized on the membrane adsorber to con-
struct a biocatalytic membrane. The biocatalytic membrane 
exhibited a commendable removal efficiency of bisphenol A 
in water only under the action of gravity (Fig. 9) [122]. The 
removal of bisphenol A micropollutants from water using a 
biocatalytic membrane immobilized by the enzyme has been 
extensively studied [123, 124].

Sepesy et al. [125] synthesized amine-functionalized 
membrane adsorbers to adsorb  Cu2+ from acidic solutions at 
70 kPa; the filtration time is 25 times faster than the current 
resin-packed column technology. Hu et al. [126] designed 

Fig. 9  Removal of bisphenol A from water by immobilized Laccase by membrane chromatography [122]
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a porous poly(N-vinyl imidazole) gel-filled membrane 
adsorber with good stability in alkaline or acidic conditions, 
and realized rapid removal of anionic dyes from water by 
adsorption filtration, and can be regenerated effectively with 
NaOH solution.

Basement membrane coating or grafting chitosan greatly 
improves hydrophilic ability due to rich hydroxyl and amino 
groups on chitosan, which can bind to heavy metal ions by 
electrostatic attraction or chelation [127], such as  Cr6+, 
 Cu2+,  Cd2+, and  Pb2+in water systems, and shows a good 
application prospect in the removal of heavy metal ions 
in water [128, 129]. Wang et al. [130] prepared chitosan 
microporous thin membranes with connectivity and sym-
metry using silica as the pore-forming agent by immersion 
precipitation method. The experimental results show that 
the membrane, as an adsorption layer, has a good ability to 
adsorb low-concentration copper ions. With the increase of 
the bed thickness, the load of copper ions increases, which 
provides a potential alternative technology for deep waste-
water treatment at low concentrations [130].

The excellent hydrophilicity of polyvinyl alcohol makes it 
a competitive choice for the preparation of membrane adsor-
bent. de Almeida et al. [131] based on the preparation of 
histidine modified nylon membrane adsorber of endotoxin; 
the surface modification of nylon membrane was carried out 
with polyvinyl alcohol as coating polymer and dioxane as 
a spacer; nylon is coated with polyvinyl alcohol to reduce 
non-specific adsorption, and used to remove endotoxin in 
aqueous solution. The service life of the modified membrane 
was up to 30 months with high stability.

Chen et al. [132] prepared one PVDF composite mem-
brane based on β-cyclodextrin and zeolitic imidazole skel-
eton-8 (β-CD@ZIF-8) nanoparticles through the deep-
permeation synthesis-manufacturing method of synergistic 

percolation reaction; β-CD@ZIF-8 is anchored in each 
membrane pore along the membrane thickness direction 
and assembled in situ in the PVDF membrane pores. With 
the help of the high specific surface area and uniformity of 
the membrane pores, more active sites are provided; PVDF 
composite membrane shows good adsorption for heavy 
metal ions  Pb2+ and  Cu2+ in wastewater (Fig. 10) [132].

Lee et al. [133] used an electrospun PAN nanofiber 
membrane as the membrane matrix, and the PAN mem-
brane was hydrolyzed to obtain a P − COOH mem-
brane; then, the P − COOH membrane coupling with 
BSA prepared a cation exchange nanofiber membrane 
(P − COOH-BSA). Because bovine serum albumin can 
bind to trivalent or divalent metal ions, the P − COOH-
BSA membrane showed a satisfactory binding ability to 
 Ca2+ in the industrial feasibility wastewater treatment 
process [133].

At present, most membrane adsorbers are only applica-
ble to the aqueous solution of a single target material, in 
the complex water environment will lose their adsorption 
performance for target material and have no selectivity 
for target material. There are few reports of adsorption 
experiments under real conditions.

Other applications

Wang et al. [134] researched the inhibition effect of the 
built-in electrode based on sodium alginate affinity chro-
matography membrane on the severe shuttle effect of poly-
sulfide ions in lithium-sulfur batteries. This is the first time 
that the membrane for protein selective adsorption has 
been used in the battery field. This innovation is expected 
to improve the stability of lithium-sulfur batteries in 

Fig. 10  a assembly of Zn(II) on the PVDF: fabrication of the β-CD@ZIF-8/PVDF. b Assembly of ZIF-8 and formation of β-CD. c Structure of 
the membrane. d Sketch map of β-CD@ZIF-8 binding. e Adsorption mechanism of the  Pb2+ and Cu.2+ [132]
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practice and provide a simple and large-scale preparation 
method for PS shuttling in lithium-sulfur batteries [134]. 
Pei et  al. [135] reported a membrane chromatography 
system for the adsorption separation of lithium isotopes 
(7 Li and 6 Li). It was filled in the chromatographic col-
umn with a porous membrane of polysulfone-GRAFT-4′-
aminobenzo-15-crown-5-ether (PSF-G-AB15C5) as the 
stationary phase. To optimize the separation performance 
of lithium isotopes, a four-stage series membrane chroma-
tography system was designed. The membrane chroma-
tography system shows a better separation efficiency for 
lithium isotopes  [++135].

Summary and outlook

As an effective alternative to chromatographic column 
packing, membrane chromatography has been widely 
studied in the past to explore the use of virus purifica-
tion; purified viruses have been used for gene treatment 
and production of vaccines. Ion-exchange membrane 
chromatography is currently used for the polishing 
of monoclonal antibody production processes in the 
biopharmaceutical industry; hydrophobic interaction 
chromatography membrane adsorbers are usually in 
f low mode and are rarely used. At present, the chro-
matographic process of membrane chromatography 
combined with column packing or monolithic column 
has been applied in the field of biological production 
processes, and has shown good application potential in 
the treatment of trace harmful matters such as heavy 
metal ions or dyes in water.

Given the relatively high raw material manufacturing 
cost of membrane materials, the purification capacity of 
membrane chromatography must reach a relatively high 
value, or have a high cycle of reuse to ensure a low com-
mercial cost, to have a relatively high economic value. 
Predictable and high-precision theoretical models are 
developing to better clarify the potential mass transfer 
phenomena and thus improve the separation performance 
of membranes. Disposable membrane sorbent methods are 
a small market branch for chromatographic packing at pre-
sent, from an adoption and evaluation perspective, in the 
downstream processing technology, which development 
is more advanced.

The two-dimensional planar structure of the mem-
brane leads to a low binding rate, and the ligand density, 
pore size distribution, and thickness uniformity of the 
membrane are difficult to reach the ideal requirements, 
which is the main limitation of membrane chromatogra-
phy. Although there are numerous challenges and obsta-
cles, the research trends in the past decade show that the 
preparation and application of various chromatographic 

membranes have been many improved. Optimizing the 
structure of the membrane and the arrangement of the 
ligand groups can greatly improve the capture by the 
chromatography membrane. The industry still needs 
more revolutionary development. It’s worth noting that 
the development and industrial research on this subject is 
considered confidential, although part of membrane chro-
matography technology has been commercialized; most 
of the literature available for reading is in the experimen-
tal research stage.
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