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Abstract
Raman spectral data are best described by mathematical functions; however, due to the spectroscopic measurement setup, only
discrete points of these functions are measured. Therefore, we investigated the Raman spectral data for the first time in the
functional framework. First, we approximated the Raman spectra by using B-spline basis functions. Afterwards, we applied the
functional principal component analysis followed by the linear discriminant analysis (FPCA-LDA) and compared the results with
those of the classical principal component analysis followed by the linear discriminant analysis (PCA-LDA). In this context,
simulation and experimental Raman spectra were used. In the simulated Raman spectra, normal and abnormal spectra were used
for a classification model, where the abnormal spectra were built by shifting one peak position. We showed that the mean
sensitivities of the FPCA-LDA method were higher than the mean sensitivities of the PCA-LDA method, especially when the
signal-to-noise ratio is low and the shift of the peak position is small. However, for a higher signal-to-noise ratio, both methods
performed equally. Additionally, a slight improvement of the mean sensitivity could be shown if the FPCA-LDA method was
applied to experimental Raman data.

Keywords Raman spectroscopy . Principal component analysis . Functional data analysis . B-splines . Functional principal
component analysis

Introduction

When light interacts with molecules within a sample volume,
the result of the interaction is depending on both properties of
the sample and the light. The study of such light-matter inter-
actions is done by spectroscopic techniques. In this manuscript,
we focus on Raman spectroscopy, which is an inelastic scatter-
ing process. The scattered light contains information about en-
ergy levels within the molecules, which result from the vibra-
tional and rotational modes. In Raman spectroscopy, the

obtained spectral data contain a vast amount of information
concerning the molecules within the sample. However, this
information cannot directly be used and the extraction of the
information needs chemometric methods. Hence, the combina-
tion of these chemometric methods with Raman spectroscopy
enables the extraction of the relevant information and increases
the knowledge regarding the composition of a sample. The
combination of Raman spectroscopy and chemometrics has
gained popularity and can be used to address a number of tasks,
like disease diagnostics and bacteria identification [1–6].

Typically, chemometric methods are split into univariate and
multivariate methods, supervised and unsupervisedmethods, or
qualitative and quantitative methods. These methods are typi-
cally understood in the discrete case, where the data is discrete.
However, a different data analysis approach is needed if func-
tions should be analyzed. Therefore, we can further separate
chemometric methods into two additional groups, the discrete
group and the functional data analysis group. The chemometric
methods in the discrete group, which is also called multivariate
data analysis, are most often implemented in Raman spectros-
copy. In this group, the key concept is to consider each spec-
trum as a set of independent points acquired on a specific
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interval, e.g., wavenumber or frequency. Moreover, various
models and tasks are contained in this group, e.g., dimension
reduction, clustering, regression, and classification [7, 8]. For
instance, the principal component analysis (PCA) is a well-
known method to reduce the dimensionality in spectral data
analysis [9–11]. For classification tasks, many methods are de-
veloped and implemented for spectroscopic measurements,
e.g., linear discriminant analysis (LDA) [12–14], support vector
machine [15–17], and neural networks [18]. In contrast to the
methods in the discrete data analysis group, a spectrum is
modeled as a function or a curve in the functional data analysis
group. These functions are latent and infinite-dimensional,
which cannot be calculated analytically and they need to be
approximated. The study of these functions falls under the
name functional data analysis (FDA), which originally was
introduced by Ramsay et al. [19, 20]. It involves smoothing
technique, data reduction, adjustment for clustering, functional
linear modeling, and forecasting methods [21–24]. Initially,
Ramsay et al. developed the FDA to analyze, model, and pre-
dict time series and then expanded the FDA to cover other data
types. The advantages of using chemometric methods in the
functional group are that FDA overcomes the curse of dimen-
sionality. Moreover, the assumption that adjacent observations
should be independent is not needed in the functional data
analysis group, while in the discrete group, this assumption is
needed but often violated.

