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Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry has enabled the detection and identification of 
unknown and unexpected compounds of interest in a wide range of sample matrices. Despite these benefits of NTA meth-
ods, standardized procedures do not yet exist for assessing performance, limiting stakeholders’ abilities to suitably interpret 
and utilize NTA results. Herein, we first summarize existing performance assessment metrics for targeted analyses to pro-
vide context and clarify terminology that may be shared between targeted and NTA methods (e.g., terms such as accuracy, 
precision, sensitivity, and selectivity). We then discuss promising approaches for assessing NTA method performance, 
listing strengths and key caveats for each approach, and highlighting areas in need of further development. To structure 
the discussion, we define three types of NTA study objectives: sample classification, chemical identification, and chemi-
cal quantitation. Qualitative study performance (i.e., focusing on sample classification and/or chemical identification) can 
be assessed using the traditional confusion matrix, with some challenges and limitations. Quantitative study performance 
can be assessed using estimation procedures developed for targeted methods with consideration for additional sources of 
uncontrolled experimental error. This article is intended to stimulate discussion and further efforts to develop and improve 
procedures for assessing NTA method performance. Ultimately, improved performance assessments will enable accurate 
communication and effective utilization of NTA results by stakeholders.

Keywords  HRMS · NTA · Sample classification · Chemical identification · Chemical quantitation · Performance 
assessment

Introduction

Targeted analytical chemistry methods are foundational to 
safety assessment and management activities in a variety 
of fields. These methods provide critical quantitative meas-
urement data for specific, known chemicals that support a 
variety of activities, including exposure assessment, hazard 
identification, dose–response evaluation, and eventual risk 
characterization. Targeted method performance criteria (i.e., 
thresholds for selectivity, sensitivity, accuracy, and preci-
sion) are well-defined, widely accepted, and adaptable to any 
given application, facilitating communication about results 
between analysts and stakeholders (i.e., any individuals with 
an interest in the data itself or data-driven decisions) [1–3]. 
Yet, in recent years, management agencies and supporting 
laboratories have been increasingly tasked with identifying 
new, unknown, or unexpected chemical stressors in com-
plex samples (notable examples include novel per- and poly-
fluorinated alkyl substances [PFAS] in soil [4] and water [5, 
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6], biomarkers of exposure to burn pits in serum [7], and 
discharged pharmaceuticals in wastewater [8]). Furthermore, 
researchers now routinely face the challenge of characteriz-
ing large classes of diverse chemicals (e.g., PFAS [9], illicit 
designer drugs [10, 11] and steroids [12], and chemical war-
fare agents [13]) that may impact humans and/or ecological 
species. Existing targeted methods are simply not well suited 
to address these types of environmental and public health 
challenges.

Non-targeted analysis (NTA) methods, often using 
high-resolution mass spectrometry (HRMS), have rapidly 
emerged to fill critical data gaps and address challenges 
not easily solved by targeted analyses. These methods are 
highly versatile and capable of rapidly detecting known 
compounds (without the need for preliminary experimen-
tation to develop and optimize targeted methods for spe-
cific analytes) [14, 15], confidently identifying unknown/
unexpected contaminants [5, 16], retrospectively assessing 
past exposures (via analysis of archived samples or data) 
[17, 18], and efficiently classifying samples based on data 
patterns [19, 20]. Moreover, NTA methods are amenable 
to virtually any sample medium, including air [21], water 
[5, 6, 14], sediment [22], soil [4, 23], dust [24], food [25, 
26], consumer products [27], and biological specimens [7, 
28]. NTA research tools and approaches are being developed 
and applied at a staggering rate. Yet, to date, most analyti-
cal laboratories have adopted NTA methods and results pri-
marily within research (non-regulatory) applications. Fur-
thermore, individual laboratories have developed their own 
criteria and procedures for determining that their methods 
are fit for specific purposes. However, a primary barrier to 
broader adoption of NTA data is the current lack of unified 
capabilities and criteria for effectively assessing and com-
municating NTA method performance [17, 29].

In contrast with targeted analytical methods, defining 
performance metrics for NTA methods remains challeng-
ing, limiting research transparency and stakeholder use of 
NTA data. Even within the NTA research community, there 
are not yet universal methods to describe the scope, cer-
tainty, and overall performance of any given NTA study. 
A standardized system of performance evaluation (eventu-
ally including third-party accreditation, echoing the criteria 
applied to targeted analyses) may therefore be needed before 
NTA can be incorporated into existing chemical monitor-
ing and assessment frameworks. As momentum builds to 
directly integrate NTA into decision-making processes, so 
too does the need to establish uniform approaches for quan-
tifying and communicating NTA method performance.

To address this challenge and stimulate further discus-
sion, we herein discuss typical NTA study objectives, 
related performance metrics, and lingering issues that 
require community-wide discussion and eventual consen-
sus. We focus on three NTA study objectives that can be 

used to categorize most NTA projects and that yield results 
most useful for stakeholders: sample classification, chemi-
cal identification, and chemical quantitation. We provide 
examples and recommendations regarding use of the pro-
posed performance metrics and discuss potential biases 
and challenges. We note that our focus herein is on per-
formance assessment approaches that provide an overall 
evaluation of the NTA method, rather than on the quality 
assurance/quality control (QA/QC) approaches that should 
be incorporated throughout any NTA workflow to evalu-
ate specific method steps [30–35]. This article is intended 
to initiate the extremely challenging (but entirely neces-
sary) discussion about remaining needs to achieve broader 
acceptance of NTA in the eyes of key stakeholders. Adop-
tion of terminology and metrics described herein will help 
accelerate and broaden the utilization of NTA results by 
stakeholders such as analytical chemists, public health offi-
cials, and decision-makers.

Targeted analysis objectives 
and performance assessment

Before considering NTA uses, metrics, and challenges, we 
briefly review targeted analysis objectives and performance 
criteria. We note that the performance metrics discussed in 
this section are not exhaustive and many institutions have 
specific guidelines for performance assessments of targeted 
analysis. However, a brief discussion of commonly used 
metrics is included to provide the necessary context for NTA 
practitioners, novices, and other stakeholders alike to better 
understand important differences between targeted analysis 
and NTA. Targeted analyses aim to quantitatively charac-
terize pre-selected analytes in defined study samples. Low-
resolution mass spectrometry (MS) or tandem mass spec-
trometry (MS/MS) is widely considered the gold-standard 
analytical platform for small molecule quantitation, although 
recent efforts toward use of high-resolution mass spectrom-
etry are promising [36, 37] (for additional detail, see Elec-
tronic Supplementary Material (ESM) Text S1). The quality 
of targeted, quantitative analytical results can be evaluated 
using well-established performance metrics for selectiv-
ity, sensitivity, accuracy, and precision (described below). 
These four criteria provide a foundation for optimizing and 
assessing the performance of any targeted analytical method, 
and in turn, deeming a method fit-for-purpose to provide 
credible data for specific chemicals, where the results are 
considered unambiguously true within clearly defined toler-
ances. To contrast the use of these terms in NTA (see section 
“Performance metrics for qualitative NTA study outputs”), 
we have included brief descriptions of these terms as they 
are used in targeted analysis, below (adapted from [38–44]).
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•	 Selectivity describes a targeted method’s ability to 
detect and differentiate a unique chemical species from 
interferents [41, 43]. Targeted methods are developed 
using solutions of chemical standards with known 
purity, with compound-specific optimization of both 
the analytical method and sample preparation proce-
dures. While nuance exists (e.g., in analytical toler-
ances, impact of interfering analytes), results from 
optimized targeted methods are generally considered 
unambiguously linked to a specific chemical(s). In 
other words, with targeted methods, if an analyst 
reports that a chemical is present in a sample, it is 
known to be truly present.

