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Abstract
In recent years, we have seen a steady rise in the prevalence of antibiotic-resistant bacteria. This creates many challenges in 
treating patients who carry these infections, as well as stopping and preventing outbreaks. Identifying these resistant bacteria 
is critical for treatment decisions and epidemiological studies. However, current methods for identification of resistance 
either require long cultivation steps or expensive reagents. Raman spectroscopy has been shown in the past to enable the 
rapid identification of bacterial strains from single cells and cultures. In this study, Raman spectroscopy was applied for 
the differentiation of resistant and sensitive strains of Escherichia coli. Our focus was on clinical multi-resistant (extended-
spectrum β-lactam and carbapenem-resistant) bacteria from hospital patients. The spectra were collected using both UV 
resonance Raman spectroscopy in bulk and single-cell Raman microspectroscopy, without exposure to antibiotics. We found 
resistant strains have a higher nucleic acid/protein ratio, and used the spectra to train a machine learning model that differ-
entiates resistant and sensitive strains. In addition, we applied a majority of voting system to both improve the accuracy of 
our models and make them more applicable for a clinical setting. This method could allow rapid and accurate identification 
of antibiotic resistant bacteria, and thus improve public health.
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Introduction

The rise of antimicrobial resistance is a global public health 
challenge [1]. The Organisation for Economic Co-operation 
and Development (OECD) predicts that 2.4 million people 
in Europe, North America, and Australia will die from 
infections caused by resistant microorganisms before 2050, 

leading to healthcare costs up to US$3.5 billion per year [2, 
3]. In a recent study, it was shown that ~ 28% of all resist-
ance-attributed-deaths are caused by Escherichia coli strains 
that are resistant to extended-spectrum β-lactams (ESBLs) 
or carbapenems (CREs) [2, 4]. As these bacteria are spread-
ing and evolving throughout the world, global actions are 
taken to reduce the unnecessary use of last-resort antibiotics 
[1, 3]. However, due to the limitations of microbiological 
diagnostic methods, this is often not feasible.

Prescribing the correct antibiotic treatment to patients, 
in time, is of paramount importance for this cause [5]. The 
routine microbiological techniques used in clinical labora-
tories require at least 48 h and up to 4 days to deliver results 
on pathogen resistance [6, 7]. This leads physicians to use 
empirical treatment based on patient history and resistance 
rates of healthcare facilities. These treatments are not always 
appropriate and contribute to further increase antimicrobial 
resistance, since often last-line antibiotics are used unneces-
sarily [5, 8].

Therefore, there is a need for rapid and reliable diag-
nostic procedures to facilitate prompt and effective treat-
ment. Over the past decades, novel molecular diagnostic 
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techniques for the classification of pathogens and detec-
tion of resistance have been developed and applied. These 
methods have improved clinical diagnostics significantly, 
but have several disadvantages, primarily the high cost of 
consumables and the need for extensive infrastructure and 
specially trained personnel [6]. Furthermore, in case of the 
PCR assays, the method does not apply when new mutations 
naturally appear as previous knowledge is needed to design 
the assay [9, 10]. Thus, the need for a sensitive, specific, 
rapid, and reliable method for antibiotic resistance detec-
tion remains.

Raman spectroscopy is a novel technique with high 
potential for clinical applications. It is rapiand divergent 
evolution. Thed and label-free and can be applied on bacte-
rial cells with minimal sample preparation [11–13]. Raman 
spectroscopy probes the chemical fingerprint of bacterial 
cells and cultures, without the need for external reagents 
and expensive consumables. Since different strains of bac-
teria differ in their chemical composition, these differences 
are captured in their Raman spectrum and can be evaluated 
using chemometric methods [12, 14].

This technique has been shown in many studies to ena-
ble differentiation of bacterial strains and species [14–25]. 
For example, Raman microspectroscopy of single bacterial 
cells was used to differentiate strains of Mycobacteria [17], 
Burkholderia [16, 26], Legionella [19], Escherichia [15], 
and other clinically relevant bacteria [11, 27]. Alternatively, 
instead of measuring the spectra of single cells, one can also 
measure colonies or dried biomass. Raman spectroscopy on 
bulk samples was used to differentiate strains of Staphylo-
cocci [21, 23, 25], Pseudomonas [24], and other clinically 
relevant bacteria [20, 22].

