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Abstract
High-resolution mass spectrometry is widely used in many research fields allowing for accurate mass determinations. In 
this context, it is pretty standard that high-resolution profile mode mass spectra are reduced to centroided data, which many 
data processing routines rely on for further evaluation. Yet information on the peak profile quality is not conserved in those 
approaches; i.e., describing results reliability is almost impossible. Therefore, we overcome this limitation by develop-
ing a new statistical parameter called data quality score (DQS). For the DQS calculations, we performed a very fast and 
robust regression analysis of the individual high-resolution peak profiles and considered error propagation to estimate the 
uncertainties of the regression coefficients. We successfully validated the new algorithm with the vendor-specific algorithm 
implemented in Proteowizard’s msConvert. Moreover, we show that the DQS is a sum parameter associated with centroid 
accuracy and precision. We also demonstrate the benefit of the new algorithm in nontarget screenings as the DQS prioritizes 
signals that are not influenced by non-resolved isobaric ions or isotopic fine structures. The algorithm is implemented in 
Python, R, and Julia programming languages and supports multi- and cross-platform downstream data handling.
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Introduction

High-resolution mass spectrometry (HRMS) is an estab-
lished method in many research areas, such as metabo-
lomics, forensics, and environmental analysis, due to its abil-
ity to determine the accurate molecular mass [1, 2]. There 
exist diverse HRMS techniques, and the most common ones 
are the time-of-flight mass spectrometer (TOF–MS), Orbit-
rap mass spectrometer, and Fourier transform ion cyclotron 
resonance mass spectrometer (FT-ICR-MS) [3–5]. HRMS 
can be coupled with chromatographic methods, e.g., high-
performance liquid chromatography (HPLC), to first sepa-
rate and then analyze complex substance mixtures [6]. 

Besides conventional target analysis aiming for quantifica-
tion, HRMS is applied in the area of suspect and non-target 
screening to gather qualitative information used for structure 
elucidation and identification of unknown analytes [7–9]. 
In this context, estimations of the accurate masses and iso-
topic patterns are important elements for structure elucida-
tion [10].

Mass spectra are stored in either profile or centroid mode; 
the mass peak profiles possess positions, widths, and inten-
sity distributions, while centroid peaks are pairs of position 
and intensity [11]. Peak profiles in high-resolution mass 
spectrometry follow a certain peak shape function. This 
function describes how the signal intensities are distributed 
around a central value. Orbitrap-MS peak profiles are gener-
ated through Fourier transform by combining absorption and 
magnitude mode spectra, which are subjected to smoothing 
and filtering [12]. The peak shape function for Orbitrap-MS 
is considered symmetric following Lorentzian or Gaussian 
functions, but in detail depends on multiple factors, such 
as the steps applied in the construction of the peaks (apo-
dization, zero-filling) [12–14]. Centroid positions coincide 
with local maxima of symmetric peak profiles. Deviations 
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from symmetry can occur when overlaps are present, such 
as isobaric interferences or isotopic fine structures [15, 16].

The processing of centroided datasets is significantly less 
time demanding, whereas profile mass spectra have higher 
information content. However, a prerequisite for many estab-
lished data processing routines is that the mass spectra are 
present in centroid mode [17, 18]. There exist centroiding 
tools such as msConvert, which is part of the software pack-
age Proteowizard and is widely applied for converting peak 
profiles to centroid data [19]. Some software appends addi-
tional information on the former mass resolution and the 
signal-to-noise ratio of centroids [20]. Furthermore, with 
applications such as RawTools, instrument-specific raw files 
can be read and processed using the implemented vendor 
libraries [21]. Although tools such as msConvert and Raw-
Tools with their implemented algorithms can be used by the 
public, operational details on the vendor-specific algorithms 
used for centroidization are not published.

Different approaches exist to estimate the centroid posi-
tions in high-resolution profile mass spectra. Boulet et al. 
(2021) used the first derivative of the Savitzky-Golay filter 
[22]. Sanchez Brotons et al. (2021) applied a 2D Gauss-
ian kernel smoothing on profile mass spectra within their 
LC–MS/MS preprocessing toolset to describe the centroid 
position, also considering the chromatographic time domain 
[14]. Recently, Samanipour et al. (2021) developed a cen-
troiding workflow that can estimate resolution-based mass 
peak widths using a self-adjusting algorithm and an initial 
peak width guess [23].