•	 Sensitivity communicates the smallest change in con-
centration at which a targeted method can observe and 
quantify a chemical in a study sample [44]. Sensitiv-
ity is related to the limit of detection (LOD), which 
defines the concentration at which a chemical signal 
can be detected with certainty above the background 
[38]. Most analytical instruments have some low level 
of background signal or “noise” which can obscure 
weak/low-concentration chemical signals. With tar-
geted methods, if an analyst reports a chemical at 
or above the LOD, it is known to be present in the 
sample; otherwise, it is known to be absent from the 
sample or present at an immeasurably low level.

•	 Accuracy and Precision describe a targeted method’s 
ability to quantify a target chemical correctly and 
reproducibly. Accuracy metrics communicate the 
closeness of agreement between a reported concentra-
tion and a true value, whereas precision metrics com-
municate consistency across multiple reported values 
[42, 44]. Accuracy and precision are not co-dependent 
(any given method can be accurate, precise, or both). 
With targeted methods, if an analyst reports a chemi-
cal concentration, it is expected (at a defined level of 
confidence) to truly exist within a defined interval.

For specific applications, stakeholders can select 
amongst targeted methods that meet clearly defined per-
formance thresholds. Furthermore, individual labs can 
develop new methods or achieve certification/accredita-
tion to conduct specific analyses with established meth-
ods, based on demonstrably acceptable performance (e.g., 
as established by a funding source or regulatory agency). 
Labs may also opt to implement existing reference meth-
ods, which are developed by federal agencies, often vali-
dated by multiple users, and carefully documented to meet 
specified performance requirements. Regardless of the 
selected approach, well-established frameworks clearly 
exist with which to decisively evaluate and communicate 
the performance of targeted analytical methods [39, 45].

Non‑targeted analysis study objectives

Uncertainty in non‑targeted analysis

In contrast to targeted methods, NTA generates global 
chemical information for a sample. While incredibly 
informative, this information-rich data can be challeng-
ing to evaluate in an efficient and reliable way. NTA can 
support broad research objectives, with focus often on 
sample classification, chemical identification, and even 
chemical quantitation (described below and summarized in 
Fig. 1). Pursuit of these objectives requires experimental, 
data analysis, and performance assessment approaches that 
differ from those of targeted methods. In addition, NTA 
data are inherently less certain than targeted data, such that 
(in the absence of an available standard and/or subsequent 
targeted analysis):

•	 If an analyst reports that a chemical is present in a 
sample, it may actually be absent (e.g., it may be an 
isomer or an incorrect identification);

•	 If an analyst reports that a chemical is not present in 
a sample, it may actually be present (e.g., it may not 
have been correctly identified during data process-
ing);

•	 If an analyst develops a sample classification model, 
it may not be repeatable over time and/or transferable 
between instruments; and

•	 If an analyst reports a concentration, often there is 
no corresponding confidence interval and the true 
concentration could be orders of magnitude higher 
or lower than the reported value.

These uncertainties prevent NTA data from being 
widely accepted by decision-makers. In light of 
this uncertainty, two urgent needs exist within the 
NTA research community. First, there is a need for 
methods that can accurately measure the extent and 
implications of uncertainties for any specific use case. 
For maximum utility, uncertainties must be characterized 
using standardized performance metrics and against 
established performance benchmarks. Second, there is 
a perpetual need within the community for approaches 
to reduce uncertainties in NTA methods. The remainder 
of this article focuses on the first need—establishing 
standardized protocols  to assess NTA method 
performance. Specific recommendations are made for 
each of the aforementioned research objectives of sample 
classification, chemical identification, and chemical 
quantitation (described in detail below).

Approaches for assessing performance of high‑resolution mass spectrometry–based non‑targeted… 6457
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Generating non‑targeted analysis data

Many NTA studies use HRMS platforms, with each study 
generating MS “molecular feature” data for hundreds 
to thousands of (initially) unknown chemicals in study 
samples, with the possibility to simultaneously or subse-
quently collect MS/MS data (see ESM Text S2) [26, 46, 
47]. Each molecular feature (often referred to as simply 
a “feature”) is comprised of “a set of grouped, associ-
ated mass-to-charge ratio (m/z)-retention time pairs (mz@
RT) that, ideally, represent a set of MS components for 
an individual chemical (e.g., an individual compound and 
associated isotopologue, adduct, in-source product ion m/z 
peaks) or a single mz@RT if no such associated compo-
nents are observed. A feature is represented as a tensor of 
observed retention time, monoisotopic mass, and intensity 
(e.g., peak height or peak area). Associated MS/MS prod-
uct ions (ESM Text S2) may also be grouped with the MS 
components of a feature during HRMS data processing, 
depending on software algorithms” [48]. Aligning detected 
features across a sample set yields a data matrix of unique 
features × unique study samples, with sample-specific 
feature intensities in intersecting cells. This data matrix 
provides a chemical fingerprint for each sample (consist-
ing of the individual detected features and corresponding 

intensities) and is the basis of all downstream NTA data 
analyses [26].

It is important to note that detecting more features does 
not necessarily indicate better chemical coverage. Larger 
feature numbers may indicate the true presence of more 
unique compounds or a failure to correctly group ions into 
features and/or remove artifact signals. A thorough exami-
nation of challenges associated with properly grouping ions 
into features and aligning features across samples (and a 
full discussion of corresponding feature-level performance 
metrics) is beyond the scope of this article; a brief topical 
discussion is provided in ESM Text S2.

Sample classification

Sample classification aims to label any given study sample 
as belonging (or not belonging) to a specific class of inter-
est. Rapid sample classification (particularly without time-
consuming marker compound identification efforts) is of 
immense value to numerous private and public stakeholder 
groups. For example, NTA data has been useful in classify-
ing geographic locations impacted by point source emitters 
[4], identifying populations affected by inadvertent chemi-
cal releases [49], flagging food items not meeting criteria 
for product certification [20, 50], and identifying former 

Fig. 1   Schematic of possible NTA workflows that support three pri-
mary study objectives and corresponding study outputs discussed 
herein: classified samples, identified chemicals, and quantified chemi-

cals. Note that for a given analysis, the number of features (N = i) is 
typically larger than the number of identified chemicals (N = j)
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military service members exposed to chemical contaminants 
during active duty [7].