Bulk measurement has advantages and disadvantages 
over single-cell analysis: it requires longer cultivation or 
enrichment, which takes time, but often produces better 
signal-to-noise ratios (S/N). This improvement is because the 
signal is coming from thousands of cells at a time. Moreover, 
in single-cell microspectroscopy, it is not practical to use 
ultraviolet (UV) illumination as the cell is destroyed from 
the high energy of the beam. UV light causes photothermal 
damage from the accumulated thermal energy applied to 
the sample, causing complex molecular structures to break 
down and burn. For bulk samples, this problem is mediated 
by rotating the slide containing the bacterial biomass in a 
spiral manner during measurement, minimizing local thermal 
build up. However, in single-cell analysis, the beam must be 
focused on the cell, destroying it entirely via photothermal 
damage.

Using UV light is important as it causes a resonance 
Raman signal enhancement of nucleic acids and aromatic 
amino acids—which improves S/N in spectra of cells 
tremendously [28–30]. When using UVRR spectroscopy on 
microbiological samples, the signals collected are primarily 

those that are resonance-enhanced—i.e., proteins, DNA, 
and RNA. On the other hand, if the samples are illuminated 
with 532 nm light, a more comprehensive look into the 
biochemistry of the cell is observed, with spectral features of 
lipids, carbohydrates proteins, and nucleic acids combined. 
This trade-off between higher S/N ratio and the number 
of spectral features observable often makes the choice of 
method for analysis difficult, yet, for difficult classification 
tasks, UVRR spectroscopy is often preferred [28]. While both 
single-cell analysis and bulk measurement have advantages 
and disadvantages important in adjusting Raman-based 
diagnostics to healthcare, no study so far has compared these 
two approaches for these applications.

Antibiotic-resistant bacteria have also been analyzed 
with Raman spectroscopy. For example, by exposing cells 
to antibiotics, resistant bacteria displayed an increase in 
a protein marker band and a decrease in a nucleic acid 
marker [31–33]. Some studies focused on differentiation 
between strains of antibiotic-resistant bacteria without anti-
biotic exposure. Namely, methicillin-resistant Staphylococ-
cus aureus [23] and multi-resistant E. coli [22, 23] were 
typed using Raman spectroscopy on bulk samples. In those 
studies, it was concluded that Raman typing can be used 
to determine whether different clinical isolates are of the 
same clonal line. Despite the fact that these studies could 
distinguish the different strains, their approach leads to a 
purely taxonomic evaluation that is not suitable for everyday 
clinical laboratory practice. This limits the application of the 
method to the strains used in the study and does not consider 
the natural differences that define their resistances. The dif-
ferences between resistant strains are many and complex, 
coming from diverse origins and divergent evolution. The 
resistance genes carried by a strain are, among others, part 
of the supra genome that contains plasmids, mobile genetic 
elements, and the bacterial chromosome. This supra genome 
significantly varies from strain to strain [34–38]. These vari-
ations are present even when the strains evolve in similar 
environments, such as a hospital. Another approach was to 
use artificially engineered antibiotic-resistant E. coli [39]. 
However, artificial selection for antimicrobial resistance 
creates strains with less diversity than those which evolve 
naturally and independently in natural and clinical environ-
ments [38].

The aim of the present study was to differentiate clinical 
multi-resistant (ESBL and CRE) E. coli isolates from sen-
sitive strains without exposure to antibiotics. Furthermore, 
for the first time, the use of Raman microspectroscopy 
on single cells and UV resonance Raman spectroscopy 
(UVRR) on bulk samples was compared for the purpose 
of differentiation between multi-resistant and sensitive bac-
teria. These findings could be applied to reduce the time, 
cost, and effort needed to detect antibiotic resistance in 
clinical settings.
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Material and methods

Antibiotic susceptibility test

Antibiotic susceptibility to extended-spectrum β-lactam 
and carbapenem antibiotics was evaluated using a VITEK 
2 Compact (bioMérieux) with VITEK® 2 AST cards (bio-
Mérieux). The test was run according to the manufacturer’s 
instructions. Furthermore, for isolates defined as “patho-
genic/sensitive” a minimum inhibitory concentration (MIC) 
test was conducted for the following antibiotics: tetracycline, 
streptomycin, polymyxin B, gentamycin, nitrofurantoin, 
chloramphenicol, trimethoprim, cefuroxime, cefaclor, cefa-
zolin, and amikacin. The tests were conducted using the 
E-Test (Liofilchem) according to the manufacturer’s instruc-
tion. Briefly, for each strain, 0.5 McFarland was spread on 
Mueller Hinton agar (Merck, Darmstadt, Germany) plates 
and exposed to a strip of varying antibiotic concentrations. 
The plates were incubated for 24 h in 37 °C, and the zone 
of growth inhibition was assessed visually to determine the 
MIC.

