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Abstract
The analysis of tobramycin was demonstrated successfully as an example for electrospray ionization on an open-source 
hardware ion mobility spectrometer. This instrument was assembled inexpensively in-house, and required only very few 
purpose-made components. The quantitative determination of tobramycin required 20 s for a reading. The calibration curve 
for the range from 50 to 200 μM was found to be linear with a correlation coefficient of r = 0.9994. A good reproducibility 
was obtained (3% relative standard deviation) and the limit of detection was determined as 8 μM. As the concentration of 
the active ingredient in the eye drops (ophthalmic solutions) is too high for the sensitivity of the instrument, the samples 
had to be diluted appropriately.
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Introduction

Ion mobility spectrometry (IMS) is an alternative to mass 
spectrometry, or the separation methods of chromatography 
or electrophoresis, where ionic species are separated in the 
gas phase by application of an electric field. In contrast to 
chromatographic or electrophoretic techniques, the gas-
phase separation is much faster. The mobilities of the ions 
in the inert drift gas are dependent on the collision cross 
sections of the species, which are largely determined by their 
size.

A drift tube IMS instrument essentially consists of an 
ionization source, an ion shutter, a drift tube for separation, 
and a Faraday detector. The separation is based on the dif-
ferent mobilities of the analyte ions in the electric field in 
a drift gas (usually nitrogen) due to their different collision 
cross sections. An IMS instrument is substantially simpler in 
construction than a mass-spectrometer as it can be operated 
at ambient pressure and does not require the application of 
modulated electric fields. It also does not need the high-
pressure pumps and manifolds of a high-performance liquid 
chromatography (HPLC) system. In similarity to CE [1], it 

is therefore possible to build IMS instruments with limited 
resources and inexpensively, making the analytical technique 
available to parties who cannot afford state-of-the-art com-
mercial mass-spectrometers or HPLC instruments. Recently, 
detailed designs of an instrument [2] and the electronic pul-
ser circuitry [3], required for ion injection, have been pub-
lished by Clowers and coworkers in the spirit of open-source 
hardware (OSH), further facilitating in-house construction. 
We have built such an instrument in our laboratory with 
some modifications concerning mainly the electronic data 
acquisition. The electrodes and electrode spacers required 
for the drift tube could be ordered from a supply house for 
printed circuit boards, and the shutter grids for the ion injec-
tor from a company specializing in micromachining. The 
electronics for sequencing and data acquisition were based 
on commercially available units, so that only a few mechani-
cal and electronic parts were needed to be made in-house. 
The total cost was approximately 5000 Swiss Francs.

Commercially available IMS instruments usually employ 
a radioactive beta-emitter for analyte ionization of gaseous 
analytes [4]. However, alternative ionization methods are 
possible in the form of corona discharges [5, 6], UV-ioni-
zation [7, 8], or low-temperature plasmas [9–11]. Electro-
spray ionization, as a further option, has the advantage of 
being suitable for liquid samples containing non-volatile 
species [2, 12]. The study reported herein is a contribution 
to the exploration of the scope of potential applications of 
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an in-house constructed IMS instrument with electrospray 
ionization.

Tobramycin is one of the aminoglycoside antibiotics, 
which is derived from Streptomyces tenebrarius [13]. It is 
widely used to treat Gram-negative infections, particularly 
against species of Pseudomonas aeruginosa [13]. Tobramy-
cin was discovered by Eli Lilly in 1967 [14] and is effective 
by interrupting ribosomal cell functions [15, 16]. For medi-
cal use, tobramycin is typically used in eye drops (ophthal-
mic solutions) (at 0.3%(w/v)) for treatment of eye infections 
[17–19]. Like other aminoglycosides, therapy with tobramy-
cin for a long-duration time has potential dose–related side 
effects of ototoxicity and nephrotoxicity and therapeutic 
drug monitoring may be applied [13, 15].