Typically, multivariate statistical analyses (e.g., princi-
pal component analysis, partial least squares discriminant 
analysis) and/or machine learning models (e.g., random for-
est, neural networks) are first built (or trained) on a “train-
ing set” of descriptor data (i.e., the aforementioned data 
matrix of molecular features, comprised of sample chemi-
cal fingerprints) with known sample classifications. These 
models (detailed discussion of which is provided elsewhere 
[19, 26]) can be used to determine the sample classifica-
tion descriptors (e.g., presence of characteristic features, 
relative abundance of feature combinations) that are most 
effective for distinguishing the class(es) of interest. Models 
are then tested using the descriptor data from an additional 
“test set” of samples with known sample classifications (the 
stage at which performance assessment can occur), before 
application to classify unknown samples. Importantly, clas-
sification can occur without knowing the chemical/structural 
identity of any molecular features, although identification 
of “marker” or “indicator” chemicals within the chemical 
fingerprint (for subsequent analysis by targeted methods) 
is often a parallel goal (Fig. 1). Despite the benefits and 
increased use of NTA-based sample classification methods, 
there are not yet standardized methods for assessing and 
communicating their performance [19, 20].

Chemical identification

Many NTA studies seek some level of chemical identifi-
cation for molecular features that are prioritized by initial 
data analyses (e.g., through sample classification, statistical 
tests, temporal profiles) or prior knowledge regarding sample 
composition. Putative identifications are often determined 
using a combination of supporting data such as accurate 
mass, isotopic distribution, retention time, ion mobility, 
mass defect, and/or MS/MS product ion information, where 
a variety of highly integrated software tools and workflows 
(e.g., to perform molecular formula assignment, database/
library screening, molecular networking) exist to support 
compound identification [51]. However, complementary 
manual identification efforts are often necessary, given 
limitations of existing spectral libraries and challenges with 
automated MS/MS scoring, as detailed elsewhere [52]. The 
final reported chemicals in a NTA study are qualified with 
respect to the level of identification confidence based on 
the amount and quality of supporting evidence (e.g., using 
the scale proposed by Schymanski et al. [53], where confi-
dence level 1 = standard-confirmed and 4 = formula assign-
ment only) (Fig. 1). Unknown/unexpected compound iden-
tification is one of the most common and best recognized 
advantages of NTA; for example, NTA has been used to 
identify natural and synthetic chemical nerve agents [13], 

contaminants associated with product-related illness [54] 
and aquatic toxicity [16], designer drugs used to enhance 
athletic performance [55], and chemicals released as part of 
industrial emissions [8] or during emergency response sce-
narios [56]. To date, there are no standardized approaches or 
benchmarks for assessing and communicating performance 
of NTA-based chemical identification methods. Moreover, 
there is no guidance as to whether performance should be 
evaluated at individual confidence levels or across collec-
tive results sets, hindering efforts to conduct interlaboratory 
performance assessments.

Chemical quantitation

Finally, there is growing interest in using NTA for direct 
quantitation of chemical concentration. NTA is well-suited 
to prioritize emerging compounds for subsequent targeted 
quantitative analyses (with results effectively communi-
cated using the aforementioned targeted performance met-
rics). However, analytical standards for many emerging 
contaminants (which include a vast array of transforma-
tion and degradation products) are not readily available via 
purchase or laboratory synthesis, limiting development of 
targeted methods. Accordingly, quantitative NTA (qNTA) 
provides an opportunity to provisionally estimate chemical 
concentrations both in prepared sample extracts (i.e., trans-
lating instrument response to concentration in the absence 
of chemical standards) and in the original sampled media 
(i.e., accounting for losses during sample processing with-
out structurally paired, isotope-labeled recovery standards) 
(Fig. 1). To achieve this end, most qNTA methods either 
apply calibration data from structurally similar compounds 
to newly discovered analytes, or use response modeling 
approaches to estimate the ionization behaviors of observed 
compounds given predicted structures and related phys-
icochemical properties [37, 57]. Although few qNTA use 
cases exist, notable examples include using qNTA to esti-
mate chemical weight fractions in consumer products [27], 
concentrations of emerging PFAS in soil/surface water [4], 
concentrations of pesticides and mycotoxins in cereals [58], 
concentrations of micropollutants in groundwater [59], and 
concentrations of natural products [60]. However, limited 
methods to estimate the uncertainty of any given qNTA pre-
diction, and a lack of recommended performance metrics, 
currently hamper broader implementation of qNTA.

Non‑targeted analysis performance 
assessment

Given the limited guidance for evaluating and communi-
cating overall NTA method performance for the aforemen-
tioned NTA study objectives, the following sections propose 

Approaches for assessing performance of high‑resolution mass spectrometry–based non‑targeted… 6459



1 3

initial strategies and discuss current limitations of these 
approaches. Two of the NTA study objectives described 
above (sample classification and chemical identification) 
correspond to qualitative study outputs, while the third is 
quantitative. The discussion below is separated accordingly, 
as metrics for qualitative and quantitative outputs are neces-
sarily distinct.

Additionally, regardless of the NTA study objective, two 
key distinctions between NTA and targeted analysis perfor-
mance assessments should be noted. First, method optimi-
zation and performance assessments for targeted methods 
are specific to the targeted chemical(s) of interest (i.e., the 
same chemical(s) to which the method will be subsequently 
applied in unknown samples). In other words, targeted meth-
ods have a clearly defined domain of applicability. In con-
trast, NTA methods are necessarily less specific, because 
the chemicals of interest in an unknown sample set are not 
decided in advance of sample preparation and data acquisi-
tion. Thus, thorough quality assurance and quality control 
(QA/QC) procedures remain critical in NTA (and are dis-
cussed elsewhere [30–33]), and the domain of applicability 
for a given NTA performance assessment (discussed further 
below) should be considered.

Second, real samples analyzed in NTA studies are often 
chemically complex, with unknown (or partially known) 

composition. Accordingly, performance evaluations for all 
NTA methods will likely rely on suites of test samples for 
which the true values are known (i.e., with established sam-
ple classifications, known chemical identities, and/or quan-
titative concentrations). Unlike the reference materials avail-
able for assessment of many targeted analytical methods, 
standardized test samples for NTA performance assessments 
are not yet available and will be challenging to develop (e.g., 
determining the needed complexity, chemical coverage, etc. 
to support effective performance assessments and compari-
sons). However, as NTA data becomes more widely used 
and accepted, development of such test samples may enable 
performance validation across laboratories and over time.