Sample preparation

The resistance class and sources of all E. coli used isolates 
are shown in Table S1. A total of 20 isolates were used, 
consisting of 10 multi-resistant (5 ESBL and 5 CRE) and 10 
sensitive E. coli isolates. On every measurement date, bacte-
ria were transferred from – 80 °C storage to a nutrient agar 
(NA) plate (Carl Roth) and incubated overnight at 37 °C. A 
loopful of biomass was transferred from the agar plate to 
Nutrient Broth media (Carl Roth) and incubated at 37 °C 
with shaking of 120 rpm. For each isolate, three independent 
replicates were prepared and measured on different days.

For UVRR measurements, the bacteria were harvested 
after 1 h of growth in 20 mL of Nutrient Broth media for 
heat inactivation. Three separate tubes of 1.5 mL inoculum 
were heat-inactivated at 99 °C for 5 min. The heat-inac-
tivated bacteria were washed 3 times with 1 mL distilled 
water. After centrifugation at 5000 g for 5 min (Rotina 380R, 
Hettich), the supernatant was discarded and the pellet re-
suspended in 30 μL of distilled water. Finally, bacteria were 
loaded onto a fused-silica slide and air dried at room tem-
perature for 1 h. Heat inactivation was verified by plating the 
bacteria on NA agar plates and observing no colonies after 
incubation of 24 h in 37 °C.

For Raman microspectroscopy, the bacteria were grown 
overnight (16–24 h) in 5 mL of Nutrient Broth media. The 
bacteria were then washed 3 times as described above. 
Finally, 10 μL of the washed bacterial cell suspension was 
put in droplets on Ni-foil discs and allowed to dry at room 
temperature for 15–60 min.

Raman measurements

UVRR spectra were collected using a Raman microscope 
(HR800, Horiba/Jobin–Yvon) with a focal length of 800 mm. 
244 nm of light was used for excitation, produced by a fre-
quency-doubled line of an argon-ion laser (Coherent Innova 
300, FReD). The laser was focused and directed through 
a × 40 antireflection-coated objective (LMU, NA: 0.5, UVB). 
Backscattered Raman light was collected through a 400-μm 
entrance slit into a 2400-lines/mm grating and detected by 
a nitrogen-cooled CCD camera. The spectral resolution was 
2  cm−1. For each spectrum measured, 15 s of illumination 
time, and a maximal laser power of about 18 mW, was used 
leading to about 0.5 mW on the sample. During measure-
ment, in order to avoid burning of the sample, the sample 
stage was rotated constantly in spiral manner. In each meas-
urement, a time series of 10 spectra was obtained. A total of 
25 time series were measured for each strain and replicate 
from 3 fused-silica slides. The spectra of each time series 
were averaged and considered as one spectrum to reduce 
noise. A total of ~ 750 spectra for each group (750 for the 
resistant group and 748 for the sensitive) were analyzed.

To measure individual bacterial cells using Raman micro-
spectroscopy, a Raman microscope BioParticleExplorer 
(MicrobioID 0.5, RapID) was used. A 532-nm frequency-
doubled solid-state Nd:YAG diode pumped laser (LCM-S-
111, Laser-Export Company Ltd.) was used for excitation. 
The laser beam was focused with a × 100 magnification 
objective (MPLFLN × 100, NA: 0.9, Olympus Corporation) 
on the sample with a laser power of approximately 16 mW, 
leading to approximately 3.5 mW on the cells. Backscattered 
Raman light was focused to a single-stage monochromator 
(HE 532, Horiba Jobin Yvon) equipped with a 920-lines/mm 
grating and collected with a thermoelectrically cooled CCD 
camera (DV401A-BV, Andor Technology). The spectral 
resolution was approximately 10  cm−1. For each bacterial 
cell, two consecutive Raman spectra were measured at the 
same position, which were afterward combined. Integration 
time was 15 s for each bacterial cell. For each replicate, 60 
spectra were collected. A total of > 2000 spectra for each 
group (2106 for the resistant group and 2062 for the sensi-
tive)  were analyzed.