Various tools are available for processing HRMS data, 
which differ considerably in their results [24]. A problem 
in centroid processing that has received little attention so 
far is that meaningful information about the original qual-
ity of the data is usually lost. In centroiding, mass peaks 
that are subject to a particular distribution are represented 
by an individual m/z-intensity-value pair. As peak profiles 
are often not entirely resolved, not every centroid is gener-
ated based on consistent data quality [25]. The peaks differ, 
for instance, by having a different number of data points, 
and overlaps of peaks without complete separation (e.g., 
isobaric ions or isotopic fine structures) occur. However, 
the qualities of the peak profiles are not apparent using the 
previously established procedures, as the exported centroids 
do not conserve the information: for example, whether they 
are originating from monoisotopic peaks. Therefore, it is no 
longer possible to analyze if the reliabilities of the generated 
centroids differ.

Our study aims to combine the best of both modes: profile 
and centroid. Therefore, we overcome the limitations of the 
conventional centroiding routines: achieving data reduction 
while preserving the relevant information on former peak 
width and data quality. To that end, we develop a fast cen-
troiding algorithm that quantifies the peak quality in a Data 

Quality Score (DQS). The DQS will be attached to each 
centroid in the exported centroid list. This shall increase 
the transparency of the centroiding process concerning the 
reliability of the former peak profiles.

Material and methods

Sampling and sample preparation

Exemplary samples from a non-target screening approach 
have been prepared and measured with HPLC-HRMS for 
centroiding algorithm development and validation. The sam-
ples measured were grab samples taken from a wastewater 
treatment plant effluent in Warburg (Stadtwerke Warburg 
GmbH, Warburg, Germany). The effluent samples usually 
contain a high load of organic substances, which increases 
matrix-associated effects in HRMS such as signal overlay. 
Therefore, they serve as suitable datasets to test the algo-
rithm’s robustness. Detailed instructions on sampling and 
sample preparation were published by Hohrenk et al. (2020) 
[24].

Instrumental analysis

The HPLC system Dionex UltiMate 3000 (Thermo Scientific, 
Bremen, Germany) was used for chromatographic separation 
[26]. Details of the chromatography can be obtained from 
the SI and elsewhere [24]. The HPLC was coupled with a 
Q Exactive Orbitrap mass spectrometer (Thermo Scientific, 
Bremen, Germany) for accurate mass detection. The Orbitrap 
measurements were performed as full scan mode in MS1 
(m/z 100–1000) with a mass resolution of 70,000 at m/z 200 
and data-dependent MS2 scans with the five most intense 
peaks per mass spectrum at a mass resolution of 17,500 at 
m/z 200. The algorithm was developed for MS1 and MS2 
spectra and can be applied for ESI-positive and ESI-negative 
measurements. All examples shown within this work refer to 
MS1 spectra in ESI-positive mode. However, for algorithm 
development, the chromatographic domain of the datasets 
was neglected, as the qualities of consecutive mass spectra 
are assumed to be independent. Therefore, the developed cen-
troiding algorithm can be used universally for either meas-
urement with or without prior chromatographic separation.

Data handling

The instrumental measurement raw files (in case of Orbit-
rap-MS, Thermo *.raw format) were converted to profile 
mass spectra *.mzXML with Proteowizard’s msConvert to 
import them more easily into the applied programming envi-
ronments [19]. However, msConvert was not used for cen-
troiding in this step, but only for conversion to open format. 
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The new centroiding algorithm is platform-independent and 
implemented and available in the programming languages 
Python (v3.9), R (v4.0.4), and Julia (v1.6.3). Within the 
programming environment, third-party packages have been 
applied, listed in the supplementary material (Table S3). The 
third-party packages are installed automatically in our ready-
to-use application, which lowers the initial hurdle to work 
with our algorithm. Finally, the centroided data are exported 
to *.csv at the end of the processing workflow.

Regression workflow for peak profile centroiding

Centroiding reduces multiple data points that form a peak 
profile to a single m/z-intensity pair that estimates its theoret-
ical mode. The core idea of our new method is a regression 
of the measured profile data with an adequate model. In this 
subsection, we present the concept of Data Quality Score 
for Gaussian-shaped peak profiles commonly observed in 
Orbitrap-MS as the results presented and discussed focus 
on this instrument [14]. TOF–MS can generate peak profiles 
that are non-symmetric and thus cannot be appropriately 
described by a Gaussian model [15]. Principally, different 
asymmetric models are available for this purpose; however, 
many can only be accessed by non-linear regression [27]. 
In this work, we present the following approach as a proof 
of concept: by switching from the Gaussian to Bi-Gaussian 
model, profile mass spectra generated by TOF–MS can be 
analyzed. The central concept of the peak regression pre-
sented in this study is not changed due to a different peak 
model. Therefore, details on the TOF–MS centroiding rou-
tine can be found in a specific section in the supplementary 
material. The development of the algorithm for TOF–MS 
was performed using a dataset by Samanipour et al. (2021) 
[23]. The Gaussian peak function we use for this purpose 
will be derived within this paper as well. The model param-
eters include all relevant peak information, such as posi-
tion, height, and width, and associated uncertainties. These 
uncertainties are essential for the subsequent scoring of the 
centroids. For regression, we used Caruana’s approach, 

