Skip to main content
Log in

Non-aqueous electrophoresis integrated with electrospray ionization mass spectrometry on a thiol-ene polymer–based microchip device

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-aqueous capillary electrophoresis (NACE) on microfluidic chips is still a comparatively little explored area, despite the inherent advantages of this technique and its application potential for, in particular, lipophilic compounds. A main reason is probably the fact that implementation of NACE on microchips largely precluded the use of polymeric substrate materials. Here, we report non-aqueous electrophoresis on a thiol-ene-based microfluidic chip coupled to mass spectrometry via an on-chip ESI interface. Microchips with an integrated ESI emitter were fabricated using a double-molding approach. The durability of thiol-ene, when exposed to different organic solvents, was investigated with respect to swelling and decomposition of the polymer. Thiol-ene exhibited good stability against organic solvents such as methanol, ethanol, N-methylformamide, and formamide, which allows for a wide range of background electrolyte compositions. The integrated ESI emitter provided a stable spray with RSD% of the ESI signal ≤8%. Separation efficiency of the developed microchip electrophoresis system in different non-aqueous buffer solutions was tested with a mixture of several drugs of abuse. Ethanol- and methanol-based buffers provided comparable high theoretical plate numbers (≈ 6.6 × 104–1.6 × 105 m−1) with ethanol exhibiting the best separation efficiency. Direct coupling of non-aqueous electrophoresis to mass spectrometry allowed for fast analysis of hydrophobic compounds in the range of 0.1–5 μg mL−1 and 0.2–10 μg mL−1 and very good sensitivities (LOD ≈ 0.06–0.28 μg mL−1; LOQ ≈ 0.20–0.90 μg mL−1). The novel combination of non-aqueous CE on a microfluidic thiol-ene device and ESI-MS provides a mass-producible and highly versatile system for the analysis of, in particular, lipophilic compounds in a wide range of organic solvents. This offers promising potential for future applications in forensic, clinical, and environmental analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Castro ER, Manz A. Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A. 2015;1382:66–85.

    CAS  PubMed  Google Scholar 

  2. Eijkel J. Chip-based capillary electrophoresis platforms: toward point-of-care applications. Bioanalysis. 2015;7:1385–7.

    CAS  PubMed  Google Scholar 

  3. Kenndler E. A critical overview of non-aqueous capillary electrophoresis. Part I: Mobility and separation selectivity. J Chromatogr A. 2014;1335:16–30.

    CAS  PubMed  Google Scholar 

  4. Varenne A, Descroix S. Recent strategies to improve resolution in capillary electrophoresis-a review. Anal Chim Acta. 2008;628(1):9–23.

    CAS  Google Scholar 

  5. Porras SP, Kenndler E. Capillary zone electrophoresis in non-aqueous solutions: pH of the background electrolyte. J Chromatogr A. 2004;1037(1–2):455–65.

    CAS  PubMed  Google Scholar 

  6. Kenndler E. A critical overview of non-aqueous capillary electrophoresis. Part II: Separation efficiency and analysis time. J Chromatogr A. 2014;1335:31–41.

    CAS  PubMed  Google Scholar 

  7. Porras SP, Kenndler E. Are the asserted advantages of organic solvents in capillary electrophoresis real? A critical discussion. Electrophoresis. 2005;26(17):3203–20.

    CAS  PubMed  Google Scholar 

  8. Porras SP, Riekkola ML, Kenndler E. The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents. Electrophoresis. 2003;24(10):1485–98.

    CAS  PubMed  Google Scholar 

  9. Lu Q, Collins GE, Smith M, Wang J. Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction. Anal Chim Acta. 2002;469:253–60.

    CAS  Google Scholar 

  10. Cable ML, Stockton AM, Mora MF, Willis PA. Low-temperature microchip nonaqueous capillary electrophoresis of aliphatic primary amines: applications to Titan chemistry. Anal Chem. 2013;85(2):1124–31.

