Skip to main content
Log in

Metabolic network-based identification of plasma markers for non-small cell lung cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15:473–84. https://doi.org/10.1038/nrd.2016.32.

    Article  CAS  PubMed  Google Scholar 

  2. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Bio. 2019;20:353–67. https://doi.org/10.1038/s41580-019-0108-4.

    Article  CAS  Google Scholar 

  3. Hu Q, Tang H, Wang Y. Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. J Analysis Test. 2020;4:140–62. https://doi.org/10.1007/s41664-020-00126-z.

    Article  Google Scholar 

  4. Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish MA. Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites. 2020;10:224. https://doi.org/10.3390/metabo10060224.

    Article  CAS  PubMed Central  Google Scholar 

  5. Kennedy AD, Wittmann BM, Evans AM, Miller LAD, Toal DR, Lonergan S, Elsea SH, Pappan KL. Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J Mass Spectrom. 2018;53:1143–54. https://doi.org/10.1002/jms.4292.

    Article  CAS  PubMed  Google Scholar 

  6. Date Y, Kikuchi J. Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining Important Variables. Anal Chem. 2018;90:1805–10. https://doi.org/10.1021/acs.analchem.7b03795.

    Article  CAS  PubMed  Google Scholar 

  7. Alakwaa FM, Chaudhary K, Garmire LX. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data. J Proteome Res. 2017;17:337–47. https://doi.org/10.1021/acs.jproteome.7b00595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu Z-J. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun. 2019;10:1516. https://doi.org/10.1038/s41467-019-09550-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1:206–15. https://doi.org/10.1038/s42256-019-0048-x.

    Article  Google Scholar 

  10. Lee MY, Hu T. Computational Methods for the Discovery of Metabolic Markers of Complex Traits. Metabolites. 2019;9:66. https://doi.org/10.3390/metabo9040066.

    Article  CAS  PubMed Central  Google Scholar 

  11. Xu J, Zhang P, Huang Y, Zhou Y, Hou Y, Bekris L, Lathia J, Chiang C-W, Li L, Pieper A, Leverenz J, Cummings J, Cheng F (2021) Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer’s disease. Genome Res gr.272484.120. https://doi.org/10.1101/gr.272484.120

  12. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56–68. https://doi.org/10.1038/nrg2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duma N, Santana-Davila R, Molina JR. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. 2019;94:1623–40. https://doi.org/10.1016/j.mayocp.2019.01.013.

    Article  CAS  PubMed  Google Scholar 

  14. Cancer IA, of LCE and R (INTEGRAL) C for ED of L, Guida F, Sun N, Bantis LE, Muller DC, Li P, Taguchi A, Dhillon D, Kundnani DL, Patel NJ, Yan Q, Byrnes G, Moons KGM, Tjønneland A, Panico S, Agnoli C, Vineis P, Palli D, Bueno-de-Mesquita B, Peeters PH, Agudo A, Huerta JM, Dorronsoro M, Barranco MR, Ardanaz E, Travis RC, Byrne KS, Boeing H, Steffen A, Kaaks R, Hüsing A, Trichopoulou A, Lagiou P, Vecchia CL, Severi G, Boutron-Ruault M-C, Sandanger TM, Weiderpass E, Nøst TH, Tsilidis K, Riboli E, Grankvist K, Johansson M, Goodman GE, Feng Z, Brennan P, Johansson M, Hanash SM, . Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. Jama Oncol. 2018;4:e182078–e182078. https://doi.org/10.1001/jamaoncol.2018.2078.

    Article  Google Scholar 

  15. Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, Pio R, Zulueta JJ, Spira A, Massion PP, Mazzone PJ, Montuenga LM. Biomarkers in lung cancer screening: achievements, promises and challenges. J Thorac Oncol. 2018;14:343–57. https://doi.org/10.1016/j.jtho.2018.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, Wodzak M, Klimko C, McMillan E, Butt Y, Ni M, Oliver D, Torrealba J, Malloy CR, Kernstine K, Lenkinski RE, DeBerardinis RJ. Metabolic Heterogeneity in Human Lung Tumors. Cell. 2016;164:681–94. https://doi.org/10.1016/j.cell.2015.12.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruiying C, Zeyun L, Yongliang Y, Zijia Z, Ji Z, Xin T, Xiaojian Z. A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS ONE. 2020;15: e0232272. https://doi.org/10.1371/journal.pone.0232272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seow WJ, Shu X-O, Nicholson JK, Holmes E, Walker DI, Hu W, Cai Q, Gao Y-T, Xiang Y-B, Moore SC, Bassig BA, Wong JYY, Zhang J, Ji B-T, Boulangé CL, Kaluarachchi M, Wijeyesekera A, Zheng W, Elliott P, Rothman N, Lan Q. Association of Untargeted Urinary Metabolomics and Lung Cancer Risk Among Never-Smoking Women in China. Jama Netw Open. 2019;2: e1911970. https://doi.org/10.1001/jamanetworkopen.2019.11970.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu P, Li R, Antonov AA, Wang L, Li W, Hua Y, Guo H, Wang L, Liu P, Chen L, Tian Y, Xu F, Zhang Z, Zhu Y, Huang Y. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression. J Proteome Res. 2017;16:773–9. https://doi.org/10.1021/acs.jproteome.6b00779.