which allows linearizing the non-linear Gaussian curve fit-
ting to minimize calculation efforts [26]. However, the uti-
lized regression can only be applied to a single peak profile 
at a time. Therefore, the mass spectra must first be divided 
into smaller packages containing isolated peak profiles. In 
Orbitrap-MS, the resolved peak profile intensities are sur-
rounded by zeros. This circumstance is helpful as these zeros 
can be considered predefined peak boundaries.

However, overlapping peak profiles also exist, which will 
not work without splitting in advance [26]. In this context, 
valley points indicate splitting locations, assigning the valley 
point itself to both profiles. Potentially, deconvolution can 
be used to determine the centroids of non-resolved overlap-
ping peaks. We deliberately decided against deconvolution. 
This would lead to non-linear regression problems that are 
very time demanding, usually not purposeful due to the big 
data files generated, for example, by HPLC-HRMS. When 
no deconvolution is applied, we neglect that neighboring 
peaks influence each other in their shapes through an overlap 
in their peak area. However, the accuracy benefit of decon-
volution is limited for peaks with optimal nearly Gaussian 
shapes. A schematic overview of how the centroids are gen-
erated from the profiles is shown in Fig. 1.

After isolating all the peak profiles, the regression itself 
can be performed using the already mentioned Gaussian 
model as the basis function. Thus, the function that describes 
the intensity curve is given by:

where Î(x) is the estimated intensity at the independent vari-
able x , Î0 is the estimated peak height, and x̂0 is the esti-
mated peak position which equals the centroid in our case. 
The estimated standard deviation �̂ of the Gaussian peak is 
a measure for peak width.

Following Caruana, the given model (Eq. 1) is not directly 
accessible with linear regression which would lead to a time-
consuming iterative solving process and is therefore not 

(1)Î(x) = Î0 ⋅ exp

(
−
(x − x̂0)

2

2�̂2

)

Fig. 1   Procedure of our new algorithm for centroiding profile mass spectra: The standard errors associated with the parabola in step 2 are used 
for the calculation of the Data Quality Scores
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suitable for the millions of peak profiles HRMS data can con-
tain. To that end, we perform log-transformation of Eq. 1 to 
estimate peak parameters and their uncertainties with a sec-
ond-order linear regression without the need for iterative opti-
mization. As shown by Caruana et al. (1986), the linearized 
model is described by [26]:

which is a second-order polynomial, and the parameters of 
the Gaussian peak are estimated via [26]:

The estimated Gaussian peak area Â can be obtained by:

The linear regression problem (Eq. 2) is parallelized and 
solved using matrix algebra. Due to the log-transform, noise 
strongly influences the fit results, especially with an increased 
distance to the centroid position. However, weighted linear 
regression will treat this problem [28]. The weights can be 
calculated as follows:

with wi being the weight of data point i and Ii is the i th 
intensity. The weight with a power of 2 fits very well in the 
case of Orbitrap-MS data but could potentially be changed 
by the user. The regression parameters �̂  are estimated by:

where X is the Vandermonde matrix, Y is the intensity matrix, 
and W is the diagonal matrix containing the weights. Sparse 
matrices are applied here for fast calculation with low memory 
demands. For one spectrum, the sparse matrix has the dimension 
n × m with n the number of data points in that spectrum and m 

(2)
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being the number of peak profiles. For the second-order linear 
regression, the sparse Vandermonde matrix X for two exemplary 
peak profiles consisting of i and j data points is given by:

where asterisks are zeros and do not occupy memory in 
sparse matrix notation.

