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Abstract
The early detection of head and neck cancer is a prolonged challenging task. It requires a precise and accurate identification 
of tissue alterations as well as a distinct discrimination of cancerous from healthy tissue areas. A novel approach for this 
purpose uses microspectroscopic techniques with special focus on hyperspectral imaging (HSI) methods. Our proof-of-
principle study presents the implementation and application of darkfield elastic light scattering spectroscopy (DF ELSS) as 
a non-destructive, high-resolution, and fast imaging modality to distinguish lingual healthy from altered tissue regions in a 
mouse model. The main aspect of our study deals with the comparison of two varying HSI detection principles, which are a 
point-by-point and line scanning imaging, and whether one might be more appropriate in differentiating several tissue types. 
Statistical models are formed by deploying a principal component analysis (PCA) with the Bayesian discriminant analysis 
(DA) on the elastic light scattering (ELS) spectra. Overall accuracy, sensitivity, and precision values of 98% are achieved for 
both models whereas the overall specificity results in 99%. An additional classification of model-unknown ELS spectra is 
performed. The predictions are verified with histopathological evaluations of identical HE-stained tissue areas to prove the 
model’s capability of tissue distinction. In the context of our proof-of-principle study, we assess the Pushbroom PCA-DA 
model to be more suitable for tissue type differentiations and thus tissue classification. In addition to the HE-examination in 
head and neck cancer diagnosis, the usage of HSI-based statistical models might be conceivable in a daily clinical routine.

Keywords Mie elastic light scattering spectroscopy · Chemometrics/statistics · Clinical/biomedical analysis · Head and 
neck cancer · Mouse tumor model · Microspectroscopy

Introduction

Microspectroscopic imaging is a powerful tool to investigate 
biological materials of any kind and helps to reveal their 
structure, functionality, and purpose within the organism. It 
correlates the spectroscopic data with the microscopic image 
and thus allows for a spatial assignment of spectral infor-
mation. Important biological applications for microspectro-
scopic imaging, such as Raman, fluorescence, or infrared 
(IR) imaging, are the analysis of cell systems and tissues [1, 
2], particularly in cancer research and diagnosis [3].

Despite intense research and therapy development, can-
cer still belongs to one of the most threatening diseases 
humankind is suffering. In 2018, approximately 18.1 mil-
lion new cancer cases were estimated worldwide with a 
higher incidence in lung cancer, female breast cancer, and 
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colorectal cancer [4], closely followed by head and neck 
squamous cell carcinomas (HNSCC), as the sixth most 
common cancer type [5]. HNSCC encompass a variety 
of tumors originating in the lip, oral cavity, hypophar-
ynx, oropharynx, nasopharynx, or larynx. Oral squamous 
cell carcinomas (OSCC), a subset of HNSCC, account for 
355,000 new cases annually worldwide [6] with a 5-year 
survival rate of 50% [7]. In recent studies, significant 
inter-tumoral heterogeneity was observed by histopathol-
ogy, reflecting the tumor site of origin, proliferation, the 
grade of differentiation, depth of invasion, and degree of 
inflammation [8]. Oral cancer screening is inevitable for 
early detection and early treatment of tumors, which could 
considerably improve survival rates.

Early detection of HNSCC requires sensitive identifi-
cation and localization methods, able to measure small 
cell and tissue changes. So far, hematoxylin–eosin staining 
(HE-staining) represents the gold standard in histopathol-
ogy to recognize head and neck (HN) lesions in several 
stages during carcinogenesis. Additional early detection 
tools for HNSCC comprise spectroscopic technologies 
like narrowband imaging (NBI) [9], Raman [10], and 
fluorescence spectroscopy [11]. One spectroscopic tech-
nique demonstrated exceptional suitability to early detect 
preneoplastic variations during colorectal cancer genesis, 
which is elastic light scattering spectroscopy (ELSS) [12]. 
Already 2 weeks prior to the first evidence of malignant 
tissue alteration, marked changes were detectable by meas-
uring nano- and microscale architectures of the colonic 
tissue with elastic light scattering (ELS) [12]. On the cel-
lular level, ELSS elucidates morphological features such 
as size distribution of cells and nuclei or the degree of 
nuclei pleomorphism and hyperchromasia [13]. For the 
morphological tissue characterization and differentiation, 
great achievements with ELSS could not only be generated 
in colorectal cancer [14], but also in breast cancer [15], 
skin cancer [16], brain tumors [17], and most importantly 
in HNSCC [18]. Recently, our group demonstrated to dis-
tinguish formalin-fixed brain tumor tissues with a varying 
degree of malignancy by optical spectroscopy, including 
ELSS [19].

The implementation of ELSS as an imaging method 
allows for the combination of spatial (x, y-direction) with 
spectral information (λ-direction). This results in a 3D data 
matrix called a hypercube [20, 21]. The hypercube can be 
evaluated in two ways: image planes can either be extracted 
at certain wavelength bands or the whole spectrum of one 
x, y-coordinate or pixel is used within the image plane [22]. 
Various studies of cancer diagnosis with HSI were accom-
plished [23–25]. HSI has yet been investigated in terms of 
its overall suitability in cancer detection and diagnosis using 
different cancer and sample types, spectral ranges, light 
sources, acquisition modes, or evaluation algorithms [21]. 

Most groups so far concentrated on the successful classifica-
tion of different tissue or cell types to make it useable in can-
cer surgery. Our study, however, aims to investigate, for the 
first time, ELSS with two varying HSI detection principles, 
which are Whiskbroom and Pushbroom imaging, in order to 
compare their ability to detect ELS of predefined tissue sam-
ples. We want to verify whether the time-consuming point-
by-point measurement of the Whiskbroom imaging is more 
suitable for ELS detection than the line-scanning system of 
a Pushbroom imager since both imaging methods exhibit dif-
ferent lateral and spectral resolution capabilities [21]. With 
respect to data acquisition, we modified our instrumental 
setups by installing a darkfield (DF) illumination pathway 
according to Ostertag et al. [26, 27]. Our adaption conse-
quently enables darkfield elastic light scattering (DF ELS) 
as a non-contact microspectroscopic imaging modality. For 
a better understanding and comparability of both scanning 
techniques, advantages and disadvantages are summarized 
in Table 1.

As a proof-of-concept study, DF ELS Whiskbroom and 
Pushbroom imaging are applied on a HNSCC mouse model 
analyzing longitudinal-cut tissue sections of mouse tongues. 
The obtained spectral images are analyzed using multivari-
ate data analysis (MVA). By combining a principal com-
ponent analysis (PCA) and Bayesian discriminant analysis 
(DA), we generate two statistical models of the tongue tissue 
data based on both HSI detection techniques and compare if 
one of the models achieves better results in discriminating 
different tongue tissue types. Based on this discrimination, 
we derive whether noticeable differences between Whisk-
broom and Pushbroom imaging appear. Finally, the perfor-
mance of both statistical models is determined and verified 
regarding their ability to correctly classify model-unknown 
ELS spectra of varying tissue types. An additional compari-
son of the statistical model performance with classical HE 
histopathology is accomplished. If proven reliable, the sta-
tistical models could help to provide diagnostic information 
for physicians during surgery.

Materials and methods

Mouse model for OSCC and carcinogenesis

For this proof-of-concept study, we used an autologous 
mouse model of OSCC. A total amount of four different 
mice was investigated. Mice were subdivided into two con-
trol mice and two mice developing tumors. Control mice 
(mice A and B) exhibit an intact tissue structure. Therefore, 
mice A and B mainly provide healthy epithelium specimens 
as well as glandular and muscle tissue. Mice with dysplas-
tic alterations (mice C and D) display several stages of tis-
sue modification like hyperplastic and dysplastic areas or 
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invasive squamous cell carcinomas (SCC). Modified tissue, 
mainly composed of invasive SCC, was derived from mouse 
C. Altered tissue specimens of mouse D function as predic-
tion areas for the statistical model validation. Mice were 
maintained on the C57Bl/6 N genetic background.