Statistical analysis

Prior to analysis, several preprocessing steps were con-
ducted using the Ramanmetrix software [40]. Preprocess-
ing included de-spiking the spectra (based on a method 
described before [41]), wavenumber calibration, background 
correction with a sensitive nonlinear iterative peak (SNIP) 
algorithm using 40 iterations, vector normalization, and 
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cutting the spectra to the relevant range (500–1900  cm−1 
for UVRR spectra and 400–3050  cm−1 for Raman micro-
spectroscopy data). Also, for the Raman microspectroscopy 
data the silent region (1800–2800  cm−1) was removed.

Wavenumber calibration, with a polynomial fit func-
tion, was based on polystyrene spectra and 4-acetamido-
phenol spectra for UVRR and Raman microspectroscopy 
data, respectively. The polynomial degree was 2 for the 
UVRR spectra and 3 for the Raman microspectroscopy. 
A new reference spectrum was used for every measure-
ment date.

Classification models were calculated individually for 
each dataset (UVRR and Raman microspectroscopy) using 
the Ramanmetrix software. We compared principal com-
ponent analysis support vector machine (PCA-SVM) and 
principal component analysis linear discriminant analysis 
(PCA-LDA) models for both datasets and chose the optimal 
model and number of principal components based on the 
results of leave-one-strain-out cross-validation (LOSOCV). 
In this validation method, a model is trained repeatedly on 
the dataset excluding one strain, which is then predicted by 
the constructed model.

For the UVRR data, a PCA-SVM model was calculated, 
based on 4 PCs. For the Raman microspectroscopy data, a 
PCA-LDA model was calculated, based on 14 PCs.

For the Raman microspectroscopy data, prior to analy-
sis, burned spectra were removed automatically using an 
in-house R script [42]. Furthermore, outliers were removed 
from the single-cell Raman spectra by using a correlation 
filter. In this method, the Pearson correlation coefficient with 
the average preprocessed spectrum of the entire dataset is 
calculated for each spectrum as described before [43]. The 
spectra with correlation values below 0.9 were excluded 
from the further analysis. More than 98% of spectra passed 
the filter.

After the classification models were calculated, we 
applied a “Majority Voting” approach. Because of in-sample 
heterogeneity, some spectra will classify incorrectly. In order 
to reach a decision for a strain (resistant/sensitive), a “vote” 
is conducted, and the class which has the majority of spectra 
is chosen as the “decided class.” This was accomplished 
using an in-house R script.

Results and discussion

Comparison of Raman spectra of resistant 
and sensitive bacteria

We measured the Raman spectra of 20 E. coli strains with 
two spectroscopic approaches: UV resonance Raman 
(UVRR) spectroscopy with excitation wavelength of 244 nm 
and Raman microspectroscopy with excitation wavelength 

of 532 nm. The mean spectra, comparing the resistant and 
sensitive strains are presented in Fig. 1. Figure 1A presents 
the results of UVRR spectroscopy and Fig. 1B the results of 
Raman microspectroscopy. The standard deviation of each 
mean spectrum is highlighted in gray.

The spectra measured by UVRR on bulk samples 
(Fig. 1A) represent primarily bands which are enhanced by 
the resonance effect of excitation with 244 nm. We selected 
this wavelength because of the resonance enhancement of 
the Raman signal. This enhancement occurs for molecules 
with absorption bands that are near the spectral region of 
the laser excitation. When excited with 244 nm light, the 
side chain vibrations of aromatic amino acids as well as the 
vibrations of the nucleobases of nucleic acids are enhanced. 
These represent two critical components of a bacterial cell: 
proteins and nucleic acids [28].

The spectrum exhibits a well-established pattern that is 
typical for bacterial spectra, where the peaks at 786, 1242, 
1335, 1362, 1485, 1530, and 1575  cm−1 originate primarily 
from nucleic acid residues and the peaks at 762, 831, 855, 
1014, 1176, 1212, and 1617  cm−1 from aromatic amino acids 
[28, 39, 44–48]. The peaks at 1242 and 1335  cm−1 repre-
sent a mixture of signals from nucleic acids and aromatic 
amino acids [44]. The exact band assignment can be seen 
in Table S3.