Derivation of the data quality score

In the following, the DQS for HRMS will be derived. A high 
DQS shall describe a peak profile of high quality, and there-
fore high accordance with a Gaussian peak. The Gaussian 
peak shape depends on three parameters height, width, and 
position, which are derived from the three regression coef-
ficients (see Eq. 8). Accordingly, if one of these regression 
coefficients could only be estimated with low confidence 
(expressed through a high standard error), the data quality is 
reduced with respect to the Gaussian model. Therefore, we 
need a measure that incorporates all three regression coef-
ficients, and their associated standard errors, and that is inde-
pendent of the scale of the Gaussian peak to estimate the 
overall peak quality. Alternatively, Bayesian statistics could 
estimate the regressions’ uncertainties. However, this is sig-
nificantly more computationally expensive due to the Monte 
Carlo method involved and thus not feasible for us, since a 
sample of n = 1000 did not provide any significant variation 
in the results (SI). To that end, we propose using the relative 
error of the Gaussian peak area for DQS calculations:

where erf(x) is the Gaussian error function and ΔÂ can be 
deduced from error propagation:

ΔÂ and Δ�̂ are calculated from the regression standard 
errors by applying the rules of error propagation for Eqs. 4 
and 5. A plot of the function (Eq. 10) used to obtain the 
DQS is given in the supplementary material in Figure S2. 
In Eq. 10, the Gaussian error function was applied to calcu-
late the DQS because the resulting equation always outputs 

(9)X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x2
11

∗ ∗ ∗

1 x12 x2
12
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1 x1i x2
1i
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∗ ∗ ∗ 1 x21 x2
21
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22
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(10)DQS = 1 − erf
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√√√√√
(
�Â
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values between 0 and 1. A relative error of 0 leads to a DQS 
of 1, while an infinite relative error leads to a DQS of 0.

The regression standard errors are estimated through the 
variance–covariance matrix of the regression coefficients:

With the mean square error MSE of regression calculated 
by:

With n − 3 equal to the degrees of freedom, yi is the loga-
rithmized raw intensity, and ŷi is the fitted logarithmized 
intensity.

In some cases, the peak fit does not follow the expected 
Gaussian shape. Peaks that do not fulfill the following cri-
teria are removed:

1.	 Coefficients �𝛽2 < 0 as otherwise Gaussian’s standard 
deviation �̂ is not defined

2.	 At least 4 data points to obtain a fit with a residual 
degree of freedom

Criterion 1 requires that all second-order linear regres-
sions show downward-opening parabolas in the logarithmic 
domain. Otherwise, the determination of �̂ in Eq. 4 is only 
valid for complex numbers, which makes no sense from an 
analytical point of view.

Results and discussion

Data quality score of centroids

The calculated DQS values from the real water sample meas-
ured with HPLC-Orbitrap-MS are presented and discussed 
in this section. The DQS describes the individual qualities 
of the peak profiles. High values show a correspondingly 
high agreement with the chosen Gaussian model and can 
thus be considered monoisotopic. In a broader perspective, 
the average quality or dependencies of the data quality on, 
e.g., m/z, can be determined.

On average, the regressions have a low normalized root 
mean square error (nRMSE) value of 0.40%. The nRMSE is 
calculated with the square root of MSE (Eq. 13) and normal-
ized with the mean logarithmic intensity over the peak pro-
files. Accordingly, the residuals show only a small spread, 
indicating high regression accuracy; i.e., the regression 
model is suitable to describe the peaks and their character-
istic elements: position, width, and height. The Gaussian 
model has already been applied for regression of Orbitrap-
MS peak profiles [14]. However, it is mentioned in the 

(12)ŝ2(�) = MSE ⋅ (X�WX)−1

(13)MSE =
1

n − 3

∑
wi(yi − ŷi)

2

literature that the obtained peak profiles for Orbitrap-MS 
can follow a Lorentzian function. For this case, the regres-
sion model would have to be adapted, but the consideration 
to determine the data quality using the error propagation is 
generally applicable there as well [12, 13]. The peak profiles 
consist of a relatively small number of data points (4–20, 
mean 6.9).