    Article  CAS  PubMed  Google Scholar 

  20. Hua Y, Yang X, Li R, Liu P, Liu P, Li L, Yuan X, Hua X, Tian Y, Zhang Z, Huang Y. Quantitative characterization of glutaminolysis in human plasma using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2019;411:2045–55. https://doi.org/10.1007/s00216-019-01626-3.

    Article  CAS  PubMed  Google Scholar 

  21. Luan H, Ji F, Chen Y, Cai Z. statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal Chim Acta. 2018;1036:66–72. https://doi.org/10.1016/j.aca.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  22. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Ma Y, Zhao J, Nussinov R, Zhang Y-C, Cheng F, Zhang Z-K. Computational network biology: Data, model, and applications. Phys Reports. 2019;846:1–66. https://doi.org/10.1016/j.physrep.2019.12.004.

    Article  CAS  Google Scholar 

  24. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lv L, Zhang K, Zhang T, Bardou D, Zhang J, Cai Y. PageRank centrality for temporal networks. Phys Lett A. 2019;383:1215–22. https://doi.org/10.1016/j.physleta.2019.01.041.

    Article  CAS  Google Scholar 

  26. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr Protoc Bioinform 68:e86. https://doi.org/10.1002/cpbi.86

  27. Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab. 2019;31:62–76. https://doi.org/10.1016/j.cmet.2019.11.010.

    Article  CAS  PubMed  Google Scholar 

  28. Olson KA, Schell JC, Rutter J. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends Biochem Sci. 2016;41:219–30. https://doi.org/10.1016/j.tibs.2016.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sadik A, Patterson LFS, Öztürk S, Mohapatra SR, Panitz V, Secker PF, Pfänder P, Loth S, Salem H, Prentzell MT, Berdel B, Iskar M, Faessler E, Reuter F, Kirst I, Kalter V, Foerster KI, Jäger E, Guevara CR, Sobeh M, Hielscher T, Poschet G, Reinhardt A, Hassel JC, Zapatka M, Hahn U, von Deimling A, Hopf C, Schlichting R, Escher BI, Burhenne J, Haefeli WE, Ishaque N, Böhme A, Schäuble S, Thedieck K, Trump S, Seiffert M, Opitz CA. IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell. 2020;182:1252-1270.e34. https://doi.org/10.1016/j.cell.2020.07.038.

    Article  CAS  PubMed  Google Scholar 

  30. Huang B, Song B, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metabolism. 2020;2:132–41. https://doi.org/10.1038/s42255-020-0174-0.

    Article  Google Scholar 

  31. Bai D, Wu Y, Deol P, Nobumori Y, Zhou Q, Sladek FM, Liu X. Palmitic acid negatively regulates tumor suppressor PTEN through T366 phosphorylation and protein degradation. Cancer Lett. 2021;496:127–33. https://doi.org/10.1016/j.canlet.2020.10.007.

    Article  CAS  PubMed  Google Scholar 

  32. Zou KH, O’Malley AJ, Mauri L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation. 2007;115:654–7. https://doi.org/10.1161/circulationaha.105.594929.

    Article  PubMed  Google Scholar 

  33. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–9. https://doi.org/10.1038/nature22366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng F, Zhao J, Wang Y, Lu W, Liu Z, Zhou Y, Martin WR, Wang R, Huang J, Hao T, Yue H, Ma J, Hou Y, Castrillon JA, Fang J, Lathia JD, Keri RA, Lightstone FC, Antman EM, Rabadan R, Hill DE, Eng C, Vidal M, Loscalzo J. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat Genet. 2021;53:342–53. https://doi.org/10.1038/s41588-020-00774-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruiz C, Zitnik M, Leskovec J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun. 2021;12:1796. https://doi.org/10.1038/s41467-021-21770-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oldham S, Fulcher B, Parkes L, Arnatkevic̆iūtė A, Suo C, Fornito A, . Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE. 2019;14: e0220061. https://doi.org/10.1371/journal.pone.0220061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TW-M. Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation. J Clin Invest. 2015;125:687–98. https://doi.org/10.1172/jci72873.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Li T, Mao C, Liu W, Tao Y. IL4I1-driven AHR signature: a new avenue for cancer therapy. Signal Transduct Target Ther. 2021;6:118. https://doi.org/10.1038/s41392-021-00529-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Prof. Wei Jiang at Nanjing University of Aeronautics and Astronautics for his valued suggestions and guidance of TCGA data analysis.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81903992), the Youth Foundation of Jiangsu Commission of Health (No. Q2017004), and the Jiangsu Provincial Medical Youth Talent (No. QNRC2016656).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Zhang or Yin Huang.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committees of the Cancer Hospital of Jiangsu Province and the Second Affiliated Hospital of Harbin Medical University. All procedures performed in studies involving human participants were following the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 27528 kb)

Supplementary file2 (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, L., Xu, Z. et al. Metabolic network-based identification of plasma markers for non-small cell lung cancer. Anal Bioanal Chem 413, 7421–7430 (2021). https://doi.org/10.1007/s00216-021-03699-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03699-5

Keywords

Navigation