In Fig. 1B, the spectra collected from single cells with 
Raman microspectroscopy are presented. Here, as the sam-
ples were illuminated with 532 nm light, no strong resonance 
effect is seen. Also, the spectra exhibit a well-established 
pattern, typical for bacterial spectra, which represents a 
large array of biomolecules [11, 12, 14]. The peaks at 2933, 
1448, and 854  cm−1 represent C-H stretching vibrations, 
 CH2 deformation vibrations, and C–C/C–O–C stretching 
vibrations, respectively, which are abundant in many lipid, 
protein, and carbohydrate molecules. The peaks at 1667 
and 1241  cm−1 are from amide I and amide III vibrations, 
respectively, and together with the sharp peak of the phe-
nylalanine ring breathing vibration (1004  cm−1) represent 
proteins in the cell. The wide peak at 1331  cm−1 represents 
 CH2 deformation vibrations in proteins and ring vibrations 
of guanine and adenine [49]. Lastly, weaker bands, such 
as 1574, 1103, 782, and 724  cm−1, represent nucleic acids 
[50, 51]. The full band assignment is presented in Table S4. 
Taken all together, these features present a larger, more phe-
notypic outlook on the chemistry of the cell than the one 
obtained by UVRR spectroscopy.

For both approaches, no clear difference can be discerned 
between the groups by observing the mean spectra. This 
finding is in accordance with previous works on the appli-
cation of Raman spectroscopy on bacterial samples [11, 12, 
14, 17, 28]. The chemical fingerprint of all bacterial spe-
cies includes the same biomolecules (mostly nucleic acids, 
proteins, and lipids). As these differ slightly in proportions, 
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structures, and composition, only slight differences exist 
between the spectra of different bacteria. The closer two 
strains are related, the smaller these differences are. This is 
especially evident here as all spectra examined come from 
the same species of bacteria, grown in the same conditions.

However, slight differences can be found by multivari-
ate statistical analysis and by calculating a difference spec-
trum. A difference spectrum was calculated by subtracting 
the mean spectrum of sensitive strains from that of resist-
ant ones. In Fig. 2, difference spectra were calculated by 
subtracting the mean spectrum of sensitive strains from the 
mean spectrum of resistant ones: (A) spectrum derived from 
UVRR spectroscopy and (B) spectrum derived from Raman 
microspectroscopy. The spectra are normalized and are pre-
sented in the same scale. The difference spectrum is pre-
sented for both UVRR and Raman microspectroscopy, and 
the peak assignments are detailed in Fig. 2. For the UVRR 
spectrum, as detailed in Table 1, the Raman bands which 
have a stronger signal in resistant bacteria are 1578 and 1536 
(guanine), 1488 (nucleic acid marker), and 789  cm−1 (cyto-
sine) [39, 52, 53]. All these vibrations represent nucleic acid 
residues. In contrast, the Raman signals which are enhanced 
for sensitive strains were 1659, 1614, 1206, 1176, 1005, and 

852  cm−1. These peaks represent the aromatic amino acids 
phenylalanine, tyrosine, tryptophan, and histidine, which are 
indicators for proteins [28]. These findings suggest that in 
resistant bacteria, we see an increase in nucleic acid/protein 
ratio.

For the Raman microspectroscopy data, where no reso-
nance effect is present, bands of all biomolecules are present 
in both the resistant and sensitive isolates. The assignments 
are given in Table 2. Raman bands which have a stronger 
signal in resistant bacteria include nucleic acids, represented 
by cytosine and thymine bands at 1640 and 1361  cm−1 and 
proteins, represented by bands 1064 and 1004  cm−1 (C–C/C-
N stretching vibrations and the ring breathing of phenylala-
nine, respectively). Lastly, the bands assigned to lipids are at 
884  cm−1 (C-O–O skeletal vibrations) and 1451  cm−1  (CH2 
deformation vibrations). Whereas for sensitive isolates, the 
nucleic acids are represented by vibrations at 728, 1484, and 
1577  cm−1 (guanine, adenine), proteins at 635 (tryosine skel-
etal vibrations), and lastly lipids by the band at 2849  cm−1 
(for  CH2 stretching vibrations). These features show again 
the presence of a phenotypic outlook of the bacterial bio-
chemical composition that is detected by the 532 nm excita-
tion. However, the difference spectrum consists of broad, 
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superimposed Raman signals with low intensity. Although 
there are peaks identifiable, they are not as prominent as in 
UVRR and are therefore difficult to interpret and negligible 
(Fig. 2B).