Figure 2A demonstrates the distribution of the DQS for 
peak profiles. At least 99.7% of the centroids’ DQS exceed 
0.90, and 95.1% even exceed 0.99. In the case of low DQS, 
several causes for deviation from the ideal shape can occur. 
There are cases like in Fig. 2C where there is no clear pres-
ence of a monomodal peak within the profile. Furthermore, 
peaks with a high asymmetry, or that seem to be cut off at 
one side, can be detected (Fig. 2B and D). An increased 
mass resolution (and thus, more data points per peak) could 
reduce the number of these cases as peak shoulders should 
be better resolved. If the mass resolution is decreased, e.g., 
through measurement in the higher m/z range in Orbitrap-
MS, lower DQS values are obtained as the regression coef-
ficient standard errors depend on the statistical degrees of 
freedom. As shown in Fig. 2E for scores close to 1, the 
Gaussian fit describes the peaks very well. The higher the 
score, the better the fit describes the position and height 
of the profile peak; and thus, the DQS is proportional to 
the reliability of the received centroids. Although the peaks 
consist, on average, of only about 7 data points, the agree-
ment with the Gaussian model is almost perfect in many 
cases. A t-test reveals that there is no significant correlation 
between peak intensity and DQS in Orbitrap-MS (r = 0.0157, 
p = 0.299, n = 1129). Thus, high peak intensity does not 
automatically imply a high peak quality for Orbitrap-MS. 
In contrast, for TOF–MS data, a significant correlation exists 
(r = 0.0822, p = 0.0043, n = 1200). Therefore, an absence of 
correlation in Orbitrap-MS could be due to pre-processing 
and the apodization step to generate the peak profiles. Cen-
troids’ quality depends on the measurement conditions and 
the investigated analytes. Especially in measurements at high 
masses, non-separated isotopic fine structures or isobaric 
substances occur due to limited mass resolution. However, 
DQS can indicate if a centroid originates from a monoi-
sotopic profile peak, which is of fundamental importance 
for the mass assignment and elemental composition. This 
is supported by a simulation analyzing the influence of 
peak-to-peak resolution (in multiples of peak width σ) on 
the resulting DQS that can be found in the supplementary 
material (Fig. S5 and Fig. S6). Therefore, DQS could serve 
as an alternative criterion to intensity thresholds to filter out 
centroids originating from non-monoisotopic peak profiles. 
If Orbitrap peak profiles are apodized differently and, there-
fore, follow, e.g., a Lorentzian shape, our algorithm would 
still be able to detect strong asymmetries with low DQS 
values. However, as the regression standard errors increase, 
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the DQS distribution should be shifted to lower scores than 
the Gaussian-shaped peak profiles. In this context, further 
models, e.g., Lorentzian shape, could be added, but this is 
out of the scope of this paper.

Centroids with a higher score yield a more accurate mass 
value. For proof, a multi-compound standard with 199 
substances ranging from m/z 103 to 916 was measured in 
ESI-positive mode by HPLC-HRMS. The concentration of 
each substance was 1 μg ⋅ L−1 . In total, we considered 199 
extracted ion chromatograms (EICs) using a 3-ppm window 
around the exact masses of the [M + H]+ ion. This mass 
extraction window was chosen based on internal experi-
ences with the expected mass accuracy of the applied HRMS 
instrument. For the masses in the EICs, the individual signal 
mass accuracy is determined by [29]:

with m∕zm being the measured mass and m∕zt the exact 
mass of the ion.

The boxplot in Fig. 3A shows the distribution of the abso-
lute values of mass accuracies in ppm for the investigated 
standard substances for four categories (I–IV) covering dif-
ferent DQS ranges. A table that summarizes the categories 
can be found in the supplementary information (Table S5). 
The DQS ranges are chosen based on the relative error in 
the peak profile area (1%, 5%, and 33%) and are in accord-
ance with the levels commonly used for significance testing.

(14)mass accuracy [ppm] =
m∕zm − m∕zt

m∕zt
× 106

It can be obtained from Fig. 3A that the median of the 
absolute value of mass accuracy is smaller in the case of 
high DQS values (categories I and II) than in the case of low 
DQS values (categories III and IV). Furthermore, the disper-
sion of the values, expressed by the interquartile range, is 
smaller with a higher DQS. Therefore, there is an indication 
that centroids with a high DQS are closer to their exact mass. 
It must be said here that the DQS is not a sharp criterion in 
this case, but also, some centroids with high DQS have a 
comparatively large mass error. However, a centroid with 
a low DQS is more likely to have a large mass error than a 
centroid with a high DQS.

Furthermore, centroids with low DQS have lower pre-
cision, i.e., increased m/z scattering over time. Studies on 
the precision in m/z can be performed in HRMS, e.g., by 
multiple direct injections of analyte solutions or by detect-
ing the same ion species in a sequence of consecutive scans 
due to chromatographic separation. Figure 3B shows how 
the DQS is affected by the m/z precision. This experiment 
identified ion species in the HPLC-HRMS measurements 
that had fewer than three breaks in successive scans and a 
minimum size of 10 data points per group. For these groups, 
the relative standard deviation in m/z is determined to meas-
ure precision.