Tumors are induced by chronic oral administration of the 
water-soluble carcinogen 4-nitroquinoline-1-oxide (4NQO) 
[8, 29, 30] that mimics the alterations caused by tobacco 
mutagens. 4NQO forms DNA adducts, causing substitution 
of adenosine for guanosine, and induces intracellular oxida-
tive stress resulting in mutations and DNA strand breaks 
[31]. Additionally, 4NQO is known to induce point muta-
tions in HRas with subsequent loss of heterozygosity [32], 
upregulation of EGFR [33], p53 mutations [8], and reduced 
expression of the cell cycle inhibitor p16 [33]. These effects 
are similar to the genetic alterations induced by tobacco car-
cinogens [8, 33]. As in human OSCC, invasive tumors are 
preceded by epithelial hyperplasia and dysplasia [8].

Mice from both genders were maintained on the 
C57BL/6 N genetic background and were housed under 
a 12-h light/12-h dark cycle, at temperatures of 20–24 °C 
with 45–65% humidity. Starting weights of the mice ranged 
between 25 g and 32 g. 4NQO (Sigma, diluted to 100 µg/
mL in water) was administered in the drinking water and 
changed once a week for 16 weeks (Fig. 1a). After that 
period, C57Bl/6 N mice were given drinking water without 
4NQO. Mice were maintained with regular mouse chow and 
water (± 4NQO) ad libitum. Once a week, 4NQO-treated 
mice were sedated with inhaled isoflurane and the oral cavi-
ties were screened for lesions (hyperplasias, dysplasias, and 
SCCs) [8, 30]. All animal procedures were subject to insti-
tutional ethical review and approved by the UK Home Office 
(in accordance with UK law, Animals Scientific Procedures 

Act 1986) at King’s College London prior to commencement 
(Project license number 70/8474). We adhere to ARRIVE 
guidelines as set out by the NC3Rs.

Tongue tissues were harvested and embedded in OCT 
(optimal cutting temperature compound, VWR). Sequential 
cross sections were cut using a cryostat (CryoStar NX50, 
ThermoFisher) at 10 µm thickness and post-fixed in 3.7% 
paraformaldehyde/PBS pH 7.4 for 15 min, washed twice 
in PBS and air-dried before staining. All murine tongues 
were cut equally in a longitudinal cutting direction. For DF 
ELS imaging, tissue sections were transferred to gold-coated 
(BioGold™ 100 nm coat thickness, Thermo Scientific™) 
microarray slides. Comparable tissue cross sections were 
additionally placed on glass objective slides and HE-stained 
by conventional methods. By HE-staining, lesions were iden-
tified and classified macroscopically and microscopically. 
We found lesions on the dorsal and ventral tongue (Fig. 1b, 
c) and some animals presented more than one lesion. HE-
images were acquired using a Hamamatsu slide scanner and 
analyzed using NanoZoomer software (Hamamatsu).

Tumor grading was assessed according to the presence of 
the following criteria: tumor cell crowding, degree of kerati-
nization, exophytic or invasive growth, scattered mitotic fig-
ures, and nuclear atypia [34]. All histological assessments 
were performed by a pathologist blinded to the study groups 
and 4NQO treatment conditions.

Owing to the great heterogeneity of tumors and modified 
tissues [35], we refrain from distinguishing several stages 
of carcinogenesis, but define all types of tumor alterations, 
including hyperplasia, dysplasia, and invasive SCC, as 
altered tissue (AT) (Fig. 1c). The healthy counterpart con-
sists of the epithelium (EP) and a mixture of glandular and 
muscle tissue (GM) (Fig. 1c), summarized as stroma.

Table 1  Advantages and 
disadvantages of Whiskbroom 
(column 2) and Pushbroom 
(column 3) imaging listed by 
several criteria (column 1). 
The following overview should 
emphasize the strength of each 
individual imaging method and 
point out customized features 
of the setups used in this study. 
Column 4 lists the references to 
each feature

Criteria Whiskbroom imaging Pushbroom imaging References

Spectral resolution High High [20, 21], customized
Spatial resolution High High [28]
Scanning speed Time-consuming Fast [21]
Field of measurement Restricted

(150 µm × 150 µm)
(by piezo table)

Large
(340 µm × several mm)

(x-direction × y-direc-
tion)

Customized

Spectrometer entrance Pinhole-based Slit-based Customized
Spatial aliasing No Yes [21], customized
Acquisition mode Off-line On-line/in-line [20]
Splitting of light uniformly high efficiency due 

to dispersive elements
Uniformly high effi-

ciency due to disper-
sive elements

[28]

Costs High
 ≥ 100,000 €

Low
 ≤ 100,000 €

[28], customized

Hardware Complex Complex [28]
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Workflow of the HSI PCA‑DA model development 
and validation

To create lingual tissue classification models, consecutive 
working steps need to be realized, starting from mouse 
breeding, drug-induced carcinogenesis protocol, tissue 
harvesting, and tongue preparation to the final statisti-
cal evaluation of spectroscopic image data. This holistic 
approach is summarized in Fig. 2.

As displayed in Fig. 2, C57Bl/6 N mice were bred for a 
total of 28 weeks and treated with 4NQO (1). After treat-
ment, mice tongues were harvested and a sequential cross 
section cutting of the tongues in a longitudinal direction 
was performed (2). The tongue and microtome blade (2) 
are schematically shown in top view. Different profile sec-
tions of each mouse were prepared on individual gold-
coated microscope slides (3). ELS DF Whiskbroom and 
Pushbroom imaging was accomplished on histopathologi-
cally predefined tissue regions of EP, GM, and AT (4). 
For Whiskbroom imaging, measuring areas were kept 
at 150 µm × 150 µm whereas measuring regions for the 
Pushbroom imaging can differ among images. An exem-
plary Pushbroom imaging region of 150 µm × 150 µm is 
depicted in (4). PCA-DA models were developed for both 

techniques in order to enable a distinct differentiation of 
all three tissue types (5). The Whiskbroom and Pushb-
room PCA-DA models were tested by predicting model-
unknown datasets of GM, EP, and AT (6). The model 
predictions are illustrated as colored areas for each tissue 
type (6).

ELS spectra acquisition in Whiskbroom 
and Pushbroom imaging modes

The principle of Whiskbroom and Pushbroom imaging 
is illustrated in Fig. 3a and b. In Whiskbroom imaging 
(Fig. 3a), the sample is scanned in a point-by-point manner 
acquiring a whole spectrum at each x, y-coordinate. In the 
end, the spectral image is obtained by combining all single-
point measurements. In Pushbroom imaging (Fig. 3b), a 
complete line is measured at once while a spectrum at each 
pixel of the line is recorded. Pushbroom imaging therefore 
allows a much faster sample scanning compared to Whisk-
broom imaging. In general, the two techniques are accom-
panied by varying but high spatial and spectral resolutions. 
Both imaging modes are applied for detecting ELS from 
tissue specimens within the scope of our study.

Whiskbroom images were recorded with a WITec Alpha 
300 RS confocal system modified as described earlier [26] 

Fig. 1  Principle of tumor induction in C57Bl/6 N mice. (a). At the 
beginning of carcinogen treatment, mice were administered the tumo-
rigenic compound 4NQO via the drinking water over a total interval 
of 16 weeks (a). Throughout this treatment, mice developed various 
carcinogenic stages including hyperplasia after 6  weeks, dyspla-
sia after 12 weeks, and oral squamous cell carcinoma (OSCC) after 
18  weeks. The administration of 4NQO was finished in week 16 
and mice were supplied with normal drinking water at that point. 