The findings from the UVRR difference spectrum can 
be explained by the fact that multi-resistant strains carry, 
beside their core genome, resistance genes. These genes are 
present on plasmids, bacterial chromosomes, and mobile 
genetic elements. When translated, they allow the bacteria to 
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Table 1  Assignment of Raman 
bands in the difference spectrum 
calculated from UVRR 
spectroscopy. The original 
annotations as described in the 
literature are given in brackets. 
Sensitive: signals with larger 
peaks for sensitive strains 
(negative values); resistant: 
signals with larger peaks for 
resistant strains (positive values)

Abbreviations: T thymine, C cytosine, U uracil, Phe phenylalanine, Tyr tyrosine, Trp tryptophan, His histi-
dine, G guanine

Wavenumber/cm−1 Assignment (wavenumber/cm−1) Biomolecular group

Sensitive Resistant

1659 T, C, U, Phe, amide I (1650–1655) [39] DNA/RNA, protein
1614 Tyr, Trp, Phe (1615) [39] Protein
1206 Tyr (1209) [28] Protein
1176 His (1171) [39, 48] Protein
1005 Phe (1004) [53] Protein
852 Tyr (851) [45] Protein

1578 G, Trp [46] DNA/RNA, protein
1536 G (1535–1543) [54] DNA/RNA
789 C, U (782) [39] DNA/RNA
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overcome the toxic effect of antibiotics in their environment. 
Resistance genes, which developed with the extensive use of 
antibiotics over the past 80 years, are part of an evolutionary 
process in the genome of multi-resistant strains [57]. These 
genes affect the composition of DNA in the cell both quali-
tatively and quantitatively: as resistant strains contain more 
genetic material compared to sensitive ones. This change in 
the genetic composition is likely the cause of the differences 
seen with UVRR spectroscopy.

In the 532 nm excitation, no resonance enhancement 
of the nucleic acids occurs, and thus, the small changes 
in nucleic acid content and composition are not observed. 
From a biochemical perspective, the overall metabolism 
of these different strains does not appear to have changed 
significantly. This is not surprising, since the bacteria 
were not exposed to antibiotics. Resistance mechanisms 
are often not expressed unless the cell is under stress and 
therefore the metabolism and phenotype remained nearly 
identical.

Recently, a similar Raman setup was used to study the 
difference between sensitive strains of E. coli and strains 
which were engineered to be resistant. One study simulated 
the acquisition of a resistance plasmid in a native E. coli 
strain by molecular engineering, and measured the bacteria 
with Raman microspectroscopy and UV resonance Raman 
spectroscopy [39]. Another study used Raman spectroscopy 
to discriminate between lab-evolved resistant E. coli strains 
[58]. Both studies found that the differentiation between 
the resistant and sensitive strains was indeed related to the 
nucleic acid/protein ratios. Moreover, in both studies, the 
ratio was larger for resistant strains. This supports our simi-
lar findings in the present study on clinical, naturally occur-
ring bacteria.

Classification of resistant and sensitive strains

In order to assess the ability of Raman spectroscopy to dif-
ferentiate between resistant and sensitive strains, a machine 
learning classification model was trained. Two common 
classification models, SVM for UVRR and LDA for Raman 
microspectroscopy, were used to analyze the differences in 
the spectra. The model parameters, such as number of princi-
pal components, were optimized using the leave-one-strain-
out cross-validation (LOSOCV) method. The classification 
results are presented in Table 3. In each table, Raman spec-
tra were classified into their respective class. The accuracy, 
sensitivity, and specificity of each model are also presented. 
For both UVRR data and Raman microspectroscopy data, 
the models performed with 60% accuracy. This indicates 
that the differentiation of resistant and sensitive strains is 
possible, though limited, with both methods by applying 
machine learning algorithms.

This finding is surprising given that the difference spec-
tra of the two methods differed significantly. However, this 
antagonism can be explained by the dimension reduction and 
manipulation of the data by the machine learning method. 
These methods highlight slight differences and revalues 
common features. Thus, even very minor differences, which 
are not observable in the spectra can be of significance, as 
demonstrated before [11, 59].