Several analytical approaches have been reported for the 
determination of tobramycin. Immunoassays are one option, 
but require expensive reagents [20, 21]. For the common 
separation methods of HPLC, and the alternative capil-
lary electrophoresis (CE), detection by the common UV-
absorbance measurement is hampered as tobramycin has no 
strong chromophore. Chemical derivatization is therefore 
usually required to enable optical detection by absorbance or 
fluorescence [15, 22–26]; only when the required sensitivity 
is low, direct UV-absorbance detection at 210 nm may be 
employed [27]. Alternatively, evaporative light scattering 
detection [28, 29], contactless conductivity detection [30, 
31], or mass spectrometric detection [32, 33] are employed 
with HPLC or CE for the determination of tobramycin.

IMS is suitable for analytes which are ionic, or can eas-
ily be ionized, and the method has indeed been employed 
for the determination of pharmaceuticals [34]. Tobramycin 
can readily be protonated and can therefore be separated 
and determined as cation. Herein we report on an investiga-
tion into the use of the low-cost open-source hardware IMS 
instrument for the direct analysis of tobramycin in eye drops 
without requiring derivatization. Electrospray ionization 
(ESI) was used for ion generation. The detection of other 
aminoglycosides by ESI-IMS has been reported previously 
[35], but to the best of our knowledge, this is the first report 
on the use of the method for the direct quantitative determi-
nation of tobramycin in eye drops.

Materials and methods

Chemicals

All chemicals were of analytical grade. Tobramycin sulfate 
(TBM), tetrabutylammonium bromide (T4), and acetic acid 
were purchased from Sigma-Aldrich (Buchs, Switzerland). 
Benzalkonium chloride (BAC) was also obtained from 
Sigma-Aldrich (product no. 12060) and consists of ~ 70% 
benzyldimethyldodecylammonium chloride and ~ 30% 

benzyldimethyltetradecylammonium chloride. Methanol 
(HiPerSolv CHROMANORM) was bought from VWR 
(VWR Chemicals, Schlieren, Switzerland), and water used 
throughout the experiment was purified with a Milli-Q sys-
tem from Millipore (Bedford, MA, USA). All electrosprayed 
solutions were prepared in 50% (v/v) methanol in water 
with the addition of 0.01% acetic acid. The diluted samples 
were filtered through 13-mm syringe filters, Nylon 66, and 
0.45 μm (SF1303-2, BGB Analytik, Böckten, Switzerland) 
before introduction into the ESI-IMS system.

Ion mobility spectrometer

The instrument is based on the design reported by Reineke 
and Clowers and on our earlier implementation [2, 12]. A 
schematic diagram of the instrument and its periphery is 
shown in Fig. 1, and the operating parameters are summa-
rized in Table 1. The IMS tube is divided into two regions, 
viz. the desolvation and drift zones with 10.6 cm in length 
each. The drift tube was constructed from stacked ring elec-
trodes (1.6 mm thickness) and spacers (2.0 mm thickness) 
made from printed circuit board material [2], and these 
were ordered from PCBway (www.​pcbway.​com), as well as 
the two alignment boards fitted with 1-MΩ surface mount 
resistors (± 1% resistor, Stackpole Electronics, Raleigh, 
NC, USA) to create the drift field. The high-voltage genera-
tor (CZE1000R) was obtained from Spellman (Hauppage, 
NY, USA). The set of electrodes and spacers were stacked 
together on four PEEK rods (24.0 cm in length each) through 
holes at the corners of the PCBs. The injection grids accord-
ing to the Reineke and Clowers design [2] were obtained 
from Newcut (Newark, NY, USA). The pulse generator for 
driving the injection was described by Garcia et al. [3] and 
purchased from GAA Custom Electronics, Benton City, 
WA, USA (www.​mstar​2k.​com/​gaace-​home). Ion detection 
was carried with a Faraday plate connected to a current-to-
voltage converter based on a LMC6001 operational amplifier 
from Texas Instruments (Dallas, TX, USA) with an amplifi-
cation of 4.7 × 109 V/A. The signal was recorded by a 16 bit-
resolution PC oscilloscope (Picoscope 4262, Picotech, St. 
Neots, UK). An Analog Discovery 2 unit (Digilent, Pullman, 
WA, USA) was employed to sequence the injections and 
trigger the signal acquisition. Nitrogen (N2) gas (99.999% 
purity, PanGas, Pratteln, Switzerland) was employed as 
the drift gas, and its flow was regulated with a mass-flow 
controller with a range of 0–1000 mL min−1 (Bronkhorst, 
Aesch, Switzerland).

