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Abstract
Over the past few years, laser-induced breakdown spectroscopy (LIBS) has earned a lot of attention in the field of online polymer
identification. Unlike the well-established near-infrared spectroscopy (NIR), LIBS analysis is not limited by the sample thickness
or color and therefore seems to be a promising candidate for this task. Nevertheless, the similar elemental composition of most
polymers results in high similarity of their LIBS spectra, which makes their discrimination challenging. To address this problem,
we developed a novel chemometric strategy based on a systematic optimization of two factors influencing the discrimination
ability: the set of experimental conditions (laser energy, gate delay, and atmosphere) employed for the LIBS analysis and the set
of spectral variables used as a basis for the polymer discrimination. In the process, a novel concept of spectral descriptors was
used to extract chemically relevant information from the polymer spectra, cluster purity based on the k-nearest neighbors (k-NN)
was established as a suitable tool for monitoring the extent of cluster overlaps and an in-house designed random forest (RDF)
experiment combined with a cluster purity–governed forward selection algorithm was employed to identify spectral variables
with the greatest relevance for polymer identification. Using this approach, it was possible to discriminate among 20 virgin
polymer types, which is the highest number reported in the literature so far. Additionally, using the optimized experimental
conditions and data evaluation, robust discrimination performance could be achieved even with polymer samples containing
carbon black or other common additives, which hints at an applicability of the developed approach to real-life samples.
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Introduction

Since the boom of their production in the 1950s, polymers
have significantly increased the quality of human life by great-
ly expanding the availability of everyday products on the mar-
ket and facilitating innovation in diverse areas of life, such as
health care, food safety, electronics, transport, and aerospace
[1]. Nevertheless, with only about 9% of all plastics recycled
and 12% incinerated, the vast majority of the plastics ever
produced ended up in landfills or the natural environment
[2]. Spreading from the deepest seas to the tallest mountains
[3, 4], plastic pollution became present in all of the Earth’s

habitats. With its negative impacts on ecosystems, human
health, and economy, it came to be one of the greatest envi-
ronmental challenges of our time [5, 6].

The solution to the plastic problem relies on a transition to
the circular economy, in which materials stay in use as long as
possible and get recovered rather than disposed of once the
end of their lifetime is reached [7]. At present, the most viable
route for plastic recovery is the physical re-processing of the
plastic waste into granulates or new products known as me-
chanical recycling [8]. As the quality of the resulting
recyclates highly depends on the purity of the plastic fractions,
a thorough identification and sorting of the incoming waste is
required [9]. While manual sorting was the only available
option in the past, development of a near-infrared (NIR) tech-
nology enabled its automatization resulting in lower recycling
costs, higher accuracies, and ultimately, greater amounts of
plastics recycled. In the meantime, NIR-based sorting technol-
ogy became the state of the art in many European countries
[10]. Despite its outranging performance, NIR lacks the ability
to identify dark and black plastics, rendering these fractions
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unrecycled. Thus, there is a need for a method which could fill
these gaps and enable the current recycling rates to increase.

Over the past few years, laser-induced breakdown spectros-
copy (LIBS) has earned an increasing interest in the field due
to its ability of delivering a rapid analysis of materials regard-
less of their thickness or color [11, 12]. In LIBS, a pulsed laser
is employed to ablate, atomize, and excite a small portion of
the sample, forming a short-lived plasma in the process [13,
14]. As the excited species decay back to their ground levels,
the energy of the corresponding transitions is emitted in the
form of electromagnetic radiation [15]. Once detected, a com-
plex spectrum carrying information about the elemental com-
position of the sample is obtained [16]. As different species
dominate the plasma at different times, the time of detection
greatly affects the information content and appearance of the
spectra [17]. Whereas spectra detected in the early plasma
stages are dominated by emissions of ions and continuous
emission of free electrons (Bremsstrahlung), recombination
of these species results in atomic emission lines [18]. At later
stages, the energy of the plasma becomes sufficiently low for
atoms to recombine, which leads to an emergence of the mo-
lecular bands. In addition to the detection time, different ex-
perimental parameters governing plasma formation and ex-
pansion, such as laser energy or measurement atmosphere,
have an effect on the spectral appearance [19].