Application of majority voting to improve 
classification

When measuring bacteria with Raman spectroscopy, many 
spectra are measured for each isolate. Since not all the bac-
teria are perfectly identical, a natural heterogeneity can be 

Table 2  Assignment of Raman 
bands in the difference spectrum 
calculated from Raman 
microspectroscopy. The original 
annotations as described in the 
literature are given in brackets. 
Sensitive: signals with larger 
peaks for sensitive strains 
(negative values); resistant: 
signals with larger peaks for 
resistant strains (positive values)

Abbreviations: δ = deformation vibrations, ν = stretching vibrations, T thymine, C cytosine, U uracil, Phe 
phenylalanine, Tyr tyrosine, Trp tryptophan, His histidine, G guanine

Wavenumber/cm−1 Assignment (wavenumber/cm−1) Biomolecular group

Sensitive Resistant

1640 C (1640) [28] DNA/RNA
1451 δ(CH2) (1440–1460) [50, 51] Protein, lipid
1361 C, T (1369) [39, 45] DNA/RNA
1064 ν(C––C), ν(C––N) (1061) [50] Protein
1004 Phe (1004) [46] Protein
884 C-O–O (866–898) [55] Lipid
524 ν(S–S) (520–540), δ(C–O–C) glycosidic 

ring (540)[39, 55]
Protein, carbohydrate

2849 ν(CH2) (2832–2862) [56] Lipid
1577 G, A (1575–1578) [50, 51] DNA/RNA
1484 G, A (1480) [28, 46] DNA/RNA
728 A (730) [51, 53] DNA/RNA
635 Tyr [50, 51] Protein
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seen in the spectra. Especially in the single cell measure-
ments the heterogeneity is larger due to cell to cell vari-
ations originating from differences in growth stage and 
metabolism. In bulk measurements, heterogeneity is not as 
intense, since each spectrum is composed of signals from 
thousands of cells. For clinical decision-making, there is 
a need for precise results, with concrete information about 
the resistance characteristics. Therefore, this heterogeneity 
must be resolved, providing a read-out that does not refer to 
individual spectra but to an entire bacterial strain.

To eliminate this problem, we applied a majority voting 
system on the confusion matrix of the classification mod-
els. In this system, the sum of decisions is calculated and a 
vote is taken, where for each strain, a majority of classifica-
tions decides whether the strain is classified as resistant or 
sensitive. The result of majority voting per strain is shown 
in Table 4. For the UVRR spectroscopy data, the accuracy 
of the model improved from 60% in the original model to 
70% after voting, reaching a correct classification of 14/20 
strains. For the Raman microspectroscopy data, we observed 
an increase in accuracy, from 60 to 75%, correctly classify-
ing 15/20 strains.

This means that overall accuracy, with majority voting, 
has increased by 10–15%. For the UVRR data, the sensi-
tivity of the model improves much more, from 60 to 90% 
(meaning 9/10 resistant strains were correctly identified). 
Furthermore, the problem of sample heterogeneity has been 

mediated; as for each strain, only one decision remains. The 
increase in accuracy, together with removal of heterogeneity, 
helps define the presence of resistance in the strains and is 
useful for clinical decision-making.

The misclassified strains are summarized in Table S5. 
Interestingly, only the sensitive strain DSM 498 is misclas-
sified by both methods. The other nine misclassified strains 
are unique.

Overall, we found that UVRR spectroscopy and Raman 
microspectroscopy provide similar classification results. 
This finding is surprising because we expected the UVRR 
to significantly outperform Raman microspectroscopy due 
to the stronger S/R ratio and the differences in the spec-
tra (Fig. 2). The ability to differentiate resistance from 
UVRR was mostly dependent on resonance-enhanced sig-
nals. For single-cell spectra excited with 532 nm light, 
this resonance enhancement does not occur. It is likely 
that for these spectra, the classification is related not only 
to changes in genetic content, but also  to the larger meta-
bolic changes which a resistant cell undergoes. Resist-
ant bacteria show a decline in overall fitness even when 
grown in optimal conditions. This decline is related to 
a loss in enzyme efficiency, changes in cell wall thick-
ness, and membrane porin content. While each of these 
changes is important in resistance, they will not affect 
the spectra dramatically. They are slight changes in the 
overall metabolic profile of a cell [60–62]. However, it 