    CAS  PubMed  Google Scholar 

  11. Cable ML, Hörst SM, He C, Stockton AM, Mora MF, Tolbert MA, et al. Identification of primary amines in Titan tholins using microchip nonaqueous capillary electrophoresis. Earth Planet Sci Lett. 2014;403:99–107.

    CAS  Google Scholar 

  12. Cable ML, Stockton AM, Mora MF, Hand KP, Willis PA. Microchip nonaqueous capillary electrophoresis of saturated fatty acids using a new fluorescent dye. Anal Methods. 2014;6(24):9532–5.

    CAS  Google Scholar 

  13. Nuchtavorn N, Smejkal P, Breadmore MC, Guijt RM, Doble P, Bek F, et al. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. J Chromatogr A. 2013;1286:216–21.

    CAS  PubMed  Google Scholar 

  14. Hu H, Li Z, Zhang X, Xu C, Guo Y. Rapid determination of catecholamines in urine samples by nonaqueous microchip electrophoresis with LIF detection. J Sep Sci. 2013;36(20):3419–25.

    CAS  PubMed  Google Scholar 

  15. Thang LY, See HH, Quirino JP. Multistacking from two sample streams in nonaqueous microchip electrophoresis. Anal Chem. 2016;88(20):9915–9.

    CAS  PubMed  Google Scholar 

  16. Tai CT, See HH. Rapid quantification of quinine by multi-stacking in a portable microchip electrophoresis system. Electrophoresis. 2019;40(3):455–61.

    CAS  PubMed  Google Scholar 

  17. Tähkäa SM, Bonabi A, Jokinen VP, Sikanen TM. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices. J Chromatogr A. 2017;1496:150–6.

    Google Scholar 

  18. Moreira RC, Lopes MS, Junior IM, Coltro WKT. High performance separation of quaternary amines using microchip non-aqueous electrophoresis coupled with contactless conductivity detection. J Chromatogr A. 2017;1499:190–5.

    CAS  PubMed  Google Scholar 

  19. Duarte LM, Moreira RC, Coltro WKT. Nonaqueous electrophoresis on microchips: a review. Electrophoresis. 2020;41(7–8):434–48.

    CAS  PubMed  Google Scholar 

  20. Tang H, Yu Q, Qian X, Ni K, Wang X. Fabricating and characterizing the microfluidic solid phase extraction module coupling with integrated ESI emitters. Micromachines. 2018;9(5):212. https://doi.org/10.3390/mi9050212.

    Article  PubMed Central  Google Scholar 

  21. Sun X, Kelly RT, Tang K, Smith RD. Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly(dimethylsiloxane) microchips with monolithically integrated emitters. Analyst. 2010;135(9):2296–302. https://doi.org/10.1039/c0an00253d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nordman N, Lauren S, Kotiaho T, Franssila S, Kostiainen R, Sikanen T. Interfacing microchip isoelectric focusing with on-chip electrospray ionization mass spectrometry. J Chromatogr A. 2015;1398:121–6. https://doi.org/10.1016/j.chroma.2015.04.031.

    Article  CAS  PubMed  Google Scholar 

  23. Nordman N, Barrios-Lopez B, Lauren S, Suvanto P, Kotiaho T, Franssila S, et al. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry. Electrophoresis. 2015;36(3):428–32.

    CAS  PubMed  Google Scholar 

  24. Chen S-H, Wang-Chou, Lee SG-B, Lin Z-Y, Chen P-W, Liao P-C. A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis. 2001;22:3972–7.

    CAS  PubMed  Google Scholar 

  25. Svedberg M, Pettersson A, Nilsson S, Bergquist J, Nyholm L, Nikolajeff F, et al. Sheathless electrospray from polymer microchips. Anal Chem. 2003;75:3934–40.

    CAS  PubMed  Google Scholar 

  26. Zamfir AD, Lion N, Vukelic Z, Bindila L, Rossier J, Girault HH, et al. Thin chip microsprayer system coupled to quadrupole time-of-flight mass spectrometer for glycoconjugate analysis. Lab Chip. 2005;5(3):298–307.