The chemometric methods used in the functional data anal-
ysis group are adapted from the discrete ones. For instance, the
functional principal component analysis (FPCA) is an adapted
version of a discrete PCA. The FPCA deals with data in the
form of functions and was developed by Dauxois et al. [25].
James et al. [26] introduced the functional linear discriminant
analysis (FLDA) extended from the classical LDA method,
where the predictor variables are curves or functions. Mas
et al. [27] introduced the functional version of linear regres-
sion for random functions by considering the first-order deriv-
ative. Furthermore, the application of these functional
methods was spread to various fields, including medicine
[28–30], economics [31, 32], agriculture [33], linguistics
[34–36], and behavior sciences [37]. However, as far as the
authors know, they were never applied to Raman spectral
data, and their application was limited to mass spectrometry
[38] and near-infrared spectroscopy [39]. Although the
Raman spectral data are in nature functions of wavenumber
or frequency, they are acquired discretely on finite points due
to the used spectroscopic setup. In this manuscript, we evalu-
ated the analysis of Raman spectra in the functional frame-
work for the first time. This evaluation was achieved by com-
paring the performance of the functional principal component
analysis followed by the linear discriminant analysis (FPCA-
LDA) to the classical principal component analysis followed
by the linear discriminant analysis (PCA-LDA) on simulation
and experimental Raman spectral data.

The manuscript is divided into four sections. First, we pre-
sented the theoretical background of the functional data anal-
ysis and the functional principal component analysis. The
workflow of the two methods, the classical PCA-LDA and
the FPCA-LDA, is explained in the “Material and method”
section. In the “Results” section, the comparison between
these two methods applied on simulation and experimental
Raman data is shown. Finally, we summarized the main find-
ings in the “Conclusion” section.

Theoretical background

Functional data analysis (FDA) refers to the analysis of data in
the form of functions. For instance, if our studied data is col-
lected in a matrix x ∈ℝN × p, then each row of this data is
considered a function. The underlying idea of FDA is that
we assume the existence of some functions xi(t), i = 1, …,
N, giving rise to the observed data. Therefore, this function
is treated as one entity instead of a sequence of individual
measured variables.

Functional approximation

The analysis of functions in the functional framework is done
in some functional space, which is often assumed to be a
Hilbert space, such as L2(I) defined on a compact interval I.
However, we cannot analytically calculate these functions
from the data, and we need to apply basis functions to approx-
imate them. These basis functions represent a set of available
functions φk, k = 1, 2,…, K that are mathematically indepen-
dent of each other. With a linear combination of adequately
large number of these basis functions, we can approximate our
observed data. This approximation can be formulated by a
linear expansion of K known basis functions φk as follows:

xi tð Þ ¼ ∑
K

k¼1
ckφk tð Þ: ð1Þ

Likewise Eq. (1) can be expressed in matrix notation, as
follows [40, 41]:

xi ¼ C
0
ϕ ¼ ϕ

0
C; ð2Þ

where C is the vector of length K of the coefficients ck and
ϕ is the functional vector whose elements are the basis func-
tions φk. The choice of the basis functions depends on the
studied problem, where they should have features similar to
those known to belong to the estimated functional data.
However, most functional data analysis involves either a
Fourier basis for periodic data or a B-spline basis for non-
periodic data. The B-spline basis functions are the most com-
mon choice for approximating spectral data. These basis
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functions are defined on a specific interval I with an order O
and a knot vector. First, the interval I is divided into subinter-
vals where the corresponding endpoints are represented by the
knot vector {t1,…, tK +O}. After imposing continuity and
smoothness conditions, theKB-spline basis functions of order
O can be defined using Eq. (3):

φk;1 tð Þ ¼ 1; tk ≤ t < tkþ1

0; else

�
φk;O tð Þ ¼ t−tk

tkþO−tk
φk;O−1 tð Þ þ tkþOþ1−t

tkþOþ1−tkþ1
φkþ1;O−1 tð Þ:

ð3Þ

Consequently, the approximation is achieved by calculat-
ing the coefficients ck. Various methods can be implemented
for this purpose; however, the simplest one is to minimize the
sum of squared errors or the so-called least squares estimation
using Eq. (4):

SMSSE xið Þ ¼ ∑
p

j¼1
xij− ∑

K

k¼1
ckφk t j

� �����
����2 ¼ xi−ϕCk k2: ð4Þ

The choice of the number of basis functions K has an in-
fluence on the approximation and it should be chosen careful-
ly. With a high number of basis function, we risk fitting noise,
and with a small K, we might remove some important aspect
of the functional data. Therefore, methods exist, which can be
used to obtain an optimal number of basis functions, e.g., the
elbow method, the bias/variance trade-off method, and the
stepwise variable selection method [42].