Performance metrics for qualitative NTA 
study outputs

For NTA-based sample classification and chemical identi-
fication performance assessments, we focus on use of the 
confusion matrix and associated metrics. The confusion 
matrix is an error matrix often presented as a table of true 
positives (TPs), true negatives (TNs), false positives (FPs), 
and false negatives (FNs) (bold outline, Fig. 2). Calcula-
tion of associated metrics based on the quantity of true/false 

Fig. 2   The confusion matrix and associated performance metrics. The 
core confusion matrix is within the bold outline; additional boxes pro-
vide formulas for calculating associated performance metrics. Dashed 
lines between metrics indicate interchangeable or tandem usage. 
Text color on certain classifications/metrics facilitates tracking use 
of those values in calculations and is not intended to highlight cer-

tain metrics as more important. A sample classification example is 
provided in the shaded gray cells for a test set of 50 honey samples 
(including 12 that are adulterated with non-honey sugar sources and 
38 that are considered authentic, > 99.99% honey), where the classi-
fication model correctly reports 10 as adulterated and 30 as authentic 
but incorrectly reports 8 as adulterated and 2 as authentic
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positives and negatives serves to summarize the results and 
describe the method accuracy, precision, sensitivity, and 
selectivity (Fig. 2) [29]. Importantly, we note that these 
terms are identical to those used to describe targeted ana-
lytical method performance (described earlier). However, 
in the context of the confusion matrix, the same terms are 
used to define various calculated metrics. This terminology 
is well-established; the confusion matrix has been routinely 
applied in other fields to assess performance of analytical 
or biological tests with discrete, often binary, qualitative 
outputs (e.g., tests to detect whether a person does/does not 
have a disease) [61–64]. Therefore, awareness of distinct 
uses of these terms for targeted and non-targeted applica-
tions is necessary. Here, we distinguish meaning by capital-
izing the terms when describing calculations from the confu-
sion matrix (e.g., Accuracy, Precision). We first present the 
confusion matrix in the context of sample classification, then 
examine its applicability to evaluating chemical identifica-
tion performance.

Sample classification performance

For sample classification applications, performance is based 
on the ability of a method to correctly classify or group sam-
ples into a binary (or higher order) system (e.g., adulterated 
vs. authentic food, agricultural vs. urban runoff, wines of 
various origins) [65–67]. Importantly, NTA-based sample 
classification efforts are directly analogous to established 
sample classification approaches that use data from other 
analytical methods (e.g., targeted analytical data, nuclear 
magnetic resonance (NMR) data, image analyses) [68, 69]. 
Thus, given advanced knowledge of the correct classification 
(known test samples) and sufficient statistical power (driven 
by the number of samples), application of a confusion matrix 
to assess performance is relatively straightforward and fol-
lows established practices [19, 70].

Use of the confusion matrix requires clear definition of 
the positive and negative conditions. These positive and 
negative conditions are often not balanced, and conven-
tion dictates that the rarer or more interesting class (e.g., 
the adulterated state, in a study classifying adulterated and 
authentic food) is designated the positive condition. True 
positives (TPs) are correctly reported as the positive condi-
tion (an adulterated sample correctly classified as adulter-
ated), while true negatives (TNs) are correctly reported as 
the negative condition (an authentic sample correctly classi-
fied as authentic). Likewise, false positives (FPs) are incor-
rectly reported as the positive condition (an authentic sam-
ple incorrectly classified as adulterated, representing Type 
I errors) and false negatives (FNs) are incorrectly reported 
as the negative condition (an adulterated sample incor-
rectly classified as authentic, representing Type II errors). 
The total number of true/false positives and negatives must 

sum to a known, discrete number that bounds the confusion 
matrix. For sample classification, the performance assess-
ment boundary is the total number of samples in the test set. 
The suite of associated performance metrics includes the 
True Positive Rate (TPR; also termed Sensitivity or Recall), 
False Negative Rate (FNR; Miss Rate), True Negative Rate 
(TNR; also termed Specificity or Selectivity), False Posi-
tive Rate (FPR; Fall-out Rate), Precision, False Discovery 
Rate (FDR), Accuracy, F1 Score, and Matthew’s Correla-
tion Coefficient (MCC) (calculations detailed in Fig. 2). We 
note that this set of metrics/terminology includes those most 
relevant for NTA and is not exhaustive; detailed resources 
exist elsewhere [71, 72].

The individual metrics are often grouped into pairs or 
sets that are used interchangeably or in tandem (separated 
by dashed lines in Fig. 2; for additional detail, see ESM 
Text S3) [73]. For example, Accuracy, F1 Score, and MCC 
are often used in combination to provide a well-rounded 
description of performance, particularly in the case of unbal-
anced datasets (i.e., those with many more observations in 
one class relative to the other(s)) [74, 75]. Consider the 
classification of a test set of 50 honey samples (including 
12 that are adulterated with non-honey sugar sources and 
38 that are considered authentic, > 99.99% honey): for a 
classification model that correctly reports 10 as adulterated 
and 30 as authentic but incorrectly reports 8 as adulterated 
and 2 as authentic, the confusion matrix has 10 TPs, 30 
TNs, 8 FPs, and 2 FNs (Fig. 2). However, the dataset is 
unbalanced (i.e., more samples are authentic [n = 38] than 
adulterated [n = 12]). Thus, although calculated Accuracy 
(0.80) indicates acceptable model performance, the F1 Score 
(0.67; where 1 indicates perfect Recall and Precision, see 
ESM Text S3) and MCC (0.55; where − 1 indicates perfect 
misclassification, 1 indicates perfect classification, and val-
ues around 0 indicate random guesses, see ESM Text S3) 
are much lower, emphasizing that considering Accuracy 
alone could produce greater confidence in a model than is 
warranted.

Overall, while it is relatively straightforward to apply the 
confusion matrix to describe sample classification model 
performance, many challenges are associated with develop-
ing robust, reproducible NTA-based classification models 
using HRMS data. First, it is often difficult to obtain train-
ing/test sets of truly known/certified samples that both con-
tain sufficient sample quantities [76] and are well-matched to 
the potential variability in unknown samples (e.g., different 
brands of food, different regions for environmental samples) 
to appropriately build and test models [20]. Similarly, it is 
important to precisely define the classes of interest based on 
the goals of the study and to ensure that the samples are truly 
representative. In the honey authentication example, there 
are a variety of ways a honey could be adulterated (e.g., 
different types of non-honey sugar sources) and at varying 
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levels (e.g., 80% honey vs. 50% honey). Second, calculated 
performance metrics are not reliable when a model is imple-
mented outside its domain of applicability (e.g., applying a 
model built and tested only on Gala apples to Red Delicious 
apples) [20]. Third, the number of model variables (i.e., 
detected features, often 1,000’s—particularly for chroma-
tographically separated HRMS data) is typically far greater 
than the number of samples (usually 10’s to 100’s), which 
can lead to data overfitting and overinterpretation [19, 20, 
76]. Finally, classification models are sensitive to small dif-
ferences in the data that are not specific to the variable of 
interest, such as changes in retention time and background 
ions associated with different instrumental set ups (or even 
use of the same instrument over time, given changes in sol-
vents, analytical columns, or other analytical conditions). 
Therefore, applying models long-term and transferring 
models between instruments/labs can be challenging [19]. 
Performance validation for NTA-based sample classification 
may necessarily remain specific to a given laboratory (or 
instrument) until robust methods for isolation of reproduc-
ible feature lists are further advanced (see ESM Text S2).