In addition to the higher probability that centroids with 
low DQS exhibit lower mass accuracy, Fig. 3B also indi-
cates larger random errors. Correct assignment of mass 
to a molecular formula by accurate mass determination 
using HRMS, however, depends on mass accuracy and 

Fig. 2   A Scatterplot of Data Quality Scores (DQS). Most peak pro-
files (99.7%) obtain a DQS above 0.90 which means that they show 
good agreement with the Gaussian model. B–E Four examples for 

peak profiles with fits (red) with different Data Quality Scores. The 
dotted lines mark the connection to the equal zero intensities located 
around the peak profiles. These values are not included for fitting
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measurement precision [29, 30]. Therefore, for identifying 
unknown analytes based on the accurate mass determination, 
e.g., in the case of non-target screening, the interpretation 
of features with a high DQS should be better than results 
with low DQS as they show lower accuracy and precision. 
Processing peak profiles to obtain centroids goes along with 
an additional error source besides mass calibration and ran-
dom error that affects the observed deviation between the 
exact and measured mass. For a peak with high quality (e.g., 
category I or II), centroiding can be performed without a sig-
nificant loss of information because the shape is very close 
to the ideal model. On the other hand, non-ideal peaks have 
low qualities (i.e., category III or IV), making centroiding a 
lossy processing step, including information loss. However, 
the DQS indicates these cases by their value.

Following this aspect, centroid positions with an 
increased deviation in the m/z domain should be connected 
to decreased DQS values. This is particularly relevant for 
non-target screening by HPLC-HRMS, where the lack of 
reference substances means that it is not known in advance 
which masses form an EIC. The established feature detection 
algorithms could erroneously divide a related EIC based on 
this reason. There is an indication that an increased mass 
deviation prevents assignment to a group of masses, e.g., 
detecting regions of interest (ROIs) in xcms’ centwave algo-
rithm [17] for binning. This is presented in a quantile–quan-
tile plot (QQ plot) comparing the distribution of DQS values 
within and outside the obtained ROIs in the supplementary 
material in Fig. S4.

The DQS significantly benefits data prioritization usu-
ally performed within non-target screening (NTS). Pri-
oritization in NTS helps highlight promising chromato-
graphic peaks in extensive datasets to examine them in 
more detail and identify the analytes. Figure 4A and C 

show two chromatographic peaks that differ in the DQS 
values of the centroids that form these peaks. Figure 4B 
and D show the respective HRMS peak profiles of the 
centroids used for the chromatograms in Fig. 4A and C.

Without considering the DQS, both chromatographic 
peaks (Fig. 4A and C) are seen as equally reliable. This 
is because each chromatographic peak has an acceptable 
shape, s/n, assigned retention time, peak area, and average 
mass. However, DQS is sensitive to unresolved or inter-
fering data in the m/z domain and, therefore, indicates 
whether the individual centroids are disturbed somehow, 
e.g., signal superposition. Therefore, the chromatogram in 
Fig. 4A should be prioritized. Due to the non-ideal nature 
of low-quality centroids having lower precision, accuracy, 
and a higher tendency to being not monoisotopic, these 
chromatographic peaks should not be assigned to an ele-
mental composition or a specific substance. This aspect 
is not considered in conventional processing algorithms 
that analyze centroid data since the information about the 
original data quality is lost during centroid processing. 
We thus provide additional benefit with the development 
of the DQS for prioritization, as the user can detect and, 
if desired, sort out chromatographic peaks arising from 
centroids with low DQS.

Through fitting and Eq. 4, we can determine the peak pro-
file width σ̂ . The peak width is of interest due to its meaning 
in mass resolution [31]:

Usually, the mass resolution is expressed as a function of 
mass m and peak width Δm̂ in FWHM instead of �̂ . For a 
Gaussian peak, the width Δm̂ in FWHM and the width �̂ are 
interchangeable with the following relation:

(15)R =
m

Δm

Fig. 3   A Absolute mass accu-
racy in ppm compared for cen-
troids falling into the categories 
I–IV. Centroids with a low DQS 
tend to show a higher deviation 
from the expected exact mass. 
B Precision in m/z compared 
for centroids falling into the 
categories I–IV given as rela-
tive standard deviation (RSD) 
in ppm. Centroids with a low 
DQS have lower precision in 
their m/z values. The categories 
are selected using the relative 
error for Gaussian peak area 
(1%, 5%, and 33%) and their 
corresponding DQS. The boxes 
enclose the interquartile range 
(IQR) and the median (horizon-
tal line). The whiskers describe 
the quartiles ± 1.5 IQR
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A mathematical derivation for that relation can be found 
in a specific section in the supplementary material. Fig-
ure 5A shows the functional relationship between profile 
peak width [FWHM] and m/z.