In contrast to the multivariate data analysis, the functional
data in the FDA procedure are inherently infinite-dimensional,
which makes the computation at any value t possible. Besides,
the underlying functions in FDA are smooth, but the observed
data are often not due to the presence of noise in the measure-
ments. Therefore, a higher level of variation in the observed
data can make the extraction of a stable estimate of the func-
tional data challenging. Furthermore, sparse and irregular ob-
served longitudinal data can be analyzed in FDA.

Functional principal components analysis (FPCA)

Functional principal component analysis (FPCA) is a key di-
mension reduction tool for functional data, and it is considered
the most popular method in the functional analysis. Similarly
to the classical principal component analysis (PCA), we need
to examine the variance-covariance matrix/function in order to
calculate the principal components. The theoretical back-
ground of FPCA [43] is shown below in detail; however, since
it represents a functional version of the classical PCA, a short
introduction to the theory of PCA is first presented.

The key idea of PCA is to construct the ith principal com-
ponent fi as a linear combination of the variable xi = (xi1,…,
xip)

′ as shown in Eq. (5):

f i ¼ ∑
p

j¼1
β jxij; i ¼ 1;…;N ð5Þ

where βj is the weight coefficient of the observed values xij
of the jth variable. In PCA, we start by finding the weight vector

β1 = (β11,…, βp1)
′ such as f i1 ¼ ∑ jβ j1 xij ¼ β

0
1xi have the

largest possible mean square N−1∑i f
2
i1 subject to the following

constraint ∑ jβ
2
j1 ¼ β1k k2 ¼ 1. Then, we proceed to the sec-

ond step and subsequent steps until reaching a desired number,
which should be less or equal to the number of variables p. On
the mth step, similar to the first step, we compute a new weight
vector βm and new values fim; thus, the values fim have maxi-
mum mean square, subject to the constraint ‖βm‖

2 = 1 and the

m − 1 additional constraints ∑ jβjq βjm ¼ β
0
qβm ¼ 0; q < m.

These fim are called the principal component scores.
In contrast to the classical PCA, the variable values in

FPCA are function xi(t), and the equivalent notation of β
and x in FPCA are the functions β(t) and x(t). Therefore, the
principal component scores corresponding to the weight func-
tion are illustrated in Eq. (6):

f i ¼ ∫βxi ¼ ∫β tð Þx tð Þdt: ð6Þ

The first step in FPCA is to find the weight function β1(s)
in such a way that it maximizes N−1∑i f i ¼ N−1∑i ∫β1

�
xiÞ 2

and subject to the unit sum of squares constraint ∫β1(s)
2 = 1.

Then, we proceed to the m step, where we find the weight
function βm that satisfies the orthogonality constraints
∫βqβm = 0, q <m. However, in most principal component
analysis applications, finding the principal components is
equivalent to finding the eigenvalues and eigenfunctions of
the covariance function. Therefore, the covariance function
v(s, t) is defined as follows:

v t; sð Þ ¼ N−1 ∑
N

i¼1
xi tð Þxi sð Þ ð7Þ

And each eigenfunction βj(t) for an appropriate eigenvalue
ρ satisfies

∫v t; sð Þβ sð Þds ¼ ρβ tð Þ ð8Þ

The left side of this equation is an integral transform V of
the weight function β that can be defined by Eq. (9), and it is
called the covariance operator V. Therefore, we may also ex-
press the eigenequation directly as Eq. (10), where β is an
eigenfunction rather than an eigenvector.