Chemical identification performance

For chemical identification, the boundary of the perfor-
mance assessment is the known, discrete number of con-
sidered chemicals. The positive and negative conditions in 
the confusion matrix correspond to compounds known to be 
present in or absent from a sample, respectively, within that 
defined boundary. Importantly, establishing the confusion 
matrix boundary for chemical identification performance 
assessments is significantly more challenging than for sam-
ple classification, as more options exist, and the size of the 
boundary (i.e., the number of considered chemicals) can 
substantially impact the calculated metrics. For example, 
theoretical boundaries for chemical space within a study 
might include all spiked compounds in a sample, all com-
pounds detectable by a given data acquisition method, all 
compounds in a suspect screening database of 100, 500, or 
10,000 compounds, or even all possible chemicals. However, 
certain boundaries are not well understood, such as those 
in which the total number of compounds considered is not 
readily defined (e.g., all compounds detectable by a certain 
data acquisition method or all possible chemicals). Use of a 
confusion matrix in these cases is not practical.

Additionally, the domain of applicability—the chemical 
space to which the performance assessment results are rel-
evant—should also be considered and is closely related to, 
but distinct from, the performance assessment boundary. For 
example, for a performance assessment bounded by a spiked 
mixture of 100 PFAS compounds, the domain of applicabil-
ity could be defined as PFAS compounds that are structur-
ally similar to those in the test sample (i.e., performance 

results do not necessarily indicate expected performance 
for other compound classes, such as pesticides). Note, the 
availability and affordability of analytical standards will 
determine the breadth of performance assessments relying 
on known chemical mixtures.

Importantly, setting universal performance criteria within 
a constrained chemical space could bias NTA methods and 
create analytical blind spots that unintentionally miss toxi-
cologically relevant but as-yet unknown chemicals, thus 
degrading the long-term utility of NTA studies. However, 
given the diversity of sample types, contaminants of interest, 
and study goals, selecting a universally accepted test mixture 
(or pre-determined chemical space) to bound NTA perfor-
mance assessments remains challenging. Even when more 
complex samples are used (e.g., representing broader chemi-
cal space, a range of ionization efficiencies, different matrix 
backgrounds), there are not yet established tools and metrics 
by which to translate performance in known mixtures to that 
in real samples (nor to determine the necessary complexity 
to adequately represent performance in real samples).

Thus, although performance assessment requires samples 
with known compositions (e.g., generated standard mixtures 
or well characterized mixtures), we do not attempt to define 
the type of test samples or chemical space that should be 
used for chemical identification performance assessments. 
Instead, the discussion below focuses on defining two 
recommended, feasible boundaries for use in confusion 
matrix–based performance assessments: (1) the total number 
of chemicals known to be present and/or reported by the ana-
lyst in a sample set, and (2) the total number of compounds 
in a suspect screening database. Additionally, we present 
important considerations for applying those boundaries to 
the test sample(s)/chemical space of choice, with recommen-
dations for current best practices. To support the discussion, 
Fig. 3 depicts chemical identification performance assess-
ment examples using these two boundaries for a test sample 
with 500 spiked compounds.

Boundary 1: Compounds known to be present and/
or reported

The first recommended performance assessment bound-
ary considers only the unique chemicals known and/
or reported to be present in the test sample (n = 575 in 
Fig. 3a), where only one chemical is reported per fea-
ture (see section titled “Considering identification confi-
dence level”). The list of chemicals known to be present 
in the sample (often a list of spiked compounds) defines 
the combined number of TPs and FNs in the confusion 
matrix (e.g., n = 500 in Fig. 3a), while the list of reported 
chemicals defines the combined number of TPs and FPs 
(e.g., n = 250 in Fig. 3a). To apply this approach to per-
formance assessment, the lists of chemicals known to be 
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present and those reported in the sample must be cross-
referenced using the available evidence, such that, at most, 
one reported chemical is assigned to each chemical known 
to be present in the sample (additional nuance regarding 
“chemicals known to be present” is further discussed in 
the section titled “Additional considerations for assigning 
TPs, FPs, and FNs” below). Then, a spiked chemical that 
is reported as present is denoted a TP, a spiked chemical 
that is not reported is a FN, and a reported chemical that 
was not spiked is a FP (in Fig. 3a: 175 TP, 325 FN, and 
75 FP). With this boundary, TNs cannot be determined 
because a set of chemicals that are not present/reported in 
the sample is not defined. Thus, only performance metrics 
that use TP, FN, and FP can be calculated (i.e., TPR/FNR 
and Precision/FDR). Performance metrics that rely on TNs 
(e.g., TNR/FPR and Accuracy) cannot be calculated. For 
method evaluation, TPR and Precision indicate the pro-
portion of chemicals spiked into the sample and the pro-
portion of chemicals reported in the sample that are TPs, 
respectively. A composite performance metric, F1 Score, 
can also be calculated and may be useful for comparing 

method performance in cases where TPR and Precision 
have equal importance, although this will not always be 
the case in NTA studies.

In general, focusing the assessment on TPR/FNR and 
Precision/FDR supports a balanced evaluation of method 
performance. TPR and FNR rely only on the quantity of TPs 
and FNs (bounded by the number of known chemicals in the 
sample), allowing interpretation in the context of a practi-
cal, understandable quantity [77]. However, in considering 
these metrics alone, there is no penalty for over-reporting 
(i.e., “shooting in the dark” to report as many identifications 
as possible, with the hope of achieving more TPs), because 
FPs are not used in the TPR/FNR calculations. For example, 
consider the case where Lab I reports 250 total chemicals 
(i.e., Fig. 3) and Lab II reports 1000 total chemicals. If both 
labs report 175 TPs and 325 FNs, both achieve TPR = 0.35 
and FNR = 0.65, even though a much smaller proportion of 
total chemicals reported by Lab II were TPs (II = 175/1000 
vs. I = 175/250). Thus, although use of TPR/FNR alone may 
be deceiving, the complementary evaluation of Precision/
FDR indicates the extent of over-reporting because FPs are 

Fig. 3   Venn diagram and confusion matrix representations of chemi-
cal identification performance assessment approaches, with a numeric 
example provided. Orange caution symbols indicate values where 
caveats should be carefully considered. (a) The approach considers 
only the chemicals spiked into the sample (blue circle) and reported 
in the sample (yellow circle), allowing calculation of metrics relying 

solely on TP, FP, and FN. (b) The approach from (a) is modified to 
include a database of interest (purple circle), allowing determination 
of TN and calculation of all performance metrics. Additional signifi-
cant figures are listed for some metrics (i.e., FPR, TNR, Accuracy) 
to clearly provide exact values, given the number of TNs used in the 
calculation
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considered in these calculations. Continuing the example 
above, Lab I’s Precision = 0.70 and Lab II’s Precision = 0.18, 
effectively illustrating the over-reporting behavior of Lab II. 
The application and goals of the study may dictate the most 
important metrics for comparing method performance. For 
example, emphasis on Precision over TPR may be warranted 
if over-reporting (FPs) is of higher concern than missed/
incorrectly identified chemicals (FNs) and vice versa. If 
minimizing both FPs and FNs are of equal importance for 
the study, then the previously mentioned F1 Score can also 
be used. In any case, it is advisable to determine TPR/FNR 
and Precision/FDR for a balanced assessment of method 
performance.