In the case of organic compounds such as polymers, the
amount of useful information provided by the LIBS analysis is
restricted by two phenomena: the partial loss of information
about the molecular connectivity due to the sample atomiza-
tion and the high similarity of the LIBS spectra caused by the
similar elemental composition of polymers [20]. Nevertheless,
subtle variations of the signal intensities related to the different
stoichiometric ratios of the polymeric compounds exist and
can be detected bymeans of various chemometric tools, which
opens up the possibility of their discrimination [21]. So far,
different statistical methods, such as linear and rank correla-
tion [22, 23], mutual distance in the p-dimensional space [24],
method of normalized coordinates (MNC) [25], principal
component analysis (PCA) [26–28], k-nearest neighbors
(k-NN) [29], k-means algorithm [11, 12], partial-least squares
discriminant analysis (PLS-DA) [30, 31], supported vector
machines (SVM) [32] and artificial neural networks (ANN)
[33], were employed for the identification of plastics bymeans
of LIBS. Nevertheless, in all of these studies, only a limited
number of different polymer types (mostly around 5 [23, 29,
34], maximally 12 [11, 12]) were employed to establish a
classification model. Considering the wide range of plastics
available on the market and the high complexity of today’s
products, models trained on such a limited number of polymer
types might run into problems once applied in the real-life
scenario. Moreover, none of the mentioned works addresses
the question of model robustness to the presence of polymer
additives or pigments such as carbon black, despite the fact

that this is presented as one of the main advantages of LIBS
over NIR spectroscopy.

Creating a reliable model for the discrimination of many
polymer types is, however, not a straightforward task.
Considering the signal intensities at the individual wave-
lengths as coordinates in space, each LIBS spectrum of a
polymer can be represented as a p-dimensional point. In order
for the discrimination to be efficient, LIBS spectra of one
polymer type should show higher similarity to each other than
to the spectra of other polymer types. In such case, the points
representing a single polymer type would cluster in a defined
region of the p-dimensional space, well separated from the
remaining clusters, and the inter-cluster variances would dom-
inate over the intra-cluster ones. However, the very small dif-
ferences in the LIBS spectra of polymers caused by their sim-
ilar elemental composition are often insufficient to ensure a
clear separation of the clusters. With an increasing number of
polymer types included in the identification study, the number
of clusters contained in the p-dimensional space grows and the
probability of cluster overlaps becomes correspondingly high.

This work presents the development of a statistical proce-
dure for a successful discrimination of 20 virgin polymer
types using LIBS. By employing novel chemometric ap-
proaches, such as spectral descriptors, k-NN cluster purity,
and in-house–designed RDF experiments, we are able to over-
come the limitations imposed by the spectral similarity
and achieve a significant improvement in the resolution
of the 20 virgin polymer clusters. Additionally, we dem-
onstrate the robustness of the optimized approach to the
presence of carbon black and mixture of common poly-
mer additives, which indicates its potential for the iden-
tification of real-life samples.

Materials and methods

Chemicals

Polystyrene (PS) and polyacrylonitrile (PAN) in powder
form were purchased from Acros Organics (Geel,
Belgium). Polyimide P84 (PI) was obtained from HP
Polymer GmbH (Lenzing, Austria). The remaining poly-
mer samples were virgin plastic pellets provided by the
Faculty of Biology, Chemistry and Earth Sciences,
U n i v e r s i t y o f B a y r e u t h , G e r m a n y .
N-Methyl-2-pyrrolidon (NMP) of p.a. quality, carbon
black, and butylated hydroxytoluene were purchased
from Merck (Darmstadt, Germany). Irgafos 168,
Irganox 1076, and Tinuvin 770 were obtained from
BASF (Ludwigshafen, Germany). 2,4-Dibromophenol
was obtained from Honeywell Fluka (Schwerte,
Germany). High-purity n-doped Si wafer cut into 10
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× 10-mm pieces was provided by Infineon Austria AG
(Villach, Austria).

Sample preparation

The set of virgin polymers studied in the present work was
comprised of three polymer thin films and eighteen samples of
polymer pellets, accounting for 20 different polymer types

altogether (Table 1). The thin films were prepared by dissolv-
ing PS, PAN, and PI powders in NMP, applying 50 μL of the
resulting solution (10–20 wt%) to a 10 × 10-mm high-purity
Si wafer (Infineon Austria AG, Villach, Austria) and drying at
100 °C for 4 h to remove the solvent. The polymer pellets (Ø
2–3 mm) were first embedded in an epoxy resin (Epofix Kit,
Struers GmbH, Austria) using an embedding medium to poly-
mer ratio of 100:1. The surface of the resulting samples was