A fused silica capillary of 5 cm length, 50 μm i.d., and 
375 μm o.d. (BGB Analytik, Böckten, Switzerland) was 
employed to create the electrospray. The solutions were 
pumped by applying compressed nitrogen at a regulated 
pressure (using a DR-2–1 valve from Clippard, Cincin-
nati, OH, USA) to a sealed container (LS-BBRES-1ML, 
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LabSmith, Livermore, CA, USA). Connection to the high-
voltage generator (CZE1000R, Spellman, Hauppage, NY, 
USA) was made via a T-piece (T116-203, LabSmith) with 
a 0.5-mm-diameter platinum wire (Advent, Oxford, UK). 
Measurements were commenced about 5 s after turning on 
the electrospray voltage as it was found that this time period 
was necessary for equilibration of the system before stable 
signals were obtained.

Mass spectrometry

The instrument employed was a LCQ Deca 3D ion trap mass-
spectrometer (Finnigan MAT, San Jose, CA, USA). The 
full-scan positive ion mode with low range (200–600 m/z) 
was employed to obtain the mass spectrum using the Tune 
Plus software vs. 2.0 (Thermo Fisher Scientific, Waltham, 
MA, USA). A fused silica capillary of 100 μm inner and 
365 μm outer diameter (TSP-100365-M-10, BGB), inserted 
inside a stainless steel tube under high voltage (4.5 kV) and 
a syringe pump (KDS 100 legacy, KD Scientific, Holliston, 
MA, USA), was used to create the electrospray. The flow 
rate was set at 0.2 mL/min.

Calulations

The reduced mobilities, K0 (cm2 V−1 s−1), which can be con-
sidered to be a normalization of the measured drift times 
against the instrumental parameters of drift tube length and 

Fig. 1   Schematic diagram of 
the in-house constructed IMS 
instrument with electrospray 
ionization

Table 1   Operating parameters

Electrospray ionization

  Pressure (bar) 0.125
  Flow rate (μL/min) 2.0
  ID of capillary (μm) 50
  OD of capillary (μm) 375
  Length of capillary (mm) 5.0
  Electrospray voltage (kV) 11.0

Injection gate
  Injection time (μs) 250
  Gate pulse voltage (V) 50
  Distance between grids (μm) 300

Drift tube
  Desolvation length (cm) 10.6
  Separation drift length (cm) 10.6
  Field strength (V/cm) 425.0
  Electrode thickness (mm) 1.6
  Spacer gap (mm) 2.0
  N2 counter gas flow rate (mL/min) 500
  Drift tube temperature (°C) 23 ± 2
  Drift tube pressure (Torr) 765 ± 5

Ion detection
  Total gain (V/A) 4.7 × 109

  Number of averages (times) 200
  Analysis time (s) 20
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field strength as well as the temperature and pressure, were 
calculated according to the following equation [4]:

where L is the length (cm) of the drift tube; E the field 
strength (V/cm); td the drift time (s); p and p0 are the drift 
tube pressure and standard pressure (760 torr), respectively; 
and T and T0 are the drift tube temperature and standard 
temperature (273.15 K) respectively.

The resolving powers, Rp, were calculated according to 
the following equation:

where td is the drift time (s) and W1/2 is the full width at half 
maximum (FWHM) height.

The linear regression equation with its precision limits 
was obtained from the raw data by using the function built 
into Microsoft Excel (Microsoft Corp., Redmond, WA, 
USA).