Boundary 2: A suspect screening database

The second recommended performance assessment bound-
ary uses a suspect screening database (e.g., n = 10,000,000 
in Fig. 3b). For this approach, the chemicals known to be 
present and/or reported in the test sample must be included 
within the selected database (as is assumed in the exam-
ple here). We note that the database content may vary (e.g., 
containing only molecular formulas vs. MS/MS spectra); 
we discuss considerations with respect to identification con-
fidence below (see “Considering identification confidence 
level”). TPs, FNs, and FPs are assigned as described above 
for the known and/or reported boundary (e.g., 175 TP, 325 
FN, and 75 FP in Fig. 3b). Additionally, chemicals in the 
suspect screening database that are neither known to be pre-
sent nor reported are TNs (e.g., 9,999,425 TN in Fig. 3b). 
Thus, this boundary allows completion of the full confusion 
matrix and calculation of all associated performance met-
rics. This approach was implemented by Nuñez et al. (2019), 
where they used all chemicals present in the EPA ToxCast 
library (n = 4,737) to bound their identification performance 
assessment during EPA’s Non-Targeted Analysis Collabora-
tive Trial (ENTACT) [78], as each synthetic test sample was 
known to contain a subset of the ToxCast chemicals [52].

Importantly, the quantity of TNs is highly dependent on 
the size of the selected database. The selection of a very 
large database can bias performance metrics that are cal-
culated using TN (e.g., yielding artificially high TNR and 
Accuracy, and artificially low FPR) [70]. For example, the 
large database used in the example depicted in Fig. 3b yields 
TNR = 0.99999, FPR = 0.00001, and Accuracy = 0.99996; 
in contrast, the TPR is only 0.35. As noted above for sam-
ple classification with unbalanced datasets, use of F1 Score 
(0.47) and MCC (0.49) alongside Accuracy provides a bet-
ter indication of method performance than Accuracy alone.

Additionally, some databases may include compounds 
that are not detectable by a given method (e.g., due to sam-
ple preparation choices or analytical method settings), limit-
ing the utility of classifying such compounds as TNs. For 

example, an LC–MS method should not get credit for “TNs” 
that are not LC-amenable (e.g., many volatile GC-amenable 
chemicals), even if they are truly not present in the sample. 
On the other hand, intentional use of a specific database or 
library thought to be more relevant to the study (e.g., that 
covers a select subset of known chemical space) to bound 
a performance assessment may allow for a more realistic 
estimate of TNs (by excluding irrelevant compounds from 
consideration), but may also limit the domain of applicabil-
ity of the assessment (e.g., other compounds that may have 
been detected are not considered) [52]. Overall, although 
this approach to performance assessment enables comple-
tion of the confusion matrix, we still recommend caution 
when interpreting the total number of TNs and TN-derived 
metrics.

Additional considerations for assigning TPs, FPs, and FNs

Depending on the composition of the spiked mixture or 
test sample used for performance assessment, additional 
nuance may be required regarding TP, FN, and FP assign-
ment (regardless of the performance assessment boundary). 
In complex samples (even those made with neat, spiked 
standards), it is difficult to definitively know every com-
pound that is or is not present (due to trace impurities, in-
vial transformation of unstable compounds, etc.) [77, 79]. 
Thus, for the purposes of a chemical identification perfor-
mance assessment, the list of compounds defined as truly 
present in a sample is determined by the extent to which the 
sample is initially characterized (e.g., if the sample is ana-
lyzed, verified impurities, isomers, transformation products, 
etc. may be included in the list of compounds defined as truly 
present). This approach eliminates ambiguity in assigning 
TPs and FNs, as each TP and FN must correspond to an 
individual, known chemical in the sample.

Here, we define the subset of reported compounds that 
are truly present in the test sample (e.g., as degradants, reac-
tion products, and/or impurities), but are not known to be 
present, as “unintentional TPs” (uTPs). Differentiating uTPs 
from FPs and confirming true presence/absence in the test 
sample is often not practical, given necessary analyst time 
and resources and the limitations of available databases and 
spectral libraries. In the relatively simple example of a neat 
standard mixture in Fig. 3, there are 75 FPs, some of which 
may be uTPs. However, using samples with greater chemical 
complexity for performance assessments could yield 100’s 
of uTPs. The distinction between FPs and uTPs may be par-
ticularly challenging in test samples with large quantities of 
constitutional isomers and/or stereoisomers, as a laboratory 
may assign the same identification to multiple features. In 
such cases, we again recommend using the stated composi-
tion of the test sample to assign TP/FP/FN. For example, 
if the presence of a constitutional isomer is known (e.g., 
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it is known that dibutyl phthalate is present, but diisobutyl 
phthalate is not), a laboratory must report that same consti-
tutional isomer (e.g., dibutyl phthalate, not diisobutyl phtha-
late) to achieve a TP. Likewise, if multiple stereoisomers 
are not specified for a known compound in the test sample 
(e.g., the alkaloid piperine, which exists as four stereoiso-
mers), but a laboratory reports multiple identifications of 
that compound—only one TP is counted, and the remainder 
are considered FPs (e.g., if four piperine identifications are 
reported, it is considered 1 TP and 3 FPs). Treating uTPs 
as FPs when calculating Precision and FDR is practical 
and ensures that conservative values for these performance 
metrics are reported. To balance this conservative approach, 
a laboratory could present evidence to indicate that a given 
percentage of reported FPs are in fact uTPs.

Finally, we note that a laboratory could perform addi-
tional follow-up evaluations to examine the up-stream fac-
tors driving observed overall performance. For example, 
a FN might occur if the chemical was not detected by the 
selected instrumental method or if a detected feature was 
not assigned the correct identity by the data analysis work-
flow. Likewise, a FP might occur if the molecular formula 
was annotated correctly, but the incorrect chemical name 
was assigned (e.g., if the correct chemical was not included 
in the selected suspect screening database or ranked lower 
based on available metadata/literature citations, or if the MS/
MS spectra was interpreted incorrectly). Ultimately, if such 
evaluations result in changes to the laboratory’s method, 
performance should be reassessed by the same approach 
and metrics described above.