Table. 1 Polymer types used in this work. PAN and PI were analyzed as thin films, the remaining polymers as embedded pellets. PS was used both
embedded and as a film (PS-E and PS-F)

Acronym Name Structure Acronym Name Structure

ABS

acrylonitrile-

butadiene-styrene 

copolymer

PET
poly(ethylene 

terephtalate)

PS-E

PS-F

embedded 

polystyrene  

polystyrene film

PI polyimide

EvAc
ethylene-vinyl 

acetate copolymer
PMMA

poly(methyl 

methacrylate)

EvOH

ethylene-vinyl 

alcohol

copolymer

POM polyoxymethylene

PA polyamide PP polypropylene

PAN polyacrylonitrile PPSU
poly(phenylene 

sulfone)

PBT
poly(butylene 

terephthalate)
PSU polysulfone

PC polycarbonate PU polyurethane

PE polyethylene PVC polyvinylchloride

PEEK polyetheretherketone Sil silicone polymer
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then polished with a SiC abrasive paper (Struers GmbH,
Austria) until a smooth horizontal cross section suitable for
the LIBS analysis was obtained.

In addition to the virgin polymers, two types of
polymer-additive samples were prepared by combining the
solutions of PS, PAN, and PI with carbon black or with a
combination of polymer additives (Table 2). The prepared
suspensions were thoroughly homogenized in an ultrasonic
bath for 1 h, vortexed for 45 s, and applied to the surface of
a Si wafer. The subsequent steps were identical with the prep-
aration of virgin polymer thin films.

LIBS analysis

The LIBS analysis was carried out using a commercially
available LIBS J200 system (Applied Spectra, Sacramento,
CA) supplied with Axiom 2.0 software. A Q-switched Nd:
YAG laser operating at the fourth harmonics of 266 nm, pulse
duration of 5 ns, and 10 Hz repetition rate was used for the
sample ablation and excitation. A system of collection optics
connected to optical fibers was used to collect and transmit the
emitted light to a 6-channel Czerny-Turner spectrometer. The
total wavelength region covered by this experimental set-up
ranged from 188 to 1048 nm.

Using a motorized x-y-z stage moving at a constant veloc-
ity of 1 mm/s, laser beam diameter of 100 μm, and horizontal
line scan pattern covering an area of 1.2 mm × 1 mm, 120
single-shot spectra were recorded for each of the virgin poly-
mer samples. In order to avoid interference, the individual
measurements were carried out at a distance of 100 μm to
the preceding measurement. Every sample was analyzed un-
der 24 different experimental conditions involving systematic
changes of laser energy (1.8, 2.4, and 3 mJ) and gate delay
(0.1, 0.4, 0.7, and 1 μs) under two different atmospheres (see
Table 3 for further details). In the case of the embedded sam-
ples, a pre-ablation step employing a laser energy of 1.8 mJ
was used to remove possible surface contamination originat-
ing from the sample preparation.

The polymer additive samples were analyzed using an op-
timized set of experimental conditions described in

“Optimization of the LIBS parameters” in the section
“Results and discussion.” In this case, 104 single-shot spectra
covering a total area of 2.6 × 0.4 mm were acquired.

Data analysis

The acquired data was imported to the multisensor imaging
tool Epina ImageLab, Release 3.30 (Epina GmbH, Retz,
Austria), which enables a fast extraction of chemically rele-
vant information from raw spectra by means of “spectral de-
scriptors.” These represent single intensities, sums of intensi-
ties, or more complex mathematical functions calculated from
specific regions of the spectra defined by the user. In the
present work, 4 types of descriptors designated as ABL,
PRW, PBL, and PLV (cf. Table 4) were used. The advantages
of using spectral descriptors in the field of FTIR/Raman have
been demonstrated in the previous work [36] and are related to
an effective reduction of the variable space while preserving
the most relevant chemical information for the given analysis.

Inspired by the previous work on polymer classification
[26], first, a basic set of spectral descriptors representing the
most characteristic features of polymers was established. As
shown in Table 5, it comprised of 10 ABL descriptors related
to the emission signals of C, H, and O, as well as to the
molecular emissions of C2 and CN. Additionally, signals of
Cl and Si were included due to the presence of PVC and
silicone in the studied polymer set.