    CAS  PubMed  Google Scholar 

  27. Rossier JS, Youhnovski N, Lion N, Damoc E, Becker S, Reymond F, et al. Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance mass spectrometry of biopolymers. Angew Chem Int Ed. 2003;42:1.

    Google Scholar 

  28. Geczy R, Sticker D, Häfeli UO, Bovet N, Kutter JP. Chloroform compatible, thiol-ene based replica molded micro chemical devices as an alternative to glass microfluidic chips. Lab Chip. 2019;19(5):798–806.

    CAS  PubMed  Google Scholar 

  29. He X, Chen Q, Zhang Y, Lin J-M. Recent advances in microchip-mass spectrometry for biological analysis. Trac-Trend Anal Chem. 2014;53:84–97.

    CAS  Google Scholar 

  30. Gao D, Liu H, Jiang Y, Lin JM. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip. 2013;13(17):3309–22. https://doi.org/10.1039/c3lc50449b.

    Article  CAS  PubMed  Google Scholar 

  31. Koster S, Verpoorte E. A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. Lab Chip. 2007;7(11):1394–412.

    CAS  PubMed  Google Scholar 

  32. Lee J, Soper SA, Murray KK. Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom. 2009;44(5):579–93.

    CAS  PubMed  Google Scholar 

  33. Kitagawa F, Otsuka K. Recent progress in microchip electrophoresis-mass spectrometry. J Pharm Biomed Anal. 2011;55(4):668–78.

    CAS  PubMed  Google Scholar 

  34. Busnel J-M, Schoenmaker B, Ramautar R, Carrasco-Pancorbo A, Ratnayake C, Feitelson JS, et al. High capacity capillary electrophoresis-electrospray ionization mass spectrometry: coupling a porous sheathless interface with transient-isotachophoresis. Anal Chem. 2010;82:9476–83.

    CAS  PubMed  Google Scholar 

  35. Ohla S, Belder D. Chip-based separation devices coupled to mass spectrometry. Curr Opin Chem Biol. 2012;16(3–4):453–9.

    CAS  PubMed  Google Scholar 

  36. Sikanen T, Franssila S, Kauppila TJ, Kostiainen R, Kotiaho T, Ketola RA. Microchip technology in mass spectrometry. Mass Spectrom Rev. 2010;29(3):351–91.

    PubMed  Google Scholar 

  37. Batz NG, Mellors JS, Alarie JP, Ramsey JM. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem. 2014;86(7):3493–500.

    CAS  PubMed  Google Scholar 

  38. Ramsey RS, Ramsey JM. Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem. 1997;69:1174–8.

    CAS  Google Scholar 

  39. Figeys D, Ning Y, Aebersold R. A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry. Anal Chem. 1997;69:3153–60.

    CAS  PubMed  Google Scholar 

  40. Dietze C, Schulze S, Ohla S, Gilmore K, Seeberger PH, Belder D. Integrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns. Analyst. 2016;141(18):5412–6.

    CAS  PubMed  Google Scholar 

  41. Zhang B, Liu H, Karger BL, Foret F. Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. Anal Chem. 1999;71:3258–64.

    CAS  PubMed  Google Scholar 

  42. Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ. Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal Chem. 1999;71:3292–6.

    CAS  PubMed  Google Scholar 

  43. Hoffmann P, Hausig U, Schulze P, Belder D. Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer. Angew Chem Int Ed. 2007;46(26):4913–6.

    CAS  Google Scholar 

  44. Chambers AG, Ramsey JM. Microfluidic dual emitter electrospray ionization source for accurate mass measurements. Anal Chem. 2012;84(3):1446–51.

    CAS  PubMed  Google Scholar 

  45. Sainiemi L, Sikanen T, Kostiainen R. Integration of fully microfabricated, three-dimensionally sharp electrospray ionization tips with microfluidic glass chips. Anal Chem. 2012;84(21):8973–9.