Considering identification confidence level

The performance metrics associated with the confusion matrix 
give equal weight to each reported compound. In most NTA 
studies, however, chemicals are reported at different levels of 
identification confidence (such as those described by Schy-
manski et al. [53]). This presents a dilemma for how best 
to implement the confusion matrix given different levels of 
uncertainty in chemical identity assignments. Consider two 
hypothetical laboratories that produce the same performance 
metrics depicted in Fig. 3 (e.g., TPR = 0.35, Precision = 0.70). 
Hypothetical lab #1 indicates that 100% of reported TPs have 
a confidence level of 1 or 2. Alternatively, hypothetical lab #2 
indicates that 50% have a confidence level of 1 or 2, and 50% 
have a confidence level of 3. In the absence of consideration 
for these reported confidence levels, the two labs would have 
equal performance. Yet, with additional interpretation of confi-
dence levels, a stakeholder could readily differentiate the capa-
bilities of the two labs. All reported compounds (i.e., TPs and 
FPs) should be assigned a confidence level, which then enables 
calculation of the corresponding Precision and FDR metrics 
separately for each confidence level. As a theoretical example, 

confidence level–specific metrics could allow a lab to dem-
onstrate Precision of 0.95 for level 2 identifications, despite 
an overall Precision of 0.70. This approach was employed by 
Nuñez et al. in their ENTACT performance evaluation to dem-
onstrate that FDR was inversely related to the amount of avail-
able evidence supporting each identification [52]. As such, 
identification confidence should be incorporated into perfor-
mance assessments by enumerating the proportion of reported 
compounds (i.e., TPs and FPs) and the corresponding Preci-
sion/FDR metrics for each confidence level. This approach 
does not impact performance metric calculations (Fig. 3), but 
instead provides additional nuance to their interpretation. We 
note that it is conceptually challenging to generate separate 
confusion matrices for each confidence level because chemi-
cals that are not reported present (FNs and TNs) cannot be 
assigned confidence levels. However, we anticipate that future 
iterations of performance assessment approaches may still seek 
to separate confidence levels out of practical need (for exam-
ple, separately considering performance for identifications 
associated with a chemical structure [levels 1–3] versus those 
associated with only a molecular formula [level 4]).

As noted above, confusion matrix–based performance 
calculations require that only one reported chemical corre-
sponds to each chemical known to be present in the sample. 
We note that when an identification confidence below level 1 is 
achieved for a given feature, laboratories may provide multiple 
possible chemical identities that correspond to that single fea-
ture (e.g., a list of chemical identifiers associated with a level 
4 molecular formula assignment; two potential isomers associ-
ated with a level 3 identification). Such an approach may be 
informative to a stakeholder (e.g., a risk-assessment scenario in 
which available resources are limited and subsequent chemical 
identification efforts must be prioritized). However, in the case 
of performance assessments, the result for each feature must be 
reduced to a single reported identification (e.g., a single isomer 
with level 3 confidence) to enable use of the confusion matrix. 
Further debate in the community is needed to determine best 
practices for chemical identification performance assessment 
with respect to reporting a single result versus a list of pos-
sible chemical identities for a given observed feature. Further 
development of guidance to address challenges associated with 
incorporating identification confidence during performance 
assessment will be critical to ensure valid assessments and 
comparisons of method performance.

Performance metrics for quantitative NTA

Understanding targeted and non‑targeted 
approaches to quantitation

All quantitative estimates from both targeted and non-tar-
geted mass spectrometry analyses contain uncertainty. In 
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targeted studies, established approaches exist to minimize 
this uncertainty (and maximize the accuracy and precision of 
quantitative estimates), including use of calibration curves, 
structurally paired internal (recovery) standards, and batch 
corrections. A calibration curve—a mathematical relation-
ship between known concentration and measured intensity 
of a given analyte [40]—enables direct calculation of target 
analyte concentration in any new sample (Fig. 4a). Clear 
guidance exists regarding the development and use of cali-
bration curves for target analyte quantitation [39, 45]. This 
guidance relates to selection of appropriate concentration 
ranges; the number, spacing, and replicates of calibration 
curve points; the utilization of paired internal standards; and 
mathematical procedures (e.g., weighting, transformation) 
used to meet calibration model assumptions (e.g., linear-
ity, homoscedasticity). All guidance is meant to ensure that 
quantitative predictions are accurate and can be defensibly 
bounded within a calculable error range (e.g., a 95% confi-
dence interval).

Most NTA studies consider quantitative estimation pro-
cedures only after confirming the presence of specific ana-
lytes. With this post hoc approach, many decisions made 
by the analyst will affect the certainty of eventual quantita-
tive estimates. For example, an analyst may wish to use the 
existing intensity measures of an analyte (produced from the 
original NTA experiment) as the basis for quantitation vs. 
rerunning study samples alongside a calibration standard. 
Likewise, if rerunning study samples and reacquiring inten-
sity measures, an analyst may opt to preserve the initial NTA 
instrument method vs. developing an optimized method for 

the recently discovered analyte(s) (more akin to a targeted 
analysis). Finally, to control for sample recovery effects and/
or batch effects, an analyst may opt to interpret analyte inten-
sity measures after adjustment for surrogate intensities (as 
a response ratio). Surrogates are any measured compounds 
that are used to calibrate the concentration of the detected 
analyte; they may be an isotopically labeled version of the 
analyte or a different compound (native or labeled). In the 
latter case, the structural similarity between the selected sur-
rogate and the targeted analyte will influence the error in the 
eventual quantitative predictions [60].

Both targeted and post hoc quantitative methods involve 
the use of chemical standards to quantify high-interest 
analytes. As such, traditional practices involving chemi-
cal-specific calibration curves can be implemented. How-
ever, compared to targeted methods, greater uncertainty is 
expected for post hoc quantitation because more sources of 
variability often remain uncontrolled (e.g., recovery, matrix 
effects, peak integration) (Fig. 4b). For the purposes of per-
formance evaluation, it is critical that all sources of vari-
ability are considered when reporting quantitative estimates 
to stakeholders. As is customary for targeted analysis, confi-
dence intervals (or other measures of numerical uncertainty) 
should accompany each quantitative estimate for each identi-
fied chemical to clearly communicate the range in which a 
chemical concentration is truly expected to lie. For example, 
using a targeted method, a chemical may be reported to have 
an estimated concentration of 10 ng/mL with a 95% con-
fidence interval of 8 ng/mL (lower bound) and 12 ng/mL 
(upper bound). Using a post hoc quantitative method, the 

Fig. 4   Comparison of the degree of uncertainty associated with con-
centration estimates obtained from: (a) a targeted analytical method 
that was developed and optimized for the target chemical (smallest 
uncertainty), (b) a NTA method that putatively identified the chemi-
cal, after which a standard was obtained, the chemical was confirmed, 
and post hoc quantitation was performed, and (c) a NTA method that 
putatively identified the chemical, after which surrogate chemical(s) 
(that were not structure-matched to the putatively identified chemical) 

were used for quantitation (largest uncertainty). The solid lines (and 
dotted line in (c)) correspond to regression lines and the shaded area 
about each line corresponds to prediction intervals for the respective 
regression line. Although 2 surrogate chemical calibration curves are 
depicted in (c), any number (n) of surrogate chemicals may be used 
to estimate concentration. The purple dotted line in (c) indicates the 
theoretical calibration curve of the putatively identified chemical
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same chemical in the same sample may again have an esti-
mated concentration of 10 ng/mL, but with a 95% confidence 
interval of 1 ng/mL (lower bound) and 20 ng/mL (upper 
bound). By clearly communicating the uncertainty about the 
prediction, analysts and stakeholders can make an informed 
decision as to what action(s) may be needed.