Pre-processing of the virgin polymer data was comprised
of a random selection of 20 single-shot spectra per measure-
ment (out of the 120 spectra acquired), normalization of each
spectrum to a constant sum of 1000, extraction of the spectral
descriptor information and standardization of the resulting

Table. 2 List of compounds used for the preparation of the polymer-additive samples. The content of the individual additives was selected according to
the reference values found in the literature [35]

舃Sample 舃Name 舃Type/function 舃Concentration [wt%]

舃Carbon black 舃Carbon black 舃Pigment 舃0.5

舃Mix of additives 舃Butylated hydroxytoluene 舃Antioxidant 舃0.1

舃2,4-Dibromophenol 舃Flame retardant 舃0.1

舃Irgafos 168 舃Antioxidant 舃0.1

舃Irganox 1076 舃Processing stabilizer/antioxidant 舃0.1

舃Tinuvin 770 舃UV absorber 舃0.1

Table. 3 Experimental parameters used for the investigation of the 20
virgin polymer types. Alteration of one parameter at a time resulted in 24
unique combinations of gate delay, laser energy, and atmosphere

舃Gate delay 舃0.1 μs 舃0.4 μs 舃0.7 μs 舃1 μs

舃Laser energy 舃1.8 mJ 舃2.4 mJ 舃3 mJ

舃Atmosphere 舃Argon 舃Air
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data (mean = 0, std. dev. = 1). Thereby, the dimensionality of
the variable space was reduced from the original 12,288 di-
mensions to only 10, which has an overall positive effect on
the subsequent analysis, as it addresses the problems of
overfitting and curse of dimensionality and substantially

reduces the computation times. The multivariate analysis
of the pre-processed data—the principal component
analysis (PCA), k-nearest neighbors (k-NN), and hierar-
chical cluster analysis (HCA)—was carried out using
Epina DataLab Rel.4.0 (Epina GmbH, Retz, Austria).

Table. 4 Types of spectral descriptors used in the present work [36]

Descriptor 

Type
Definition Graphic Depiction

ABL

Sum of intensities between two

reference points (b1 and b2) with 

baseline

subtraction.

PBL

Intensity at a particular wavelength

(a1)

with baseline subtraction (b1 and b2).

PLV Intensity at a particular wavelength

(a1)

with baseline subtraction defined by

a level of a single reference point (b1).

PRW
Intensity at a particular wavelength

(a1). Baseline is not subtracted.   
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k-NN was performed with 5 nearest neighbors and ma-
jority voting, HCA with Ward’s method of linkage.
Both of the algorithms employed Euclidean measure of
distance in the p-dimensional space.

In the case of the polymer-additive experiments, all of the
104 single-shot spectra per sample were subjected to data
processing comprised of spectrum normalization to constant
sum and extraction of the optimized descriptor information
(detailed description provided in “Optimization of the spectral
descriptors/variablesS12” of the “Results and discussion” sec-
tion). The resulting data set was standardized (mean = 0, std.
dev. = 1) and subjected to the PCA analysis.

Results and discussion

As outlined in the introduction, the greatest challenge to the
identification of many polymer types by means of LIBS is the
high similarity of their spectra resulting in extensive cluster
overlaps. Therefore, the main goal of this work was to im-
prove the resolution of the 20 virgin polymer clusters in the
p-dimensional space. This could be achieved by a systematic
optimization of two sets of parameters having an influence on
the mutual separation of the clusters: the set of experimental
conditions affecting the appearance and thus the location of
the polymer spectra in the space and the set of spectral vari-
ables used as a basis of the space. In the first part of the study,
a concept of the k-NN-based cluster purity was introduced to
investigate the effect of three experimental parameters (laser
energy, gate delay, and atmosphere) on the identification po-
tential of the 20 polymer types. The dataset delivering the best
results was then subjected to a PCA and k-NN analysis, which
provided a deeper insight into the relationships of the clusters
in the p-dimensional space. The second part of the study
aimed for further improvement of the cluster resolution by
identification of a spectral descriptor set providing the best
discrimination of the studied polymers. This could be
achieved by employing an in-house-designed RDF

experiment and a forward selection algorithm governed by
the cluster purity. The final resolution of the polymer clusters
was then studied by means of PCA, k-NN, and HCA.
Eventually, PCA analysis of polymer samples containing dif-
ferent additives was performed to investigate the robustness of
the developed discrimination method.