Vβ ¼ ∫v :; tð Þβ tð Þdt ð9Þ
Vβ ¼ ρβ ð10Þ

In classical PCA, the number of variables is equal to p. In
contrast, in the case of functional PCA (FPCA), the number of
variables refers to the number of function values which is
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infinity. However, given that the functions xi(t) are not linear-
ly dependent, the operator will have rank N − 1, and there will
be N − 1 nonzero eigenvalues.

Material and method

Our study is divided into two parts. First, we applied the clas-
sical principal component analysis as described previously on
our data stored in a N × p matrix x, and then we extracted the
principal component scores matrix β. Instead of applying the
linear discriminant analysis directly on the data, we used these
scores as input to the LDAmodel. This latter model calculates
L − 1 linear discriminant functions to separate L groups, as
shown in Eq. (11):

LD ¼ Ωβþ b0 ð11Þ
which represents a linear combination of the principal compo-
nent scores, where Ω represents the weight matrix and b0 is
the bias. Briefly, these functions are calculated by maximizing
the between-group variance illustrated in Eq. (12):

B ¼ ∑
L

l¼1
nl βl−β
� �

βl−β
� �0

ð12Þ

and minimizing the within-group variation calculated in Eq.
(13):

W ¼ ∑
L

l¼1
β:;l−βl

� �
β:;l−βl

� �0

: ð13Þ

In contrast to the discrete framework, we implemented the
functional framework by the following steps. We transformed
our discrete data into functions using cubic B-spline basis
functions where the orderO is equal to 4 and we approximated

the coefficients ck using Eq. (1) and the least square method.
Then, the functional principal component analysis was ap-
plied to these functional versions of our data, and the func-
tional scores were extracted. We then apply LDA on these
functional scores. The testing sets in the classical PCA-LDA
and FPCA-LDA were projected into the corresponding prin-
cipal component space. Moreover, both methods were used
inside a cross-validation loop and the results are obtained
using group scripts developed in Gnu R software. The moti-
vation and the workflow of both PCA-LDA and FPCA-LDA
are illustrated in Fig. 1.

Results

We tested the performance of the functional data analysis by
comparing the functional principal component analysis
followed by linear discriminant analysis (FPCA-LDA) and
the classical principal component analysis followed by linear
discriminant analysis (PCA-LDA) on both simulation and ex-
perimental Raman data.

Simulation data

First, we simulated Raman spectra of two classes (a normal
group and an abnormal group) with three peaks. The abnormal
group was generated by slightly shifting one of the peaks from
the peak position used in the normal group. This situation is
often occurring in biomedical Raman spectroscopy, when for
example the protein’s secondary structure changes between
two groups or if an isotope labeling was applied. We did that
in two scenarios without adding a background and with
adding a background contribution. The two classes in the sim-
ulated Raman spectra are referred to as normal and abnormal

Fig. 1 The motivation and the workflow of the PCA-LDA and the
FPCA-LDA methods. On the left, the generation of a Raman spectrum
is visualized, which yields a Raman spectrum in functional form.
However, due to the measurement process (in the middle), we acquire
the spectrum in a discrete manner. Due to the used multichannel detector,
a measured Raman spectrum is characterized by a vector of intensities.

On the right, the data analysis workflow that aims to compare the classical
principal component analysis followed by linear discriminant analysis
(PCA-LDA) and the functional principal component analysis followed
by linear discriminant analysis (FPCA-LDA) is shown. Both methods
include a cross-validation (CV) loop and the functional data is construct-
ed by using B-splines
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spectra. The number of pixels in each spectrum is equal to
1024. The abnormal spectra were constructed similarly to
the normal spectra with three peaks, but only one of these
peaks was shifted by one of the following values Δeυð Þ:
0.001, 0.003, 0.005, 0.01, 0.02, 0.025, 0.05. The total number
of spectra in each class was set to 100 spectra. In addition, the
simulation data was constructed for different signal-to-noise
ratio (SNR) cases: 0.5, 1, 2, 3, 5, 10, 30, 50, 100. We end up
with 63 cases of simulation data where each of the datasets
includes 200 spectra. The same cases were constructed includ-
ing a random background. The parameters of the simulation
are summarized in Supplementary Information (ESM)
Table S1. An example of the mean spectra for the simulated
Raman where the shift in the peak position is equal to 0.05 and
the SNR is 30 is shown in Fig. S1 in the ESM.