Although the 4NQO administration stopped, OSCC lesions emerged. 
The anatomical position and direction of longitudinal tongue cross 
sections is elucidated in b. An exemplary darkfield (DF) image of a 
mouse tongue is shown in c. Different tissue regions, such as gland/
muscle (green), epithelium (blue), and altered tissue (red), were 
assigned after a histopathological evaluation of a corresponding HE-
stained tissue section (yellow scale bar: 1000 µm)
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(Fig.  3c). The WITec instrument was equipped with a 
tungsten lamp (Osram, model HLX 64625), a DF mod-
ule, and a 20 × DF objective (Zeiss, EC Epiplan Apochro-
mat 20 × /0.6 HD DIC M27). A 100  µm-core diameter 
multimode fiber connects the optical output to the Acton 
SP2300i mirror-based spectrometer fitted with an Andor 
DU401 DD, 35 CCD camera (EMCCD, 16 Bit, 1024 × 127 
pixel, 26 µm × 26 µm, operating temperature: − 60 °C). The 
spectrometer was centered at 700 nm using a 150 g/mm 
(BLZ = 800 nm) grating. A spectral range of 412–975 nm 
was thus measurable. The complete optical setup achieves a 
spectral resolution of 1.6 nm. Maximum scan areas encom-
pass 150 × 150 µm limited by the range of the piezo table. 
Each spectrum was obtained with an integration time of 
0.04 s. A total number 400 ELS spectra (20 × 20 spectra) 
was acquired in a scan area of 150 × 150 µm. The applied 
scan steps equal to 7.5 µm and the scan speed corresponds 
to 0.874 s/line. Spectralon® was used as reference material 
measured with the same acquisition parameters. The instru-
mental dark current was additionally determined as dark 
current spectrum. Following data acquisition, ELS images 
were normalized with Spectralon®, and dark current spectra 
were subtracted.

Additionally, an ELS hypercube was generated with a 
Zeiss MPM 800 microscope photometer implemented with 
a Pushbroom imaging system. The Pushbroom imager con-
sisted of a spectrograph (Inno-Spec) and a CCD camera 
(QImaging, EXi Blue fluorescence microscopy camera, 
model: EXI-BLU-R-F-M-14-C) (Fig. 3d). Polychromatic 
light is generated by a tungsten lamp (Osram, model HLX 
64625) and transferred via an optical fiber (core diameter 

6.35 mm) onto the tissue sample. Elastically back-scattered 
light was collected by the above-described 20 × DF objec-
tive (Zeiss, EC Epiplan Apochromat 20⨯/0.6 HD DIC M27) 
and was finally recorded with the Pushbroom imager. The 
entrance slit dimension of the spectrometer corresponds to 
a width of 30 µm and a length of 14 mm. The spectral range 
encompasses 398–715 nm using a 600 g/mm grating. The 
area of light-sensitive pixels on the Pushbroom CCD chip 
contains 1392 × 1040 pixels whereby the first pixel num-
ber depicts the spectral axis (398–715 nm) and the second 
one represents the lateral axis. Each measured line-image 
exhibits a spatial width of 340 µm consisting of 1040 pixels. 
The lateral resolution is therefore 3 pixels/µm. Scan table 
increments were optimized to 0.3 µm. The number of line 
image scans depends on the actual tissue region and can 
vary between scans. The scan speed is 10 s/line. A spec-
tral resolution of 1.2 nm can be defined for our custom-
ized setup. Comparable to the Whiskbroom data treatment, 
Spectralon® reference spectra as well as dark current spectra 
were acquired.

Corresponding excitation and detection light paths for the 
WITec Alpha 300 RS and the Zeiss MPM 800 microscope 
photometer are visualized in Fig. 3c and d. By implement-
ing a DF illumination, the incident light laterally impinges 
on the specimen. Thus, only the diffuse ELS is detected 
whereas specular light is undetectable (Fig. 3c and d). Oth-
erwise, the specular reflected light from the tissue superim-
poses the diffuse ELS carrying the information content and 
therefore hampers its detection. Due to the DF setup, no 
additional glare removal is necessary [36] and the diffuse 
ELS measurement of the sample is facilitated. Furthermore, 

Fig. 2  Schematic illustration of the HSI PCA-DA model develop-
ment and validation workflow applied for an OSCC mouse model. 
In 1: C57Bl/6  N mice breeding. In 2: mice tongues harvesting and 
sequential cross section cutting in longitudinal direction. In 3: tongue 
cross sections were transferred to gold-coated microscope slides. In 
4: DF ELS Whiskbroom and Pushbroom imaging of predefined tis-

sue regions for EP, GM, and AT. In 5: PCA-DA model development 
for both techniques. In 6: validation of the Whiskbroom and Push-
broom PCA-DA model with a testing set of different tissue spectra. 
The model predictions are illustrated as colored ellipses for each tis-
sue type
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Fig. 3  Comparison of Whiskbroom and Pushbroom principles (a, 
b) accomplished by the two instrumental setups (c, d). In Whisk-
broom imaging (a), the sample is scanned point-by-point and a 
whole spectrum is recorded at each x, y-coordinate. The final spectral 
image derives from all single-point measurements combined. Each 
scanned point along the tongue was performed in a step-wise man-
ner and is equivalent to a 150 µm × 150 µm scan size, as depicted by 
the zoom-in of one scan area. The small scan sizes illustrated on the 
mouse tongue should reveal the size proportion between scan area 
and tongue. In Pushbroom imaging (b), a complete line of pixels is 
measured simultaneously and full spectra are acquired in each pixel. 
The length of each scan in x-direction is fixed to 340 µm whereas the 
movement in y-direction is variable. Applied scan ranges in y-direc-

tion encompassed 180–300 µm. Ideal step sizes were predetermined 
to be 0.3 µm. One image consists of the scanned x- and y-direction. 
Whiskbroom imaging was performed by the WITec instrument (c) 
and Pushbroom imaging was executed by the MPM microscope pho-
tometer equipped with a Pushbroom detection system (d). WITec 
components are described by (c1–c10), c1: tungsten lamp, c2: dark-
field module, c3: darkfield objective, c4: sample holder, c5: piezo 
scan table, c6: deflection mirror, c7: pinhole, c8: multimode optical 
fiber, c9: spectrometer, c10: CCD camera. MPM components are dis-
played by (d1–d9), d1: tungsten lamp, d2: optical fiber for white light 
transmission, d3: darkfield module (side view), d4: darkfield objec-
tive, d5: sample holder, d6: scan table, d7: prism, d8: spectrometer 
with optical elements, d9: imaging CCD camera
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we prepared our tissue samples on gold-coated objective 
slides in order to amplify the ELS of the specimen (Fig. 3a 
and b). Based on these adjustments, we intend to improve 
the overall ELS detection in order to achieve high-quality 
ELS data.

Comparability of Whiskbroom and Pushbroom data 
by spatial averaging

In order to compare Whiskbroom and Pushbroom data in 
a set scan area, a spatial averaging of spectra must be per-
formed. This is due to the different lateral resolutions of both 
methods. In our study, a scan area size of 75 × 75 µm yields 
100 ELS spectra for Whiskbroom imaging, whereas Push-
broom imaging generates 50,625 ELS spectra in the same 
area. By averaging 100 spectra for Whiskbroom into one 
spectrum and 50,625 spectra for Pushbroom imaging into a 
second spectrum, comparability can be ensured. These aver-
aged spectra for both methods thus represent the identical 
area size of 75 × 75 µm. Although DF imaging can achieve 
high lateral resolutions of 0.5–1 µm, the obtained informa-
tion content is too detailed for our purpose. Therefore, we 
chose the above-mentioned area size of 75 × 75 µm.

For the Whiskbroom PCA-DA model, a total number of 
48 EP, 28 GM, and 60 AT mean spectra were generated, as 
described above (100 spectra averaged to one spectrum for a 
defined area size of 75 × 75 µm). The Pushbroom model was 
created by 33 EP, 24 GM, and 44 AT mean spectra (50,625 
spectra averaged to one spectrum for a defined area size of 
75 × 75 µm). For prediction purposes, a test set of spectral 
data was additionally measured and averaged in the previ-
ously described manner. The Pushbroom prediction data 
consisted of 6 EP, 7 GM, and 22 AT average spectra. On the 
contrary, Whiskbroom data yielded 4 EP, 4 GM, and 16 AT 
average spectra.

Data preprocessing and PCA‑DA model 
development

For PCA-DA model formation and testing, the software 
The Unscrambler® X (Camo Software, Version: 10.5) 
was used. Spectra of both acquisition methods were pre-
processed equally with the software. At first, ELS image 
spectra were displayed as absorption spectra (-log(R)). A 
spectral smoothing according to Moving Average with 47 
segment points was applied. Next, a baseline offset correc-
tion was performed and followed by a gap derivation  (1st 
derivative, gap size: 15 pts.). All spectra were conclusively 
range-normalized.