Optimization of the LIBS parameters

As demonstrated by Fig. 1, the choice of experimental condi-
tions has a profound effect on the information delivered by the
LIBS analysis reflected by the spectral appearance.Whereas the
spectrum acquired at a shorter gate delay and argon atmosphere
provides information about the atomic emissions of carbon di-
rectly related to the polymer, this type of information is missing
in the spectrum acquired with longer gate delay and air. In this
case, the carbon content is partially encoded in the CN band
arising from the recombination of carbon species stemming
from the sample with molecules present in the surrounding air
[37]. Another difference worth highlighting is the higher total
intensity of the spectrum acquired at shorter gate delay.

The presented figure demonstrates two sets of conditions
studied for a single polymer type. Nevertheless, the current
work investigated 20 polymer types under 24 different combi-
nations of laser energy, gate delay, and atmosphere. Thus, a
more elaborate tool was required to infer the effect of the ex-
perimental conditions on the spectral appearance influencing
the positioning and clustering of the polymer points in the data
space. Therefore, a concept of total cluster purity based on the
k-NN algorithm was introduced. An intuitive representation of
this idea is depicted in Fig. 2: if the k-nearest neighbors of each
polymer within each class have the same identity as the poly-
mer itself, the clusters are expected to be pure and the identifi-
cation of the polymers efficient, whereas if the identity of the
k-nearest neighbors is random, the total cluster purity is expect-
ed to be low and the polymer identification poor.

In practice, cluster purity can be obtained using the follow-
ing procedure:

1. Determine the k-nearest neighbors of each data point.
2. Estimate the class labels of the neighbors using the k-NN

algorithm.
3. Track the frequencies of occurrence of the individual sam-

ple (Yj )-neighbor ( bY i ) combinations in the correspond-
ing cells of the k-NN contingency table (nij).

舃bY inY j 舃Y1 舃Y2 舃… 舃Ys 舃Sums

舃bY 1 舃n11 舃n12 舃… 舃n1s 舃a1
舃bY 2 舃n21 舃n22 舃… 舃n2s 舃a2
舃⋮ 舃⋮ 舃⋮ 舃⋱ 舃⋮ 舃⋮

Table. 5 Basic set of spectral descriptors

舃Emission signal 舃Integrated wavelength range [nm]

舃C (I) 舃192.59–193.41

舃C (I) 舃247.44–248.44

舃Si (I) 舃250.17–253.77

舃Si (I) 舃287.49–288.89

舃CN violet band 舃387.42–388.65

舃C2 Swan band delta ν-1 舃473.22–474.24

舃C2 Swan band delta ν 舃516.23–516.75

舃H (I) 舃650.19–663.74

舃O (I) 舃776.51–778.42

舃Cl (I) 舃837.16–838.35
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舃bYs 舃ns1 舃ns2 舃… 舃nss 舃as
舃Sums 舃b1 舃b2 舃… 舃bs 舃∑

i; j
ni; j ¼ N

4. Use results of the contingency table to calculate the
adjusted Rand index value, RIadj [38], according to
the following equation:

RIadj ¼
∑i; j

nij
2

� �
− ∑i

ai
2

� �
∑ j

b j

2

� �� �
=

n
2

� �
1

2
∑i

ai
2

� �
þ ∑ j

b j

2

� �� �
− ∑i

ai
2

� �
∑ j

b j

2

� �� �
=

n
2

� �

The resulting adjusted Rand index value represents the ex-
tent of cluster purity (low values correspond to randomly
mixed clusters, a value of 1 to perfectly pure ones). In order
to account for the possible signal fluctuations among the
single-shot spectra, the process of random data selection, de-
scriptor extraction, and calculation of the cluster purity was
performed 100 times. The resulting mean cluster purities ob-
tained under the individual experimental conditions are sum-
marized in Table 6.

As the trends in the cluster purity show, all of the investi-
gated parameters (laser energy, gate delay, and atmosphere)
had an effect on the cluster separation and thus on the identi-
fication potential of the 20 virgin polymer types. In the vast

majority of experiments, an increase in the laser energy result-
ed in an improved cluster purity, which correlates well with
the fact that the laser energy of 3 mJ delivered the highest
signal-to-noise ratio. The most significant changes of the clus-
ter purity were related to the alterations of gate delay, which
clearly demonstrates the importance of its optimization. In the
case of polymers, this process typically involves finding a
compromise between shorter gate delays delivering atomic
signals of high intensities and longer gate delays providing
information about the arisingmolecular emissions. In the pres-
ent work, the greatest identification potential was achieved at
the earliest gate delay (0.1 μs), which can be explained by a
high intensity of the carbon atomic emission line and a simul-
taneous presence of the C2 molecular bands in the corre-
sponding spectra. The presence of the C2 signals at compara-
bly short gate delays was reported in previous work dealing
with LIBS analysis of organic compounds [39] and attributed
to the fractionation of larger carbon clusters directly ejected
from the sample rather than the recombination of C atoms
upon plasma expansion and cooling.