Table 3  Summary of the classification models results for Raman spectra in confusion matrices for UVRR and Raman microspectroscopy with 
532 nm excitation. The true labels are shown by row and the predicted classes by column. Correctly identified spectra are shown in bold

UVRR spectroscopy Prediction Accuracy/% Sensitivity/% Specificity/%
Resistant Sensitive

Reference Resistant 524 226 60.1 58.5 62.5
Sensitive 371 377 62.5 58.5

Raman microspectroscopy Prediction Accuracy/% Sensitivity/% Specificity/%
Resistant Sensitive

Reference Resistant 1250 833 59.5 59.4 59.6
Sensitive 856 1229 59.6 59.4

Table 4  Summary of the classification models’ results after majority voting in confusion matrices for UVRR and Raman microspectroscopy 
with 532 nm excitation. The true labels are shown by row and the predicted classes by column. Correctly identified spectra are shown in bold

UVRR spectroscopy Prediction Accuracy/% Sensitivity/% Specificity/%
Resistant Sensitive

References Resistant 9 1 70 90 50
Sensitive 5 5 50 90

Raman microspectroscopy Prediction Accuracy/% Sensitivity/% Specificity/%
Resistant Sensitive

Reference Resistant 7 2 75 70 80
Sensitive 3 8 80 70
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seems that even such slight changes are present in the 
spectra, and by using a machine learning algorithm, they 
enabled classification as efficient as that achieved with 
UVRR spectroscopy. This finding is the most important 
finding of this study. It highlights the applicability of 
both approaches in detecting microbial susceptibility 
and can guide future studies in the flexibility of Raman-
based diagnostics. With machine learning algorithms, one 
can extract information from nonresonant spectra that is 
as useful as resonance-enhanced spectra—for a clinical 
application.

It is important to note that since different wavelengths 
were employed as excitation sources, as well as differ-
ent sample preparation methods (bulk and single cells), a 
direct comparison of the performances of UVRR spectros-
copy and Raman microspectroscopy cannot be made. The 
same exact cell was never measured twice, and the same 
exact sample was not prepared for both devices. However, 
this is not the focus of this study. This study focuses on 
presenting the ability of different approaches using Raman 
spectroscopy and analyzing their potential individual diag-
nostic value.

One may argue about whether this method is suitable 
for clinical laboratory settings since the accuracy provided 
is only fair. However, the improvement of overall accu-
racy and sensitivity by majority voting evidenced that by 
removing the natural heterogeneity within the strain, the 
presence of resistance can be revealed. Since the number 
of stains used in this study was small, it is interesting to 
see how the diagnostic potential is shown. Further studies 
are required, with larger bacterial cohorts and a larger bio-
diversity of strains and species in order create a database 
suitable for hospital settings. The biggest advantage of 
Raman spectroscopy compared to traditional microbiol-
ogy methods is its high speed in providing results. By 
providing treating physicians with information on bacterial 
resistance early, many unnecessary prescriptions of last-
line antibiotics can be avoided. This could allow better 
management of hospital resistance rates, and hinder the 
rise of antimicrobial resistance.

Conclusions

In the present study for the first time, ESBL and CRE 
clinical E. coli isolates could be distinguished from sen-
sitive strains using Raman spectroscopy. We show that 
UVRR spectra provide better S/R ratio and a change in 
nucleic acid/protein ratio can be observed. Yet, in con-
trast to what was expected, when using machine learning 
algorithms to classify the data, both methods were com-
parable. This comparison was done for the first time on 
clinically relevant data and future studies should consider 

these methods comparable to some extent. Lastly, we 
found majority voting is key to minimizing the natural 
heterogeneity and make Raman spectroscopy more suit-
able for clinical application.

This study presents another facet of Raman spectros-
copy–based diagnostics. We conclude this method could 
enable better, rapid, label-free antibiotic resistance diag-
nostics in clinical settings. For future studies, especially 
those with clinical applications, we recommend applying a 
majority voting approach to clarify results into actionable 
information. Further work is still essential to improve clas-
sification for use in healthcare. The classification accuracy 
found in the study is limited for application, but likely with 
a larger and more diverse dataset, it could improve, provid-
ing better diagnostics to help fight the rise of antimicrobial 
resistance and for the improvement of global health.
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