A PCA for Whiskbroom and Pushbroom spectra was 
calculated with mean-centering using the NIPALS-algo-
rithm and the Leverage correction method for validation 
purposes. A total number of four principal components 

(PC) was required to represent the spectral data. Model 
outliers were displayed by the influence plot illustrating 
the F-residuals vs. the Hotelling’s T2 statistic with a criti-
cal limit of 5%. Spectral outliers were manually verified 
and removed from the model if proven to be true. Outlier 
spectra mostly appeared to be noisy background spectra 
measured in tissue holes. In combination with the PCA, a 
DA was accomplished with a quadratic distance calcula-
tion using four PCs.

Several validation parameters like sensitivity, specificity, 
and precision were calculated for both PCA-DA models in 
accordance with the confusion matrix terminology. They 
enabled a characterization of the models and demonstrated 
their functionality. All three parameters were computed as 
following

Each validation parameter was weighted considering 
the number of ELS tissue spectra, which contribute to the 
model.

The graphical representation of spectral and statisti-
cal data is executed with OriginPro 2018G (OriginLab 
Corporation).

Results

Histology of murine tongue tissues

The identification of different tissue types within a tongue 
tissue section requires a histological assessment, commonly 
performed using HE-staining. For our study, various tissue 
regions of longitudinal-cut murine tongue cross sections 
were HE-stained and histologically classified by our patholo-
gist Marion Roeßler. Based on the pathologist’s evaluation, 
two distinct healthy tissue areas could be distinguished in all 
mice, from which epithelium and stroma could be assigned. 
Epithelial tissue defines the outermost layer of the tongue 
lining the entire organ from the ventral to the dorsal side 
(Fig. 4a). The epithelial tissue consists of several cell lay-
ers, which are a highly proliferative basal region, followed 
by a dense and metabolically highly active suprabasal layer 
and finally a keratinized layer on top that forms the filiform 
papillae of the dorsal tongue (Fig. 4a1, dashed area). Due to 
the layered structure of the epithelium, this tissue is highly 

Sensitivity =
True Positives

True Positives + False Negatives

Specificity =
True Negatives

True Negatives + False Positives

Precision =
True Positives

True Positives + False Positives
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heterogeneous from a cross-sectional point of view. The 
epithelium sits on a stromal region that consists of fibro-
blasts, immune cells, and small capillaries in conjunction 
with extracellular matrix. Adjacent to the epithelial stroma, 
a mixed-tissue of gland and muscle, the stroma, affiliates 
(Fig. 4a1). Muscle fibers run along the cross-sectional mid-
dle part of the tongue in a highly defined and structured 
manner (Fig. 4b1). In-between those muscle fibers, glandular 
tissue is embedded, but mainly located beneath the epithelial 
layer (Fig. 4b and b1). Carcinogen-treated mice additionally 
display morphological or cell-structural alterations of epithe-
lial tissue with several tumor stages defined as hyperplasia, 
dysplasia, or SCC. An invasive SCC has been characterized 
in our mouse tongues originating from healthy epithelium 
after carcinogen treatment (Fig. 4b2, b3). Early epithelial 
changes include thickened epithelium and hyperkeratosis, 
followed by cellular and nuclear pleomorphism with abnor-
mal cellular size and shape changes, nuclear hyperchroma-
tism, and increased and abnormal mitotic figures. Moderate 
dysplasia presents loss of cell polarity, disordered maturation 
from basal to squamous cells, and increased cellular density. 

Invasive SCCs grow into underlying tissue areas by disrupt-
ing the basal membrane and loss of epithelial stratification 
(Fig. 4b2). In some specimens, SCCs also show invasion into 
gland and muscle layers (Fig. 4b). One SCC tissue segment 
could even be specified as a carcinoma variation with an 
adenocarcinoma part (Fig. 4b3) [37]. Representative areas 
of healthy and altered tissue regions were chosen for DF ELS 
imaging according to the pathologist’s evaluation.

Whiskbroom PCA‑DA model

All tissue type spectra were area-averaged, as described 
above, to a final number of 48 EP, 28 GM, and 60 AT mean 
spectra used for the PCA-DA model formation (“Materi-
als and methods”). The used spectra originated from three 
different mice (mouse A–C). In Fig. 5a, three exemplary 
Whiskbroom ELS spectra of EP, GM, and AT without any 
data preprocessing steps are shown. The ELS spectra are 
dominated by a wave-like appearance superimposed by even 
finer scattering patterns [38]. These typical features are not 
always directly visible in ELS spectra since the diffuse 

Fig. 4  Histological description of representative tissue regions for 
epithelium (EP), gland/muscle (GM), and altered tissue (AT). A lon-
gitudinal tongue section of mouse a with its anatomical orientation 
is shown in a. Epithelium in dorsal direction is marked by the black 
frame (a). An enlarged view of the dorsal epithelium (a1, dotted line) 
points out its multilayered structure. The keratinized top layer merges 
into a metabolically active epithelium layer allying to the stroma. The 
metabolic active epithelium is separated from the stroma by the base-
ment membrane. Within the uppermost layer, filiform papillae are 

embedded in a tip shape. Typical gland/muscle (b1, dotted line) and 
OSCC tissue areas (b2, b3, dotted line) are located in an overview tis-
sue section of mouse C (b). Glandular tissue is mainly implemented 
into muscle tissue indicated by the vertically oriented muscle fibers 
(b1). OSCCs are visible in b2 and b3. OSCC undergoes epithelial-
mesenchymal transition, invading subjacent tissues and interrupts the 
highly organized epithelium layer (b2). One OSCC branch addition-
ally exhibits adenocarcinoma parts (b3)
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scattering intensity is often weak and the spectral shape 
is dominated by the gold substrate (Fig. 5a). The y-axial 
intensity displacement among EP, GM, and AT spectra can 
mainly be ascribed to influences of different slice thicknesses 
(Fig. 5a). Thus, data preprocessing is mandatory to extract 
the hidden scattering information from the ELS spectra and 
to remove unwanted effects. The Whiskbroom PCA-DA 
calculation was only accomplished with preprocessed ELS 
spectra (“Materials and methods”). Exemplary preprocessed 
spectra are illustrated in Supplementary Material, Fig. S1a.

The resulting PCA for ELS Whiskbroom spectra is illus-
trated in Fig. 5b and c. The 3D scores plot shows PC1, PC2, 
and PC4 representing 85% for PC1, 5% for PC2, and 1% 
for PC4 of the total variance. All three PCs are required 
to achieve a separation of the investigated tissue types. 
Although partly overlapping, each tissue type forms one 
conglomeration. PC1 assigns mostly below-average score 
values to the spectral GM and EP clusters whereas the 
AT group is mainly characterized by above-average score 
values (Fig. 5b). In contrast to PC1, the impact of PC2 is 
less pronounced since it only affects a complete separation 
of the GM agglomeration from the AT group. It does not 
improve the segregation of the EP cluster. The EP group lies 
diagonally in-between GM and AT within the PC2 vs. PC1 
plain of the scores plot (Fig. 5b). Overall, PC2 promotes a 
slanted differentiation of the three tissue-type clusters. Cor-
responding loadings plots of PC1 and PC2 reveal the great-
est effects on the cluster formation in a wavelength region 
of 400–600 nm with two loadings maxima at 430 nm and 
503 nm for PC1 and one major negative maximum at 540 nm 
for PC2 (Fig. 5c, dashed and dotted line). Above 600 nm, 
a poorly distinct ripple structure is visible for both load-
ings plots. The loadings curves demonstrate the effect of 
the spectral ELS signature on the tissue cluster separation. 
PC4 finally enables a significantly improved separation of 
all three tissue agglomerations (Fig. 5b). The main influence 
of PC4 is the differentiation of GM and EP spectra from one 
another and it more precisely defines and shapes the tis-
sue clusters. Examination of the PC4 loadings plot shows a 

repeatedly occurring pattern partly overlaid by even smaller 
ripple elements, which refer to Mie scattering (Fig. 5c, solid 

Fig. 5  PCA model based on Whiskbroom data for the differentiation 
of EP (blue), GM (green), and AT (red). In a: exemplary ELS spectra 
of EP (blue), GM (green), and AT (red) tissue are depicted without 
any data preprocessing steps. They are displayed as absorption spec-
tra (-log(R)). In b: the 3D scores plot of the PCA reveals the separa-
tion of GM, EP, and AT groups by PC1, PC2, and PC4 explaining 
85%, 5%, and 1% of the overall variance. It shows the importance of a 
third PC to achieve a distinctly improved segregation. Only preproc-
essed ELS spectra are considered for the PCA calculation. Preproc-
essing steps encompass: moving average smoothing with 47 segment 
points, baseline offset correction, gap derivation  (1st derivative, gap 
size: 15 pts.), and range-normalization. In c: corresponding loadings 
plots for each PC of the calculated PCA. In Supplementary Material: 
the 2D scores plot of PC4 against PC3 as well as PC3 against PC2 
with the related loadings plots are shown (Fig. S2)

▸
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line). The segregation of the tissue clusters is dominated by 
these effects.