For the simulated Raman spectra without background, 190
B-splines are used in the FDA approximation. An illustration of
the first 10 B-splines basis functions can be found in the ESM in
Fig. S2. The choice of the number of basis functions is calcu-
lated based on the elbow method. We first calculated the root-
mean-square error, and the optimal point is chosen, which refers
to the largest distance to the line that joins the first and last
values. After choosing the number of basis functions, we trans-
form our discrete spectra into functional version using Eq. (1).
The mean spectra for both discrete and functional versions in
the case where Δeυ ¼ 0:05 and SNR = 0.5 are illustrated in
Fig. 2. On the left, the original mean spectra for the normal
and the abnormal classes are shown in black and red, respec-
tively. In comparison, the functional mean spectra for normal
and abnormal classes are shown on the right in black and red,
respectively. The functional spectra represent well the original
spectra, where the shape of the peaks is preserved and a signif-
icant reduction of the noise was observed.

The results of the functional approximation for all the con-
structed cases are illustrated in Figs. S3 and S4 in the ESM. In
ESM Fig. S3, we showed the mean spectra for the simulated
Ramanwithout background per shift when the SNR is equal to
0.5 for the original discrete spectra and its functional approx-
imation. On the left, the original mean spectra for the simula-
tion without background are shown. The black plot represents
the mean spectra of the normal class, while the colored plots
refer to the mean spectra of the abnormal class corresponding
to the specific shift valuesΔeυ. On the right, the mean spectra
of the functional approximation of the corresponding discrete
spectra are illustrated. When comparing the functional mean
spectra with the discrete mean spectra, we can deduce a sig-
nificant reduction of noise and an improvement in the peak
shape estimation.

In ESM Fig. S4, we showed one spectrum per class for
each SNR and for a specific peak shift Δeυ ¼ 0:01. On the
left, the original spectra are illustrated. In each row, the normal
and abnormal spectra are plotted for all SNR values. On the
right, the functional approximations for each class are illus-
trated for the nine cases of SNR. In all these cases, we used
190 B-spline basis functions in the functional approximation.
For a SNR which is larger than 5, the functional approxima-
tions perfectly represent the original spectra with almost
noiseless reconstruction. Although the functional approxima-
tion also fit noise for the lower SNR values due to a high
number of basis used, a significant reduction of noise is no-
ticed in the approximation, and it maintains potentially the
peak shape in the case of lower SNR values.

The two approaches (PCA-LDA and FPCA-LDA) ex-
plained previously were applied to the simulated Raman spec-
tra that contain no background. For bothmethods, we used 10-
fold cross-validation, and the number of components chosen

Fig. 2 The mean spectra per class for the simulation without a
background in the case where Δeυ ¼ 0:05 and SNR = 0.5. The left plot
represents the discrete simulated Raman mean spectra per each class,

while the right plot represents the functional version of these simulated
Raman spectra using 190 basis functions
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was 50 components. The mean sensitivity was used as an
evaluation metric, and it is illustrated in a heat map in Fig. 3.
In region c of Fig. 3, PCA-LDA and FPCA-LDA perform
perfectly with 100%mean sensitivity, due to the clear distinc-
tion between the normal and the abnormal classes. While in
regions a and b of the same figure, the FPCA-LDA performs
better in most of the cases, due to the fact that in the functional
approximation, the obtained functions contain less noise and
an improvement of the shape of the peaks in these functions
was also detected. However, in few cases, the PCA-LDA pro-
vides better mean sensitivity. This result might refer to the
choice of the number of basis functions that should not be
too large that the approximation includes more noise or too
small that the approximation excludes some relevant features
in the approximation.