Comparing the two atmospheres, argon delivered bet-
ter results than air in all of the investigated cases. This
might be explained by the presence of collision partners
contributing to the formation of mixed polymer-air spe-
cies, such as CN [37], which might lead to a depletion

Fig. 1 LIBS spectra of PS
obtained under two different
experimental settings. Gray
regions highlight the polymer-
specific signals

Fig. 2 Use of the k-NN algorithm for assessment of the cluster purity; a low cluster purity—the k-nearest neighbors of each data point/sample belong to
random classes, b high cluster purity—the k-nearest neighbors of each data point belong to the same class as the data point
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of the polymer-specific species crucial for a successful
identification.

To sum up, the best resolution of the 20 virgin polymer
clusters studied in the present work could be achieved using
the highest laser energy (3 mJ), shortest gate delay (0.1 μs),
and argon atmosphere (Table 6, bold value). In order to obtain

a visual impression of the data, a PC1/PC2 score/score plot
accounting for 62.61% of the total data variance is presented
in Fig. 3 together with the corresponding loadings.

As the PC1 loadings imply, the separation of the
polymers along the PC1 axis was mostly governed by
the intensities of the atomic and molecular emissions of

Table. 6 RIadj values obtained with different combinations of laser energy and gate delay for argon (left) and air (right). Bold: best set of experimental
conditions

舃Laser Energy [%] 舃Argon 舃Air

舃Gate delay [μs] 舃Gate delay [μs]

舃0.1 舃0.4 舃0.7 舃1 舃0.1 舃0.4 舃0.7 舃1

舃60 舃0.6525 舃0.5282 舃0.3158 舃0.2409 舃0.4650 舃0.3090 舃0.2485 舃0.1433

舃80 舃0.7314 舃0.6936 舃0.4866 舃0.3250 舃0.5646 舃0.3693 舃0.2460 舃0.2028

舃100 舃0.7558 舃0.7501 舃0.5594 舃0.4354 舃0.5382 舃0.4266 舃0.3086 舃0.2343

Fig. 3 Basic set of spectral
descriptors: separation of the
polymer clusters in the plane
defined by principal component 1
(horizontal axis) and principal
component 2 (vertical axis); LIBS
conditions: 100% laser energy,
0.1 μm gate delay, argon
atmosphere
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carbon related to the native molecular bonds (C–C and
C=C) of the polymers. Whereas polymers such as POM
with no native C–C bonds or PE with saturated C–C
backbone and simple H substituents reached lower
scores and ended up in the left region of the plot, the
scores of the polymers containing aromatic rings, such
as PC or PS, were comparably higher, which resulted in
their rightward position. These findings correlate well
with the findings of Grégoire et al. [28] published pre-
viously. Introduction of the second PC axis resulted in a
complete separation of the silicone group from the re-
maining classes and an improved resolution of polymers
with similar molecular structures. Despite this fact, the
overlap of many polymer classes remained high, which
implied a rather poor potential of their identification.
Interestingly, the two types of polystyrene samples in-
volved in the study (polystyrene film—PS-F and em-
bedded polystyrene pellets—PS-E) seem to occupy
slightly different regions of the space, which might al-
low for their discrimination. A reason for this could be
the different ablation behavior of the two samples. As
the PC1/PC2 plot provides only a 2-dimensional repre-
sentation of the 10-dimensional data, the PCA results
were complemented with a k-NN contingency analysis
providing detailed information on the surroundings of
the individual polymers in the basic descriptor space
(Fig. 4).

According to this, only the clusters of PEEK, PET, PVC,
and Sil were completely pure. Other classes of polymers shar-
ing common structural features, such as PMMA and EvOH,
PU and PC, or ABS and PS-F, were prone to cluster overlaps
leading to decreased identification rates. The discrimination
among PE, PP, and EvAc (containing 14 wt% Ac) was shown
to be the most problematic, which can be attributed to the high
degree of their spectral similarity. As the total cluster purity
achieved in this data set, representing the optimal experimen-
tal conditions, was rather poor (RIadj = 0.7558), an additional
means of improving the resolution of the 20 virgin polymer
clusters was required.