Based on the PCA calculation, a DA was subsequently 
computed and combined to a final PCA-DA model that 
allows the classification of ELS spectra from unknown lin-
gual tissue areas. The actual model was created by a training 
set of ELS spectra for EP, GM and AT and optimized with 
respect to best classification results. By applying the DA, 
a validation of the used quadratic distance algorithm with 
4 PCs was performed and illustrated as a confusion matrix 
(s. Supplementary Material, Tab. S1). As part of the con-
fusion matrix results, the training spectra themselves were 
predicted by the algorithm and afterwards grouped depend-
ent on the prediction outcome. An overview of the training 
spectra prediction is summarized in Table 2. Except for the 
AT group, the DA algorithm correctly predicted all EP and 
GM training sets (Table 2). The overall model accuracy cor-
responds to 98% for the Whiskbroom data in total.

For a precise characterization of the PCA-DA, further 
model parameters such as sensitivity, specificity, and preci-
sion were determined to represent the model’s performance. 
The parameters were calculated from the confusion matrix 
(s. Supplementary Material, Tab. S1) and describe the model 
quality. Dependent on the amount of ELS training data for 
each tissue type, the training spectra contribute differently 
to the calculation of the respective model parameters. This 
contribution was considered in terms of different weightings 
for the tissue groups. A summary of the weighted sensitiv-
ity, specificity, and precision is presented in Table 2. The 
Whiskbroom model shows holistic sensitivity and precision 
values of 98% and even exhibits a specificity of 99%. These 
parameters demonstrate that the model was optimized as 
effectively as possible with the training set. Thus, reasonable 
classifications of unknown ELS spectra are expected.

Pushbroom PCA‑DA model

For the Pushbroom PCA-DA model, 33 EP, 24 GM, and 44 
AT spectra were area-averaged in the above-described man-
ner (“Materials and methods”). All spectra were obtained 

from three different mice (mouse A–C). Exemplary Pushb-
room spectra of each tissue type without any data preproc-
essing steps are illustrated in Fig. 6a. As mentioned above, 
ELS spectra show a typical sinusoidal shape overlaid by 
smaller scattering patterns [38] which is hardly visible in the 
Pushbroom spectra (Fig. 6a). Therefore, a data preprocessing 
is again necessary to gain the actual scattering information 
and remove measuring- or sample-ascribable effects, such 
as the y-axial intensity displacement due to varying slice 
thicknesses or the impact of the gold substrate on the overall 
spectral trend (Fig. 6A). The Pushbroom PCA-DA calcula-
tion was only accomplished with preprocessed ELS spectra 
(“Materials and methods”). Exemplary preprocessed spectra 
are illustrated in the Supplementary Material, Fig. S1b.

The PCA for the ELS Pushbroom spectra is displayed in 
Fig. 6b and c. Three PCs are required to achieve an almost 
complete segregation of the EP (blue), GM (green), and 
AT clusters (red). The 3D scores plot shows PC1, PC2, 
and PC4 representing 61% for PC1, 19% for PC2, and 1% 
for PC4 of the total variance. Due to PC1 and PC2, the 
tissue clusters are arranged around the scores plot center 
with only minor overlapping of all three groups. PC1 
mainly separates the GM and EP tissue clusters from the 
AT conglomeration. Since GM and EP are mostly defined 
by below-average score values and AT by above-average 
ones, all groups are organized in the described manner. 
PC2, however, primarily enables a segregation of the EP 
group from the GM and AT clusters with a partial over-
lay of the conglomerations. The related loadings plots for 
PC1 (Fig. 6c, dashed line) and PC2 (Fig. 6c, dotted line) 
explain the arrangements of the three tissue groups in the 
scores plot based on dominating spectral effects. Within 
the loadings plot for PC1 (Fig. 6c, dashed line), two spec-
tral maxima at 411 nm and 495 nm are observable. The 
loadings plot for PC2, however, shows one main nega-
tive peak at 420 nm. For both, a periodic spectral course 
is implied in a higher wavelength range of 550–700 nm. 
PC4 is essential to achieve an almost complete differ-
entiation of the EP, GM and AT aggregation (Fig. 6b). 
The scores plot (Fig. 6b) demonstrates that PC4 not only 

Table 2  Model-related quality parameters of the Whiskbroom PCA-
DA. In addition to the total number of training spectra (column 2), 
their prediction results by the DA are listed as absolute numbers 

and in percentage terms (columns  3 and 4). The last columns (col-
umns 5–8) represent the overall accuracy, sensitivity, specificity, and 
precision of the PCA-DA model

Tissue type Total spectra 
in model

Correctly predicted 
model spectra

Proportion of correctly pre-
dicted model spectra [%]

Accuracy
[%]

Sensitivity
[%]

Specificity
[%]

Precision
[%]

Gland/muscle
(GM)

28 28 100 98 98 99 98

Epithelium
(EP)

41 41 100

Altered tissue
(AT)

58 56 97
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accomplishes a total segregation of the AT cluster from EP 
and GM, but also further separates the EP group from the 
GM one. Nevertheless, a slight overlapping between the 
EP and GM clusters remains. The examination of the PC4 
loadings plot (Fig. 6c, solid line) reveals negative maxima 
at 411 nm and 450 nm as well as a distinct spectral ripple 
pattern dominating above 530 nm which refer to Mie scat-
tering (Fig. 6c, solid line).

Subsequently, a DA was calculated, as already described 
for the Whiskbroom model. By assigning the ELS training 
spectra with the used DA algorithm, the model performance 
was verified. The performance results were summarized in a 
confusion matrix (s. Supplementary Material, Tab. S2). As 
the majority of training spectra were correctly matched by the 
model, an overall accuracy of 98% was achieved (Table 2). 
All investigated AT spectra were entirely dedicated to AT, 
whereas 32 EP and 23 GM spectra out of 33 EPs and 24 GMs 
were also attributed to EP and GM, respectively.

Identical model parameters were also calculated to 
characterize the model more accurately (Table 3). They 
indicate the model’s applicability for classification pur-
poses. All parameters were again calculated as weighted 
values that consider the different quantities of EP, GM, 
and AT spectra in the training set (Table 3). Results 
for the weighted accuracy, sensitivity, specificity, and 
precision were comparable to the Whiskbroom model.

Classification of tissue types by PCA‑DA models

Our classification approach is visualized in Fig. 7. At first, 
a histopathological identification of all three tissue types 
by HE-stained tissue sections had to be performed in order 
to localize the tissues on the ELS-ready tissue sections 
(Fig. 7a and b). Based on this tissue assignment, ELS test 
spectra of the tissue types were acquired and finally clas-
sified by the PCA-DA model (Fig. 7b, white crosshairs). 
To validate whether the classification of the model is 
true, the classification results were compared with the HE 
diagnosis of the exact same tissue regions. As indicated 

by the white crosses or checkmarks (Fig. 7c), the predic-
tion by the model either conforms to the HE-identification 

Fig. 6  PCA model based on Pushbroom data for the differentiation 
of EP (blue), GM (green), and AT (red). In a: exemplary ELS spec-
tra of EP (blue), GM (green), and AT (red) are depicted without any 
data preprocessing steps. They are displayed as absorption spectra 
(-log(R)). In b: the 3D scores plot of the PCA reveals the separation 
of GM, EP, and AT groups by PC1, PC2, and PC4 explaining 61%, 
19%, and 4% of the overall variance. It shows the importance of a 
third PC to achieve a distinctly improved segregation. Only preproc-
essed ELS spectra are considered for the PCA calculation. Preproc-
essing steps encompass: moving average smoothing with 47 segment 
points, baseline offset correction, gap derivation  (1st derivative, gap 
size: 15 pts.), and range-normalization. In c: corresponding loadings 
plots for each PC of the calculated PCA. In Supplementary Material: 
the 2D scores plot of PC4 against PC3 as well as PC3 against PC2 
with the related loadings plots are shown (Fig. S3)

▸
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(checkmark) or differed from it (cross). The corresponding 
prediction results are summarized in Table 4.