    CAS  PubMed  Google Scholar 

  46. Kelly RT, Page JS, Marginean I, Tang K, Smith RD. Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew Chem Int Ed. 2009;48(37):6832–5.

    CAS  Google Scholar 

  47. Hu X, Dong Y, He Q, Chen H, Zhu Z. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis. J Chromatogr B. 2015;990:96–103.

    CAS  Google Scholar 

  48. Muck A, Svatos A. Atmospheric molded poly(methylmethacrylate) microchip emitters for sheathless electrospray. Rapid Commun Mass Spectrom. 2004;18(13):1459–64.

    CAS  PubMed  Google Scholar 

  49. Ollikainen E, Bonabi A, Nordman N, Jokinen V, Kotiaho T, Kostiainen R, et al. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry. J Chromatogr A. 2016;1440:249–54.

    CAS  PubMed  Google Scholar 

  50. Jönsson A, Svejdal RR, Bøgelund N, Nguyen TTTN, Flindt H, Kutter JP, et al. Thiol-ene monolithic pepsin microreactor with a 3D-printed interface for efficient UPLC-MS peptide mapping analyses. Anal Chem. 2017;89(8):4573–80. https://doi.org/10.1021/acs.analchem.6b05103.

    Article  CAS  PubMed  Google Scholar 

  51. Gibson LR 2nd, Bohn PW. Non-aqueous microchip electrophoresis for characterization of lipid biomarkers. Interface Focus. 2013;3(3):20120096.

  52. Sikanen TM, Lafleur JP, Moilanen M-E, Zhuang G, Jensen TG, Kutter JP. Fabrication and bonding of thiol-ene-based microfluidic devices. J Micromech Microeng. 2013;23(3):037002.

    CAS  Google Scholar 

  53. Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T. Analytical characterization of microfabricated SU-8 emitters for electrospray ionization mass spectrometry. J Mass Spectrom. 2008;43(6):726–35.

    CAS  PubMed  Google Scholar 

  54. Huikko K, Ostman P, Grigoras K, Tuomikoski S, Tiainen VM, Soininen A, et al. Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. Lab Chip. 2003;3(2):67–72.

    CAS  PubMed  Google Scholar 

  55. Valkó IE, Sirén H, Riekkola M-L. Chiral separation of dansyl-amino acids in a nonaqueous medium by capillary electrophoresis. J Chromatogr A. 1996;737:263–72.

    Google Scholar 

  56. Bowser MT, Kranack AR, Chen DDY. Analyte-additive interactions in nonaqueous capillary electrophoresis: a critical review. Trends Anal Chem. 1998;17:424–34.

    CAS  Google Scholar 

  57. Geiser L, Cherkaoui S, Veuthey J-L. Potential of formamide and N-methylformamide in nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry. J Chromatogr A. 2002;979:389–98.

    CAS  PubMed  Google Scholar 

  58. Liigand J, Kruve A, Leito I, Girod M, Antoine R. Effect of mobile phase on electrospray ionization efficiency. J Am Soc Mass Spectrom. 2014;25:1853–61.

    CAS  PubMed  Google Scholar 

  59. Liu C, Liu Y, Sokuler M, Fell D, Keller S, Boisen A, et al. Diffusion of water into SU-8 microcantilevers. Phys Chem Chem Phys. 2010;12:10577–83.

    CAS  PubMed  Google Scholar 

Download references

Funding

The present study is supported financially by the Chinese Scholarship Council (CSC No. 201708210241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg P. Kutter.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Petersen, N.J., Kretschmann, A.C. et al. Non-aqueous electrophoresis integrated with electrospray ionization mass spectrometry on a thiol-ene polymer–based microchip device. Anal Bioanal Chem 413, 4195–4205 (2021). https://doi.org/10.1007/s00216-021-03374-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03374-9

Keywords

Navigation