In contrast to quantitation with targeted or post hoc 
approaches, we define quantitative NTA (qNTA) methods 
as those that generate concentration estimates in the absence 
of reference standards for the compounds of interest. Numer-
ous qNTA methods have been developed to support chemi-
cal surveillance applications, with several recent articles 
providing excellent summaries of the various qNTA (or 
“semi-quantitative”) strategies [37, 80–83]. The most basic 
and commonly used approach for qNTA involves surrogate 
calibration, where calibration information for one or more 
surrogate analytes are established using the selected analyti-
cal method and are then applied to newly identified chemi-
cals to generate concentration estimates (Fig. 4c). Numerous 
approaches exist for surrogate selection, ranging from use of 
a single surrogate analyte for all qNTA predictions [27], to 
optimized surrogate selection for each newly detected ana-
lyte [60]. Model-based qNTA methods also exist in which 
structural descriptors (e.g., molecular surface area) and 
physiochemical properties (e.g., logP, pKa) are used to pre-
dict the ionization efficiency (IE; the number of gas-phase 
ions generated per mol of the compound) of each identified 
analyte [82]. Yet, even with model-based methods, empirical 
measures of surrogate chemicals are still needed to calibrate 
IE estimates to the selected analytical platform/method [59, 
80, 82]. As such, all qNTA methods, in some capacity, draw 
on existing experimental data for selected surrogate analytes.

Calibration information about each surrogate analyte 
is often distilled into a single numeric value, termed a 
“response factor” (RF) [80, 82]. Mathematically identical 
to a calibration curve slope for targeted analyses (under con-
ditions of no experimental error), each chemical-specific RF 
is the quotient of an observed instrument intensity and the 
corresponding known concentration. The RF for a given 
surrogate calibrant (which may be normalized using an 
internal standard) is often assumed stable within the linear 
dynamic range (i.e., the range in which chemical concentra-
tion is directly proportional to instrument response [44]), 
allowing concentration predictions for each newly identi-
fied analyte (where estimated concentration = observed 
intensity / surrogate calibrant RF). In reality, RF is never a 
perfectly stable parameter, with measurements fluctuating 
both between and within chemicals, and is often impacted 
by analytical matrix effects. Given these fluctuations, the 
resulting qNTA estimates are subject to the sources of error 
described above for targeted analyses (within chemical), as 
well as additional sources of variance (between chemical). 
Overall, the magnitude of error is expected to be largely 

driven by the chemical similarity (or dissimilarity) between 
the selected surrogate(s) and the analyte for which concen-
tration estimates are being generated, with the potential for 
additional error driven by analytical matrix effects that may 
differentially impact individual chemicals (Fig. 4c).

Quantitative performance assessment approaches 
for NTA

As with qualitative NTA methods, the performance of any 
qNTA method must be evaluated using chemical test sets. 
With the simplest evaluations, each chemical in the test set 
has a known concentration and a concentration estimated by 
a qNTA method. The error associated with each chemical is 
calculated as the quotient of the estimated and known chemi-
cal concentration. Given a vector of error estimates across 
the test set, it is common to report the central tendency (e.g., 
mean absolute error) and maximum observed error [59, 80]. 
It is also common to report measures of statistical agree-
ment between predicted and known values (e.g., R2 or Q2) 
[60, 84]. These performance metrics communicate critical 
information about the suitability of a qNTA method for a 
given application. Yet, they do not communicate confidence 
in any new concentration estimates for any newly detected 
analytes. As such, researchers are encouraged to develop 
methods to communicate the uncertainty in all qNTA con-
centration estimates, as is common practice for traditional 
targeted methods.

Groff et al. recently explored two qNTA approaches to 
estimate uncertainty in concentration predictions for newly 
detected analytes, which is fully explained in [85], thus 
a brief description is provided in this article for context. 
Their initial “naïve” approach estimated the 2.5th and 97.5th 
percentiles of a global RF distribution (i.e., a distribution 
of RF values collected across a large chemical training set, 
with multiple RF values per chemical) [85]. These outer 
percentile estimates were applied to intensity measures from 
chemical test sets to yield concentration estimates with 95% 
confidence intervals. Using five-fold cross validation, ~ 95% 
of true concentration values were shown to be contained 
within the estimated confidence intervals (which spanned 
two orders of magnitude). Confidence intervals were ulti-
mately narrowed using a second qNTA method, which 
used chemical IE estimates to restrict the range of likely 
RF values for each analyte. To our knowledge, the work of 
Groff et al. is the first and only to estimate concentration 
confidence limits for individual chemicals using NTA data 
collected via semi-automated methods.

While the methods of Groff et al. serve as a useful proof-
of-concept to guide future qNTA endeavors, the reported 
magnitude of prediction error does not reflect a “real-world” 
analytical scenario, since all considered chemicals were pre-
pared in organic solvent. True NTA studies will experience 
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additional variability stemming from sample recovery and 
matrix effects. Further experimentation is therefore needed 
to quantitatively examine these well-known sources of error, 
and to ultimately develop qNTA best practices that minimize 
error. While there have been efforts to correct for matrix 
effects causing ion suppression during HRMS detection by 
electrospray ionization [86–89], to the best of our knowl-
edge, no models exist to predict matrix effects and recovery 
efficiencies based on analyte structure and experimental 
conditions during sample preparation. Given these informa-
tion gaps, real-world measurement error is likely to remain 
largely unconstrained in qNTA studies for the foreseeable 
future. Regardless of the magnitude of error, qNTA appli-
cations must strive to bound all quantitative predictions to 
best enable confident stakeholder decisions; we emphasize 
the urgency of developing effective approaches in support 
of this goal.

Conclusions: The future of NTA performance 
assessment

Non-targeted analysis using HRMS can provide a vast 
amount of information regarding sample chemical compo-
sition. Given the diversity of approaches that can be used 
to mine information-rich NTA data, QA/QC, performance 
assessments, and awareness of possible sources of bias in 
assessing overall NTA method performance are critical to 
promoting accurate reporting and supporting critical evalu-
ations by researchers, colleagues, reviewers, and editors. 
Improved communication regarding the performance of 
NTA methods will increase implementation of NTA meth-
ods and enable effective comparisons of NTA results and 
the use of NTA data for meaningful decision-making. We 
believe the discussion presented here sheds light on the 
topic of performance in NTA studies, both demonstrating 
the need to implement performance assessments in NTA 
and providing an initial framework for further discussion in 
the community.

Of course, additional research efforts are needed 
to address the knowledge gaps discussed above (e.g., 
approaches to enable and evaluate interlaboratory transfer-
ability of sample classification models, guidance regarding 
chemical identification performance assessments across 
identification confidence levels, the necessary complexity 
of test samples, approaches/tools to assess and describe 
observable/identifiable chemical space, methods to bound 
NTA-derived quantitative predictions in real samples). Ulti-
mately, there may even be a need to develop more suitable 
performance assessment metrics that are potentially distinct 
from those presented here. We believe the development and 
availability of broadly accepted chemical standards (or crite-
ria that laboratories could use to develop their own in-house 

standards) for use in NTA performance assessments is a 
critical step. These things are necessary in order to consider 
developing accreditation standards for NTA like those that 
exist for targeted analyses. We hope the NTA community 
continues to debate and converge upon best practices for 
evaluating NTA method performance that will reduce confu-
sion, support accurate communication, and enhance broad 
usability of shared data for key stakeholders.
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