For both PCA-DA models, the test set of EP, GM, and 
AT spectra was obtained as described earlier (“Materials 
and methods”). Since the classification models were created 
by ELS training spectra of three different mouse samples 
(mouse A–C), the tissue of a fourth mouse (mouse D) was 
considered for testing the AT classification. The additional 
mouse sample should emphasize that the model can cor-
rectly assign unknown AT spectra of a completely new tissue 
sample. Furthermore, unknown EP and GM tissue regions 
of mouse samples A, B, and C were also examined with the 
PCA-DA models.

A classification of 12 different AT regions of mouse 
D, four EP regions, and two GM areas of mouse C was 
performed by the Whiskbroom model. A test set of 6 
different EP spectra of mouse A, 7 GM spectra of mouse 
B, and 22 AT spectra of mouse D, however, was used 
to verify the classification abilities of the Pushbroom 
model. A summary of the model classification results 

and the alignment with the HE diagnosis is shown in 
Table 4. Since the PCA-DA models were mainly devel-
oped for the AT recognition in tongues, mostly AT tis-
sues were included in the testing set. Overall, our clas-
sification procedure reveals the true prediction capability 
of our models.

Discussion

In this proof-of-concept study, we compare Whiskbroom 
and Pushbroom DF ELSS imaging and apply both to a 
HNSCC mouse trial. ELS image data of murine lingual 
cross sections were acquired and subsequently pre-pro-
cessed to eliminate recording-related influences. After-
wards, the ELS data were subjected to a PCA to allow 
a data reduction and extraction of the important tissues 
scattering information. By combining the PCA-structured 
ELS data with a DA, a Whiskbroom and Pushbroom PCA-
DA model was formed. These models were used to classify 

Table 3  Model-related quality parameters of the Pushbroom PCA-
DA. In addition to the total number of ELS training spectra (col-
umn  2), the classification results of the training set were listed as 

absolute numbers and in percentage terms (columns  3 and  4). The 
last columns (columns 5–8) represent the overall accuracy, sensitivity, 
specificity, and precision of the PCA-DA

Tissue type Total spectra 
in model

Correctly predicted 
model spectra

Proportion of correctly pre-
dicted model spectra [%]

Accuracy
[%]

Sensitivity
[%]

Specificity
[%]

Precision
[%]

Gland/muscle
(GM)

24 23 96 98 98 99 98

Epithelium
(EP)

33 32 97

Altered tissue
(AT)

44 44 100

Fig. 7  Classification principle of the PCA-DA models. In a: a HE-
based identification of different tissue types from a to-predict tissue 
section. The crosshairs in a indicate the tissue spots, which need to 
be located in b for ELS spectra measurements. In b: localization of 
the same tissue regions and spots on corresponding tissue sections 
used for ELS data acquisition. According to this localization, ELS 

test spectra for the different tissue types were measured at each spot 
(white crosshairs) and were afterwards classified by the PCA-DA 
models. In c: as implied by the white crosses or checkmarks, the pre-
diction of the ELS test spectra by the model either coincides with the 
HE identification (checkmark) or differs from it (cross)
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unknown mouse tissue spectra and to distinguish between 
different tongue tissue types. A verification of the PCA-DA 
models was performed with an external set of ELS test 
spectra. Identical tissue regions were histologically evalu-
ated and compared to the models’ classification results 
for validation purposes. This comparison finally allows 
determining if one of the PCA-DA models is more suit-
able to correctly identify the investigated tissue state. To 
our knowledge, the comparison of two different DF ELSS 
HSI detection principles in terms of tissue identification 
was conducted for the first time. So far, HSI only coupled 
with other spectral techniques was applied for the differ-
entiation of healthy and cancerous tissue, such as Raman 
[39], fluorescence [40], or FT-IR imaging [25].

The application of a PCA is mandatory for the enormous 
amount of data recorded by Whiskbroom and Pushbroom 
imaging. The PCA is an objective and unbiased analyzing 
tool [41], which helps to structure the ELS data matrix. 

Suitable data preprocessing removes sample- and acqui-
sition-associated effects, such as substrate background or 
section thickness. Due to the effects of PCA and data pre-
processing, the main spectral influences for the tissue dif-
ferentiation can be determined [42]. This is very important 
because the interpretation of ELS spectra is a demanding 
task as the spectral bands are not directly linked to a chemi-
cal group/vibration. The ELS patterns originate from vari-
ous tissue constituents with changing refractive index, size 
and shape and are complicated to assign to one specific 
tissue component.

Interpretation of Whiskbroom and Pushbroom 
PCA‑DA models

A combined interpretation of cluster locations within the 
scores plot and the corresponding loadings plots allows a 
deduction of spectral influences that cause the tissue group 

Table 4  Summary of the 
PCA-DA model classification 
results and HE-diagnosed 
conclusions. ELS test spectra of 
different tissue regions for AT, 
EP, and GM were classified by 
both models and HE-evaluated 
by a blinded pathologist. 
Epithelium regions (1–4) of 
the Whiskbroom model adjoin 
to one of the AT areas and are 
thus declared as EP margin. If 
the model classification and the 
HE diagnosis coincide, they are 
marked in green. Otherwise, 
they are highlighted in red and 
bold

Whiskbroom classification Pushbroom classification

Defined

tissue type

Prediction

region

Model

classified 

as

HE

diagnosed 

as

Defined

tissue type

Prediction

region

Model

classified 

as

HE

diagnosed 

as

1 EP AT 1 EP AT
2 AT AT 2 GM AT
3 EP AT 3 AT AT

4 EP AT 4 AT AT

5 AT AT 5 AT AT

6 AT AT 6 AT AT

7 AT AT 7 AT AT

8 AT AT 8 AT AT

9 AT AT 9 AT AT

10 AT AT 10 AT AT

11 AT AT 11 AT AT

Altered tissue

(AT)

12 EP AT 12 AT AT

1 EP AT 13 AT AT

2 AT AT 14 AT AT

3 AT AT 15 AT AT

Epithelium 

(margin)

(EP)
4 AT AT 16 AT AT

1 GM GM 17 AT ATGland/Muscle

(GM) 2 GM GM 18 AT AT

19 AT AT

20 AT AT

21 AT AT

Altered tissue

(AT)

22 AT AT

1 EP EP

2 GM EPEpithelium

(EP)
3 EP EP

4 EP EP

5 GM EP
6 EP EP

1 GM GM

2 GM GM

3 GM GM

4 GM GM

5 GM GM

6 GM GM

Gland/Muscle

(GM)