As shown, the peaks become broader with an increase 
in m/z. Figure 5B plots the same data, but peak width is 
replaced by mass resolution. Mass resolution is calcu-
lated via Eqs. 15 and 16, respectively. The fit function in 
Fig. 5B reveals the functional relationship mass resolution 
R ∼ m∕z−0.5 which is commonly observed in Orbitrap-MS 
[32]. The functional relation between mass resolution and 
m/z depends on the MS instrument type; e.g., in the case 
of TOF–MS, it is linear [33]. It can be obtained that the 
resolution is not a fixed but a distributed value for a certain 
mass. This phenomenon can be based on the superposition 
of two non-resolved mass peaks, which decreases the effec-
tive mass resolution. Furthermore, there is a finite and very 

(16)Δm̂ [FWHM] = 2
√
2 ln 2 ⋅ �̂ small number of data points per peak. Therefore, even a 

change of ± 1 data point can have a considerable influence 
on the peak width. The fitted mass resolution in Fig. 5B 
approximates 78,000 at m/z 200 with a prediction error of 
± 17,800 (α = 0.05) which is in agreement with the instru-
mental resolution of 70,000 described in the experimental 
section. Thus, our algorithm robustly gives information on 
the mass resolution of each peak on a certain m/z value.

The quantitative description of a peak can be given either 
by the peak height or the peak area. Most algorithms, e.g., 
msConvert, specify the height. However, due to our cen-
troiding workflow, we can also determine the peak area using 
Eq. 6. As explained above, the peak width (or mass resolu-
tion) depends on m/z. This results in mass peaks at high m/z 
having a low height under the assumption of a constant area. 
For identical or very similar m/z values, the effect of change 
in mass resolution may be neglected. Due to the described 
resolution-related effect of the emergence of broader but 
lower peaks in high mass ranges, discrimination effects for 

Fig. 4   A Exemplary chromatographic profile that shows a pro-
nounced peak. The Data Quality Score (DQS) of the centroids that 
formed this chromatographic peak is high (category I from Fig.  3), 
which indicates that the former peak profiles were of Gaussian shape. 
The color scale is given in subfigure C. B Peak profiles of the cen-
troids applied in subfigure A. This subfigure shares the y-axis with 
subfigure A. The peak profiles are of Gaussian shape and symmet-

ric; thus, the chance for the presence of non-resolved isobaric peaks 
or isotopic fine structures is reduced. C Chromatographic peak with 
lower DQS value (category II) in the data points. D The peak profiles 
of the centroids presented in subfigure C show higher asymmetry and 
lower match with the Gaussian model. Therefore, there is high poten-
tial for the presence of non-resolved underlying peaks in the peak 
profiles. This subfigure shares the y-axis with subfigure C 

6642 Reuschenbach M. et al.



1 3

these broad peaks can be observed. This can occur when 
peak height-based intensity thresholds are used within the 
usual data processing routines. These discrimination effects 
are reduced for high masses by stating the area as the quanti-
fier for peak intensity. However, the peak area is more prone 
to be affected by non-resolved, low-quality peaks, which can 
be easily solved by filtering out these peaks with our pre-
sented DQS. Thus, we state both peak height and peak area 
to give the user a choice for one of the two quantifiers.

Validation of centroiding with msConvert

When comparing our results with msConvert, the first 
question is whether differences in the peak detection have 
occurred. For this, the filter criteria ( �𝛽2 < 0 and at least four 
data points) are neglected at first. Both our algorithm and 
msConvert detect 3,602,151 profile peaks for our example 
data file. Manual inspection of the peaks showed that the 
integration limits were set identically. This suggests that 
the two algorithms consider the same peak profiles for 
centroiding.

However, the Thermo-specific centroiding algorithm 
implemented in msConvert also centroids peaks with ≤ 3 
data points. As we have established filter criteria in the 
section above, these detected profile peaks are not in our 
centroid list. For the example data file analyzed during this 
study, 1.38% of the detected peaks did not fulfill both men-
tioned requirements to obtain a meaningful peak fit (crite-
rion 1: 1.39%, criterion 2: 1.38%). It is questionable that 
peaks with two data points can be determined with sufficient 
statistical confidence. As our concept aims to characterize 
data quality to reduce the chance of recording false positives 
in mass spectra, we do not further consider these peaks.