Optimization of the spectral descriptors/variables

The approach presented in this section relies on redefinition of
the variable space in such a way that an optimal cluster sepa-
ration becomes guaranteed. In order to find a combination of
variables fulfilling this condition, the basic set of variables
was augmented by additional descriptors in a two-step
process:

At first, 30 descriptors of three additional types were gen-
erated using the same spectral regions as in the basic descrip-
tor set (Table 5). They represented raw signal intensities with
(PBL and PLV) and without (PRW) a baseline correction. In
the case of the PBL descriptors, the baseline was defined by an
average of 5 neighboring (detector) pixels to the reference
points, whereas in the case of the PLV descriptors, a fixed

Fig. 4 Basic set of spectral descriptors: k-NN contingency table providing the information about the identity of the 5 nearest neighbors to all datapoints
from one polymer type; LIBS conditions: 100% laser energy, 0.1 μm gate delay, argon atmosphere
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baseline at 187.98 nm was selected due to the lack of interfer-
ing emissions across the investigated range of samples. At the
end of this step, the augmented descriptor set was comprised
of 40 descriptors (ABL, PRW, PLV, PBL) representing the
most characteristic emission features of the studied polymers.

The second step involved the identification of additional
spectral regions important for the discrimination of the 20
polymers . This could be achieved by us ing an
in-house-designed random forest (RDF) experiment, in which
the studied polymers were divided into two classes depending
on the presence or absence of certain chemical substructures.
A random forest classifier was trained to discriminate these
two classes, and the resulting variable importance was used to
identify spectral regions supporting their discrimination.

In this work, two such experiments were performed,
one aiming to identify the spectral regions important for
the discrimination of the aromatic and non-aromatic

polymers and one for the discrimination of the
N-containing and N-lacking polymers. Each of these
RDF experiments (no. of trees = 75, R = 0.5) was
carried out twice, once using a raster of raw signal
intensities (PRW descriptors) with a regular spacing of
0.3 nm and once using a raster of peak areas (ABL
descriptors) with a regular spacing of 0.9 nm. By
appending all descriptors with a high variable impor-
tance to the augmented descriptor set, a total of 84
spectral descriptors relevant for the discrimination of
the 20 virgin polymers were obtained.

Finally, this set of 84 descriptors was pruned by applying a
simple forward selection algorithm (Fig. 5), keeping only
those descriptors which contribute most to the improvement
of the cluster purity. In order to ensure the stability of the
selected descriptor set, the pruning was repeated with 10 dif-
ferent datasets obtained by random sampling of the measured
data.

As no significant improvements of the cluster purity could
be observed with more than 10 descriptors (Fig. 5, blue point),
the forward selection was stopped after the 10th descriptor
resulting in a set of 10 optimized descriptors. As presented
in Table 7, the optimized set contained 4 of the original
ABL descriptors representing the baseline-corrected peak
areas of O, C, and H and of 6 descriptors of PBL, PLV, and
PRW types representing the baseline-corrected as well as
baseline-non-corrected peak intensities from the emission re-
gions of C, O, Si, C2, and CN.

The ability of the optimized descriptor set to provide an
improved cluster resolution was first examined by means of
PCA. In contrast to the basic set of descriptors, almost com-
plete separation of the polymer classes across the PC1/PC2
plane could be achieved (Fig. 6).

As before, the PCA results were complemented by a con-
tingency table of k-NN providing a detailed information on
the surroundings of the polymers in the optimized descriptor
space (Fig. 7).

Table. 7 Optimized set of spectral descriptors; bl: baseline

舃Importance 舃Emission signal 舃Descriptor type 舃Integrated wavelength range [nm]

舃1 舃O (I) 舃ABL 舃776.51–778.42

舃2 舃C (I) 舃ABL 舃247.44–248.44

舃3 舃C (I) 舃ABL 舃192.59–193.41

舃4 舃C2 Swan band delta ν-1 舃PRW 舃469.38

舃5 舃C (I) 舃PLV 舃247.87 (bl, 187.98)

舃6 舃H (I) 舃ABL 舃650.19–663.74

舃7 舃O (I) 舃PBL 舃776.01–779.14

舃8 舃Si (I) 舃PRW 舃251.60

舃9 舃CN violet band 舃PBL 舃383.39–389.72

舃10 舃C2 Swan band delta ν 舃PLV 舃516.61 (bl, 187.98)