7 GM GM
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separation. The tissue clusters in the Pushbroom PCA seem 
to be slightly better separated from one another with an over-
all less pronounced overlay compared to the Whiskbroom 
PCA (Fig. 5b, Fig. 6b). Analyzing the related loadings plots 
of PC1 and PC2 for both PCAs (Fig. 5c, Fig. 6c) reveals 
great effects within a wavelength range of 400–600 nm. 
Since PC1 of both PCAs separates the two healthy tissue 
groups from the tumor cluster, the impact of this wavelength 
region could be ascribed to changes in the cell nuclei of the 
tissues [43]. Nuclei in tumorous tissues are often enlarged 
and vary in size and shape compared to healthy nuclei [44]. 
Within the same wavelength range, the PC2 loadings plot 
shows a negative maximum at 450 nm for the Whiskbroom 
and at 430 nm for the Pushbroom PCA (Fig. 5c, Fig. 6c). 
In this case, this effect is mostly responsible for the clus-
ter order along the PC2 axis. Based on the Whiskbroom 
cluster order, the below-average PC2 loadings maximum 
could give a hint to the structural organization of the three 
tissues. Since AT arises from intact EP, some tissue areas 
within the cancer region can still be healthy and thus might 
have the typical epithelium structure. This would explain the 
higher overlapping degree of the AT and EP group regarding 
PC2. The GM, however, is built up in a completely different 
manner in comparison to the EP or AT and consequently 
forms the most separated cluster. A small overlay of EP and 
GM groups according to PC2 can be explained by the close 
proximity of both tissues. For the Pushbroom PC2, however, 
the tissue group order is different. Although histologically 
identical tissue regions were chosen, the tissue structure and 
heterogeneity of the selected areas can differ compared to 
the Whiskbroom model and thus result in a varying clus-
ter order. Above 600 nm, a sinusoidal curve progression is 
additionally indicated in both PC1 and PC2 loadings plots 
(Fig. 5c, Fig. 6c). These curve shapes are presumed to result 
from the superposition of many scattering events. Such pat-
terns are amplified by the underlying gold substrate because 
of the gold’s pronounced reflectivity above 600 nm [45]. 
The application of PC4 causes an even more improved tis-
sue cluster segregation for the Whiskbroom and Pushbroom 
PCA (Fig. 5b, Fig. 6b). This improvement can directly be 
attributed to the periodic structure that dominates throughout 
the entire spectral range in the PC4 loadings plots (Fig. 5c, 
Fig. 6c). Again, the periodic shape is expected to correlate 
with the scattering events related to cellular changes in the 
tissues [27, 38]. Alterations in cellular or subcellular units 
affect the sophisticated tissue structure and thus its morphol-
ogy and texture [46, 47]. Differences in pattern frequency 
are observable in both PC4 loadings plots. The Whiskbroom 
PC4 loading reveals a long-wave sinusoidal shape super-
imposed by small ripple patterns whereas the Pushbroom 
loadings plot of PC4 is characterized by a ripple pattern of 
much higher frequency (Fig. 5c, Fig. 7c). A possible expla-
nation can be deduced from the detection variations of both 

imaging setups. Since the Whiskbroom setup is a confocal 
scanning system, the scattering detection just takes place in 
the confocal volume and is thus very sensitive. Therefore, 
scattering of small tissue particles in addition to larger ones 
is accurately detectable influencing the observed pattern for 
the Whiskbroom PC4 loading. The high-frequency curve 
shape of the Pushbroom PC4 loading, however, might be 
correlated to the much larger detection spot of the Push-
broom setup. Therefore, no distinction of different tissue 
microstructures is possible and thus results in an overall 
scattering impression of higher frequency. Ninety-eight 
percent of all Whiskbroom and Pushbroom model-included 
spectra were accurately attributed to their corresponding tis-
sue group (Tables 2 and 3). Additional model parameters 
confirmed the good performance of both models (Tables 2 
and 3). Other studies could show comparable sensitivity val-
ues of 91% for detecting gastric tumors [48] and an accu-
racy of 88% in a colorectal ex vivo study [49]. By using a 
PCA-DA approach, a good tissue group formation could be 
achieved. The high degree of similarities between our mod-
els demonstrates the great robustness of DF ELSS imaging.

Validation of PCA‑DA models with HE‑staining

A test set of ELS spectra was predicted by both PCA-DA 
models and identified either as EP, GM, or AT. The pre-
diction outcome is compared with the HE diagnosis of 
identical tissue regions and verified whether the results 
match or not. For the Whiskbroom model, twelve tissue 
areas are expected to be AT. Eight of these regions were 
assigned to the AT cluster whereas the remaining four 
were diagnosed as EP tissue (Table 4). One explanation 
for this discrepancy in prediction is the tumor heterogene-
ity. Tumorous tissue cannot only consist of different tumor 
subpopulations, but also of histologically healthy areas 
[35, 50, 51]. Another plausible explanation could be that 
HNSCC tumors can exhibit variable levels of cellular dif-
ferentiation. The same tumor can have regions of lower 
differentiation, possibly recognized as AT, whereas other, 
not healthy, regions are better differentiated and therefore 
classified as EP. A partial identification of the prediction 
regions as EP is thus possible. The corresponding HE 
diagnosis illustrates an overall AT impression and thus 
mostly coincide with the Whiskbroom results. Comparable 
outcomes were achieved by the Pushbroom model, which 
was able to assign 20 prediction regions out of 22 as AT 
tissue (Table 4). Only two areas were classified as EP and 
GM. The HE investigation confirmed that the tissue is 
modified. The two wrongly identified Pushbroom regions 
are once more explainable by healthy regions within an 
otherwise tumorous tissue [35, 52]. Additionally, two 
sets of EP spectra were tested against the Whiskbroom 
and Pushbroom models. The Whiskbroom PCA-DA was 
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verified with four potential EP areas adjacent to an HE-
identified carcinoma region (Table 4). These EP areas 
were chosen to investigate whether the tissue has already 
morphologically changed or is still intact. As a result, the 
model classified three of four EP regions as AT and only 
one was identified as epithelial tissue (Table 4). By close 
examination of the associated HE areas, all regions were 
categorized as AT. This comparison reveals how sensitive 
the ELS-based Whiskbroom model is in terms of detecting 
small morphological changes. Various EP regions were 
also assigned by the Pushbroom model. Four of six EP 
areas were attributed to the EP group and two of them were 
identified as GM (Table 4). The HE examination, however, 
revealed a distinct classification of all six test regions as 
EP. Both failing model predictions can be explained by 
the close vicinity of the GM tissue to the EP. For the GM 
prediction, two different testing regions were defined for 
the Whiskbroom and seven GM areas were chosen for the 
Pushbroom model (Table 4). Since the GM classification 
only plays a minor role, fewer ELS spectra were tested. 
Both GM regions were correctly allocated by the Whisk-
broom PCA-DA, which also matches with the HE-evalua-
tion (Table 4). Comparable results were achieved with the 
Pushbroom model and were additionally approved by the 
HE analysis. Here, seven out of seven test regions were 
identified as GM (Table 4). A high conformity with HE 
diagnosis was reached and thus the Whiskbroom and Push-
broom model predictions were proven reliable. The com-
parison of a statistical-based prediction model with the 
histopathology as the gold standard is a common approach 
and was also accomplished by others [53].

Comparison of Whiskbroom and Pushbroom 
PCA‑DA models

Both imaging models demonstrated good predictive skills, 
which are in high accordance with the HE diagnosis. The 
model structures of the Whiskbroom and Pushbroom PCA-
DA models are almost identical in terms of number and 
types of PCs. Besides, a great similarity was also depicted 
for all three loadings plots of both models (Fig. 5c, Fig. 6c). 
Although the acquisition principles and resolutions differ 
between Whiskbroom and Pushbroom imaging, compara-
ble statistical models could be formed with almost identi-
cal values for accuracy, sensitivity, specificity, and precision 
(Table 2, Table 3). Based on the prediction results, the Push-
broom model seemingly achieved an overall better classifi-
cation than the Whiskbroom model for all investigated tis-
sue types (Table 4). In this context, some aspects need to be 
considered. First, the overall number of ELS test spectra was 
higher for the Pushbroom prediction in comparison to the 
Whiskbroom one. Therefore, one or two misclassifications 

by the Whiskbroom model have a significant higher impact 
on the relative prediction outcome than for the Pushbroom 
model with a greater testing population. This creates the 
impression of a better Pushbroom prediction prognosis 
compared to the Whiskbroom one and favors this model 
in terms of its prediction capability. Considering identical 
testing populations, the correct classification ability might 
change between both models. For this reason, a compari-
son of the model’s prediction is difficult. Fortunately, a great 
amount of correctly predicted spectra and a small number 
of false classifications for both models occurred. Neverthe-
less, the differences of false prediction results between the 
models are minor and thus a clear capability preference for 
one or the other model is challenging to define. Second, the 
test regions of the EP margin turned out to be mostly AT 
as was confirmed by the Whiskbroom model and a detailed 
HE-diagnosis (Table 4). In further experiments, explicit EP 
regions need to be identified and examined by Whiskbroom 
imaging in order to validate whether the EP identification 
is fully possible. Still, the Whiskbroom results are reliable. 
The Pushbroom model testing, however, is thus more rep-
resentative. Nevertheless, an enlarged testing of unknown 
tissue areas would be necessary to verify and confirm that 
the Pushbroom PCA-DA is the better model for the HNSCC 
application. An extension of the ELS training set for both 
models should also be realized to further advance their sta-
tistical validity. Additional improvements will encompass an 
expansion of the mouse model with a much higher amount of 
different HN tissue samples. Therefore, tissue heterogeneity 
will become less prominent from a statistical point of view.