For the remaining pairs, the peak height of our algorithm 
was compared with the intensity of msConvert. A graphical 
representation can be found in the supplementary material 
in Figure S7. There is a linear relationship between our peak 
height and the intensity of msConvert with a coefficient of 
determination of 1.000. Furthermore, the slope of linear 
regression is slightly greater than 1, which means that our 
peak heights are consistently smaller compared to msCon-
vert. However, through the very good correlation, the com-
parability of the results in terms of intensity is assured.

The second aspect that must be compared is the centroid 
position. To do so, the relative difference in parts per mil-
lion between our centroids and msConvert is calculated. The 
results are plotted as a histogram in Fig. 6.

The ppm difference is distributed around a median of 
0.003 with an interquartile range of 0.1478. The ppm devia-
tion was chosen because it is less dependent on the mag-
nitude of m/z than the absolute deviation (e.g., in mDa). 
The ppm difference is close to zero. The maximum absolute 
deviation does not exceed 2.6 ppm. The observed ppm devi-
ation is acceptable because mass resolution precision errors 
are 4 × smaller than expected. Furthermore, identifying the 
analytes and determination of their elemental composition 
based on the accurate mass measurement should not be con-
strained by this difference [34–36].

The results indicate that our algorithm is fully compara-
ble to the results of the Thermo centroiding algorithm pro-
vided in msConvert but can additionally reflect information 
about the data quality.

Performance analysis of algorithm

We developed the algorithm in different programming lan-
guages (R, Python, and Julia) to increase accessibility. It is 

Fig. 5   A Relationship between profile peak width [FWHM] and m/z 
centroid position. B Relationship between mass resolution and m/z 
centroid position. The mass resolution is calculated with Eqs. 15 and 

16. To determine the relationship between the dependent and inde-
pendent variables, a power law was fitted with non-linear regression
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important to ensure whether all developed tools provide the 
same results. In this context, Myers et al. (2017) showed 
that the centwave algorithm that is implemented in the R 
packages xcms and MZmine 2 detects different features [37].

No differences were found between the processing 
results of the different programming languages for centroid 
position, intensity, or DQS. The second performance aspect 
is the processing time spent by the algorithm. To clarify the 
challenge faced by algorithms using second-order linear 
regression: the centroiding workflow groups 50,000,000 
data points into 3,500,000 peak profiles which subse-
quently are converted into 3,500,000 centroids. Through 
our centroiding algorithm, the data file is reduced from 
1064 to 439 MB.

A central parameter in the comparison of the different 
programming environments is the computing speed. The 
speed comparison was performed using a LENOVO Think-
Pad P50-20EQS4QL11 with an Intel Core i7-6820HQ 
(4 × 2.7 GHz) processor, 16 GB DDR4 RAM (2 × 8 GB), 
512 GB SSD M.2. The algorithm is executed fastest with 
Julia (60 s), followed by Python (105 s) and R (155 s). 
As a benchmark, msConvert took 55 s to convert profile 
*.mzXML to centroid *.mzXML. Julia is known for its 
high performance. However, Python and R can also solve 
the challenge in a reasonable amount of time. R is the slow-
est programming language but is widely used in the analyt-
ical chemistry community. Many processing and analysis 
tools for HRMS are implemented in R, making our algo-
rithm convenient to couple with the other tools. However, 
even the slowest version of the algorithm implemented in 

R performs approximately 23,000 regressions per second, 
which is considerably fast. It must be mentioned here that 
no interface to other programming languages, such as 
C + + in the case of R, was used to speed up the computa-
tions. The efficiency of the code in R and Python is made 
possible primarily by using sparse matrix algebra.

Conclusion

The DQS is suitable to describe the quality of centroids 
originating from profile mass spectra. The DQS enables 
error propagation for centroiding to filter out low-quality, 
highly uncertain centroids, which substantially facilitates 
data interpretation. For Orbitrap-MS, peak profiles are 
mostly Gaussian-shaped [14]. The DQS is appended to 
the conventional centroid list as it allows detecting low-
precision, low-accuracy centroids and can be applied 
for feature detection in HPLC-HRMS. Additionally, our 
algorithm efficiently determines the peak profile widths 
and associates them with their centroids. Estimating peak 
widths is of interest for subsequent data processing steps, 
e.g., to decide how the m/z domain should be grouped for 
feature detection. Our algorithm is significantly improved 
compared to conventional centroiding algorithms in which 
the central information (quality, width) on the former peak 
profile quality is lost.
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