Fig. 5 Forward selection algorithm governed by the cluster purity (RIadj)
used for pruning of the augmented descriptor set. Dotted line, number of
spectral descriptors used to establish the optimized descriptor set
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Whereas in the case of the basic descriptor set, only 4
polymer classes were completely pure, after the redefinition
of the space, this number increased to 9. Moreover, the prob-
lems of the discrimination between certain polymer classes,
such as ABS and PS-F, PU and PC, or PSU and PPSU, were
either greatly reduced or completely eliminated. Despite sig-
nificant improvements in the identification of PP, the discrim-
ination between PE and EvAc (Ac 14% w/w) still remained
problematic, which can be attributed to a very high degree of

their structural similarity. All in all, the optimization of the
spectral descriptors resulted in an increase of the cluster purity
from 0.756 to 0.925.

Eventually, the performance of the optimized set was ex-
amined by means of the hierarchical cluster analysis (HCA)
(Fig. 8). In total, 22 polymer clusters were identified instead of
the 21 present in the data. The false division of the PC cluster
into two separate classes might be caused by its spread-out
nature and a close proximity of the different cluster regions to

Fig. 7 Optimized set of descriptors: k-NN contingency table providing the information about the identity of the 5 nearest neighbors to all datapoints from
one polymer type; LIBS conditions: 100% laser energy, 0.1 μm gate delay, argon atmosphere

Fig. 6 Optimized set of spectral
descriptors: separation of the
polymer clusters in the plane
defined by principal component 1
(horizontal axis) and principal
component 2 (vertical axis). LIBS
conditions: 100% laser energy,
0.1 μm gate delay, argon
atmosphere
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PU and PPSU classes in the optimized descriptor space.
Overall, the mutual relationships of the HCA clusters were
in a good agreement with the results obtained from the PCA
and k-NN. The high degree of the cluster purity further proved
the ability of the optimized set to provide a better cluster
resolution, allowing for an efficient identification of the 20
virgin polymer types.

Influence of polymer additives

In order to investigate the robustness of the developed dis-
crimination approach to the presence of polymer additives,
samples of PS, PAN, and PI with different additive

composition (no additives, carbon black, and mix of additives
(Table 3)) were subjected to LIBS analysis under the
optimized set of experimental conditions. By extracting
the optimized set of descriptors from the acquired spec-
tra and subjecting the resulting dataset to the PCA anal-
ysis, 3 clear clusters corresponding to the 3 polymer
types were obtained (Fig. 9). As the PC1/PC2 score/
score plot accounting for 82.56% of the data variance
shows, the data points belonging to a single polymer
type were homogeneously distributed within the poly-
mer cluster regardless of the additive presence, which
clearly demonstrates the robust nature of the optimized
discrimination approach.

Fig. 8 Optimized set of descriptors: dendrogram resulting from the HCA analysis; LIBS conditions: 100% laser energy, 0.1 μm gate delay, argon
atmosphere
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Conclusion

The present work demonstrates the possibility of using LIBS
for the identification of 20 virgin polymer types, which is, to
the best of our knowledge, the highest number reported in the
literature so far. The problem of the extensive cluster overlaps
related to the high spectral similarity of polymers could be
resolved by a two-step optimization of the cluster purity based
on the k-NN algorithm. An initial improvement of the cluster
resolution could be achieved by identifying the set of experi-
mental conditions (laser energy, gate delay, and atmosphere)
delivering the highest cluster purity. As the dataset achieving
the best results (3 mJ laser energy, 0.1 μs gate delay, and
argon atmosphere) still suffered major cluster overlaps (PCA
plot, RIadj = 0.756), it was subjected to a second optimization
step aiming at an identification of spectral descriptors with the
highest significance for the discrimination of the 20 virgin
polymer types. In the process, two RDF experiments were
employed to find new spectral regions of interest and a
k-NN-governed forward selection algorithm was used for
the final selection of variables. The optimization of the vari-
able space resulted in a significant improvement of the cluster
resolution, which was proved by the PCA, k-NN, and HCA
analyses of the corresponding data. All in all, the cluster purity
could be improved to a RIadj value of 0.925, which demon-
strates the possibility of using LIBS and chemometrics for the
identification of 20 virgin polymer types. Moreover, using the
optimized experimental design, it was possible to discriminate
not only virgin polymer samples, but also polymers contain-
ing additives, which indicates the potential of the developed
approach for the identification of real-life samples.
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