Results and discussion

Detection of tobramycin

The detection of tobramycin with the in-house constructed 
ESI-IMS instrument is illustrated in Fig. 2A. The general 
operating conditions are summarized in Table 1. A spectrum 
acquired with the ESI generation turned off is flat except for 
an early electronic artifact caused by the injection pulse. 
The background spectrum for the blank electrolyte shows 
several peaks at drift times between 10 and 20 ms. The 
solution consists of a 1:1 mixture of methanol and water 
with the addition of 0.01% acetic acid for protonation of 
the analyte. The two main peaks in this background spec-
trum have reduced mobilities (K0) of 1.90 cm2 V−1 s−1 and 
of 1.65 cm2 V−1 s−1 and are most likely due to protonated 
clusters of water [36] with the possible inclusion of metha-
nol. Tetrabutylammonium (T4) was to be used as an internal 
standard for quantification, and at 5 μM, it gave a single peak 
at 19.8 ms. This corresponds to a reduced mobility in nitro-
gen of 1.24 cm2 V−1 s−1, which is very close to the value 
of 1.25 cm2 V−1 s−1 reported previously by our group for a 
different instrument [12] and within the range from 1.19 to 
1.42 cm2 V−1 s−1 found by Fernandez-Maestre in a literature 
survey [37]. As can also be seen from Fig. 2A, the injection 
of tobramycin at 50 μM yielded one main peak at 25.1 ms 
as well as a series of much weaker peaks at longer drift 
times, which presumably are adducts. The reduced mobil-
ity for the main peak of tobramycin was calculated as 0.97 
cm2 V−1 s−1. The last trace of Fig. 2A shows the successful 

(1)K
0
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L∕td ⋅ E
)

⋅

(

p∕p
0

)

⋅
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T
0
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)

(2)Rp =
(

td∕W1∕2

)

injection of tobramycin together with the internal standard 
tetrabutylammonium.

In order to confirm the peaks in the ion mobility spec-
trum, the solution containing the mixture of tobramycin 
and tetrabutylammonium was also analyzed by electrospray 
ionization mass spectrometry. As can be seen in Fig. 2B, the 
main peak for tobramycin is the protonated molecular ion 
(MH+) with its mass-to-charge ratio (m/z) at 468.5. Some 
smaller adduct peaks are found at higher masses, with the 
most prominent one being the sodium adduct (M + Na+). 
This matches the pattern found with IMS. A single peak is 
found for tetrabutylammonium, again in agreement with the 

Fig. 2   A Mobility spectra for tobramycin (TBM)(50  μM), tetrabu-
tylammonium (T4) (5 μM), and a mixture of TBM and T4, obtained 
with the operating parameters as listed in Table 1. B Mass spectrum 
of the mixture
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IMS spectrum. The two fragments for tobramycin at 324 and 
205 m/z units were also reported for mass spectrometry by 
other groups [32, 33]. Two barely recognizable peaks are 
present between the T4 peak and the main peak for TBM, 
which possibly may be due to fragments. However, fragmen-
tation under the IMS conditions is expected to be less pro-
nounced due to the milder working conditions (e.g., working 
at room temperature).

Optimization

The effect of the injection time (50–300 μs) for 50 μM of 
tobramycin (TBM) with tetrabutylammonium (T4) of 5 μM 
on the mobility spectra was studied. It can be seen in Fig. 3 
that when the injection time is increased, as expected, the 
peak intensity of tobramycin and of T4 is enhanced. How-
ever, on the other hand, the resolving power for TBM was 
found to decrease from 50 to 36 when increasing the injec-
tion time from 150 to 300 μs. As a compromise, an injection 
time of 250 μs was adopted for the subsequent measure-
ments. For further optimization also, the effects of the field 
strength on the sensitivity and the resolving power were 
investigated, and the results are given in Fig. 4. The field 
strength was found to have an effect on the resolving power. 
This is expected and the theory predicts a maximum, which 
is depends on the mobility of the species [38]. The reason 
why here no maximum is found must be due to the also 
expected strong loss of sensitivity at low field strength [39]. 
For the low end of the examined field strength range, the 
signal was indeed very small (leading to poor precision for 

the lowest data point) and not measurable for lower applied 
voltages. The use of field strengths at the higher end is there-
fore desirable as the signal intensity increases strongly, but 
as the resolving power might be critical, this will not always 
be possible. However, for the highest applied voltage, a sig-
nificant loss of precision is also observed.

Selectivity

The eye drops to be analyzed with the method contain 
other active ingredients and a number of excipients which 
are either specified on the packaging or simply referred to 
as inactives. Of the stated species, only the benzalkonium 
(BACs) leads to cations and therefore potential interferents. 
The benzalkonium ions are quaternary amines with an alkyl 
chain of varying lengths. According to Brignole-Baudouin 
et al. [40], only the benzyldimethyldodecylammonium and 
benzyldimethyltetradecylammonium homologues are used in 
ophthalmic solutions. These are added as chloride salts and 
act as preservatives. Thus, a mobility spectrum was acquired 
for a standard mixture of the two BACs in order to ascertain 
that there is no spectral overlap with tobramycin or the inter-
nal standard. As can be seen in Fig. 5, the two benzalkonium 
cations appear in the mobility spectrum between the peaks 
for T4 and tobramycin, and therefore, they do not interfere.