For assessing whether the Whiskbroom or Pushbroom 
method is more suitable for the tissue classification, the differ-
ent spatial and optical resolutions are considered. The applied 
spatial resolution for Whiskbroom imaging is equivalent to 
7.5 µm. Using this resolution in combination with a confocal 
setup, no spatial information is mixed and an overview image 
of the investigated tissue extract is generated. Although higher 
spatial resolutions would have been possible with the instrumen-
tal setup, the detected spatial information content was sufficient 
to create an accurate Whiskbroom PCA-DA model. Based on 
this model, a high number of correct tissue assignments was 
achievable (Table 4). However, a high spatial resolution would 
be necessary to detect the small tissue-related differences in a 
single-point measurement fashion. This is particularly important 
for the recognition of tissue margins. Future experiments need 
to reveal whether the chosen spatial resolution is suitable for a 
potential tissue-border identification or if an adaption in resolu-
tion is required. For this study, most tissue classifications were 
performed with pathologically distinct tissue regions. Within 
this context, we thus demonstrated that the used Whiskbroom 
model is applicable to clearly classify these tissue regions, and 
our scanned images generated the spectral information neces-
sary for this purpose. In order to resolve the spectral scattering 
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patterns of each image, the high spectral resolution of 1.6 nm 
for the Whiskbroom setup is essential. The combination of this 
spectral resolution and the applied data preprocessing ena-
bled the visualization and extraction of the Mie patterns with 
superimposed small ripples, as visualized by the loadings plots 
(Fig. 5c). Within the context of data preprocessing, a relatively 
high degree of spectral smoothing and a spatial averaging were 
applied. Both measures eliminated noise signals, but simul-
taneously maintained the superimposed small ripple patterns 
(Fig. 5c). Differences in tissue-section thicknesses were removed 
by a data normalization and are thus not represented by the scat-
tering patterns (Fig. 5c). In addition to the spatial and spectral 
resolution of the Whiskbroom imaging, the chosen spectral 
range of 412–975 nm might also play an important role in tissue 
classification. In this spectral region, the  3rd overtone of the NIR 
region is present and influences not only the model’s tissue clus-
ter formation (Fig. 5b), but also the classification outcome of the 
tissue predictions. We ascertain the NIR region to be substantial 
for the PCA tissue cluster separation and also for the good clas-
sification results by the Whiskbroom model. Certainly, this also 
results from the high photon penetration in this spectral range. 
Compared to Whiskbroom imaging, the Pushbroom imager 
reveals a similar spectral resolution of 1.2 nm, but higher spatial 
resolutions in x- and y-direction. In x-direction, the resolution 
is diffraction-limited whereas in y-direction it is equivalent to 
1.5 µm. The resolution in x-direction depends on the number 
of pixels along the axis, the microscope magnification power 
(20 ×), and the resolution limit of the optics. In y-direction, the 
spatial resolution is additionally influenced by the experimen-
tally defined step size of 0.3 µm. The combination of spatial 
resolution and step size in y-direction results in a scanning over-
lap of 1.2 µm and thus five scanning steps cover identical spec-
tral information. From a spatial perspective, Pushbroom images 
thus contain a much higher information content in comparison 
to Whiskbroom images. Each tissue section within the Pushb-
room scan range is measured and small tissue differences can be 
gathered. Using this data, a robust Pushbroom PCA-DA model 
was formed and a high level of correct tissue predictions was 
accomplished (Table 4). We assume the high spatial resolutions 
to be much more appropriate for tissue-margin identification 
than the current Whiskbroom spatial resolution. In prospective 
experiments, the effect of the Pushbroom’s spatial resolutions in 
terms of border recognition also needs to be studied. So far, the 
applied classifications only included border-free tissue regions 
which were successfully predicted by the Pushbroom model. 
Therefore, the overrepresentation of identical spectral informa-
tion due to the scanning overlap does not seem to negatively 
affect the classification outcome, as most prediction areas were 
correctly assigned by the model. Nevertheless, the spatial resolu-
tion in y-direction as well as the step size needs to be adjusted 
in a way that all the spatial information is covered and no scan 
time is wasted on identical spots. Additionally, the impact on 
the scan direction of the tissue (east to west, north to south, and 

vice versa) needs to be investigated. In combination with the 
overrepresentation of identical spectra, the earlier described data 
preprocessing (spectral smoothing and spatial averaging) might 
have caused in this case a loss of spectral information. Due to 
the additional spatial averaging, smaller Mie patterns might 
have been eliminated and the overall shape is much smoother 
in comparison to the Whiskbroom patterns, illustrated by the 
loadings (Fig. 6c). Still, the obtained spectral Mie patterns are 
representative enough to allow a distinct PCA clustering and a 
high level of correctly assigned tissue classifications (Fig. 6b, 
Fig. 6c, Table 4). One positive effect of the spectral overrepre-
sentation might be an increasing robustness of the Pushbroom 
PCA-DA model which might also be reflected by the classifica-
tion results. Compared to the Whiskbroom imaging, the spectral 
range of the Pushbroom imaging encompassed 398–715 nm and 
thus the  3rd overtone of the NIR region is not considered. This 
is a drawback of our specific Pushbroom imager since the NIR 
region has an important impact on the tissue cluster formation 
and classification results, as stated earlier for the Whiskbroom 
model. We assume that the large statistics of the Pushbroom 
model compensates for the missing spectral impact of the NIR 
region and thus generates an even better model performance 
and classification ability compared to the Whiskbroom model.

Considering all the previously mentioned arguments, we 
assess the Pushbroom imaging to be more suitable for the 
detection and classification of our mouse tissue samples in 
comparison to Whiskbroom imaging. The authors point out 
that Pushbroom imaging can only be better suitable for a spe-
cific application than Whiskbroom imaging if the scanning 
overlap and spectral overrepresentation is optimized with an 
appropriate setup. Consequently, Pushbroom imaging as a fast, 
easy-applicable, and low-cost instrument might be applicable 
as a prospective diagnostic tool in a clinical daily routine.

Conclusion

In conclusion, we successfully adapted two spectroscopic 
setups with a DF modulation to improve the detection of 
ELS and enabled the application of DF ELSS as imag-
ing modality. One of the imaging systems was based on 
a Whiskbroom point-by-point scanning whereas the other 
was equipped with a Pushbroom imager to record ELS spec-
tra in two different manners. Both imaging methods were 
employed on a HNSCC mouse model in a proof-of-concept 
study and generated a valuable ELS spectra set of differ-
ent lingual tissue types. The ELS data were treated with 
several pre-processing steps to eliminate confounding fac-
tors of the sample or during the measurements. By assess-
ing the treated ELS data with a PCA and a subsequent DA, 
we investigated whether DF ELSS imaging is capable of 
discriminating different tissue types and if either Whisk-
broom or Pushbroom detection might be more suitable for 
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this purpose. Our results show that DF ELSS is a very sensi-
tive imaging technique able to distinguish between EP, GM, 
and AT based on their characteristic ELS pattern. PCAs for 
Whiskbroom and Pushbroom imaging revealed a distinct 
separation and thus differentiation of the three tissue type 
groups, although the Pushbroom PCA achieved a better 
cluster segregation. ELS is directly linked to the tissue’s 
morphology and thus the PCA separation is based on mor-
phological changes between the tissues. Using both detec-
tion principles, accurate PCA-DA models were generated 
with which model-unknown ELS spectra were predicted and 
matched with the corresponding HE-staining. These results 
demonstrated that Whiskbroom and Pushbroom predictions 
are largely consistent with the histopathological evaluation. 
Nevertheless, we define the Pushbroom method to be more 
suitable for these samples with their specific absorption and 
scattering properties investigated in this study. Although the 
main goal of our study was the comparison of two DF ELSS 
imaging techniques and their suitability in HNSCC differ-
entiation, the possible application of a Pushbroom setup as 
a non-destructive, cheap, and high-throughput technique in 
a clinical daily routine should be emphasized.
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