Quantification

A calibration curve was acquired for the concentration range 
from 50 to 200 μM (5 points, 3 replicates each) of tobramy-
cin by using the internal standardization method to com-
pensate for variations in the production of the electrospray. 
T4 was used as internal standard and added to a concentra-
tion of 5 μM to calibration standards and samples. A linear 
calibration was obtained for this range (y = (0.00304 ± 0.0

Fig. 3   Mobility spectra obtained for different injection times from 50 
to 300 μs. The concentrations are shown in Fig. 2, and the operating 
parameters are listed in Table 1

Fig. 4   Effect of the electric field strength on the peak area and resolv-
ing power for 50 μM TBM with the operating parameters as listed in 
Table 1. The error bars are the standard deviations for n = 3
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0006)·x + (0.00524 ± 0.00764), y = ratio of the peak areas, 
x = concentration in μM) with a correlation coefficient, r, of 
0.9994. The relative standard deviation for measurements at 
the concentration of 100 μM was found to be 3% by taking 
6 measurements. The limit of detection was determined as 
7.9 μM (3 × standard deviation). Note that the high end of 
the calibration curve was limited by a loss of linearity. At the 
low end, it should be possible to extend the working range 
by averaging more readings.

Determination of tobramycin in eye drops

Five commercial eye drops containing tobramycin were 
bought from a pharmacy in Bangkok, Thailand, and the 
proposed ESI-IMS method was applied for its determina-
tion in these commercial formulations. The samples were 
diluted by a factor of 125 with the 50% methanol in water 
(v/v) mixture, containing 0.01% (v/v) acetic acid, to bring 
the analyte concentrations according to the labels to within 
the working range of the calibration curves. The stated con-
centration was 0.3% (w/v) in all cases. T4 was added as 
internal standard at a concentration of 5 μM. The resulting 
ion mobility spectra for the eye drop samples are shown in 
Fig. 6. These spectra also show the internal standard (T4), 
the benzalkonium peaks, and some unidentified peaks, 
which may be from excipients subsumed under inactives 
on the labels. The tobramycin concentrations determined in 
the products with the internal standardization method are 
given in Table 2, which are all close to the concentration of 
0.3% (w/v) stated on the labels. However, the tobramycin 

peak for sample I appears to be slightly broadened, which 
might be due to an overlap with an unknown compound and 
this might be the reason why the recovery for this sample is 
slightly high (107%).

Conclusions

It has been demonstrated that tobramycin used as antibiot-
ics in eye drops can be quantified with a simple IMS device 
employing electrospray ionization. The method is sensi-
tive and requires only minimum sample preparation and no 
analyte derivatization. The analysis time is short, even if 
averaging several readings requiring 20 s each. However, 
the peak resolution in IMS is generally not as good as that 
of HPLC or MS, as illustrated by the possible interference 
observed for one of the samples. ESI-IMS is therefore not 

Fig. 5   Mobility spectra for the benzalkonium chloride (BACs) cations 
(5 μM), and a mixture of the BACs (5 μM) with T4 (5 μM), and TBM 
(50 μM) obtained with the operating parameters as listed in Table 1 Fig. 6   Mobility spectra for the eye drop products obtained with the 

operating parameters as listed in Table 1

Table 2   Determination of tobramycin concentration in eye drops

No Label content %(w/v) Determined con-
tent %(w/v) ± SD
n = 3

Sample I 0.3 0.32 ± 0.02
Sample II 0.3 0.26 ± 0.01
Sample III 0.3 0.27 ± 0.01
Sample IV 0.3 0.30 ± 0.01
Sample V 0.3 0.29 ± 0.01
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suited for complex samples. On the other hand, the applica-
tion demonstrated serves to illustrate the potential of open-
source analytical hardware. The instrument can be built by 
interested laboratories with little effort.
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