In the simulated Raman spectra that include a random
background, 180 B-spline basis functions are used in the
FDA approximation. The choice of the number of basis func-
tions is calculated similarly to the simulation without back-
ground based on the elbow method. After choosing the num-
ber of basis functions, we transform our discrete spectra into
functional versions using Eq. (1). The mean spectra of both
discrete and functional versions in the case Δeυ ¼ 0:05 and
SNR = 0.5 are illustrated in the ESM in ESM Fig. S5. On the
left, the original mean spectra for the normal and the abnormal
classes are shown in black and red, respectively. The function-
al mean spectra for normal and abnormal classes are shown on
the right in black and red, respectively. The functional spectra
represent well the original spectra, where the shape of peaks is
preserved, and a significant reduction of noise was observed.

The results of the functional approximation are illustrated
in the ESM in Figs. S6 and S7. In ESM Fig. S6, we showed
the mean spectra for the simulated Raman data with back-
ground per each shift and for SNR 0.5 for the original discrete
spectra and its functional approximation. On the left, the orig-
inal mean spectra for the simulation with a random

background are illustrated. The black plot represents the mean
spectrum of the normal class, while the colored plots refer to
the mean spectra of the abnormal class corresponding to the
specific shift values Δeυ. On the right of ESM Fig. S6, the
mean spectra of the functional approximation of the corre-
sponding discrete spectra are shown. When comparing the
functional mean spectra with the discrete mean spectra, we
can deduce a significant reduction of the noise and an im-
provement in the peak shape estimation.

In ESM Fig. S7, we showed for a specific peak shift posi-
tion Δeυ ¼ 0:01, one spectrum per class for each SNR case.
On the left, the original spectra are illustrated. In each row, the
normal and abnormal spectra are plotted for all SNR values.
On the right, the functional approximations for each class are
illustrated for the nine cases of SNR. In all these cases, we
used 180 B-spline basis functions in the functional approxi-
mation. For a SNR which is larger than 5, the functional ap-
proximations perfectly represent the original spectra with al-
most noiseless construction. Although the functional approx-
imation also fit noise for the lower SNR values due to a high
number of basis used, a significant reduction of noise is ob-
served in the approximation, and these functions preserved the
peak shape in the case of lower SNR values.

The two approaches (PCA-LDA and FPCA-LDA) ex-
plained previously were applied on this simulated Raman
spectra that contain a random background. For both methods,
we used 10-fold cross-validation, and the number of compo-
nents chosen was 50 components. The mean sensitivity was
used as an evaluation metric, and the results are illustrated in a
heat map in Fig. 4. In region c of Fig. 4, PCA-LDA and
FPCA-LDA perform perfectly with 100% mean sensitivity,
due to the clear distinction between the normal and the abnor-
mal class. While in regions a and b of the same figure, in most
cases, the FPCA-LDA performs better, due to the fact that in
the functional approximation, less noise and an improvement
of the shape of the peaks exist. However, in some cases, the

Fig. 3 The mean sensitivities of applying PCA-LDA and FPCA-LDA on
the simulated Raman data without background and the difference be-
tween both methods. The mean sensitivity of PCA-LDA, the mean sen-
sitivity of FPCA-LDA, and the difference between the mean sensitivities

of FPCA-LDA and PCA-LDA is illustrated on the left, middle, and right,
respectively. In region c, both FPCA-LDA and PCA-LDA perform equal-
ly. While in regions a and b, the FPCA-LDA method performs better
compared to PCA-LDA
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PCA-LDA provides a better mean sensitivity. This result
might refer to the choice of the number of basis functions that
should not be too large and too small. In order to test the
significance of these findings, the non-parametric Kruskal-
Wallis test was implemented. We tested the significance of
the difference of the classification performance of both
methods (FPCA-LDA and PCA-LDA). We performed this
test for the simulation without and with background. All cor-
responding p-values are shown in ESM Fig. S10 where values
less than 0.05 and values larger than 0.05 are highlighted in
blue and in red, respectively.

In conclusion, we showed that FPCA-LDA and PCA-LDA
perform equally in region c for both simulations (with and
without background). However, FPCA-LDA performs better
in both regions a and b of Fig. 3 and Fig. 4 for the simulation
with and without background, respectively. The difference of
performance is only significant in region b, which was deter-
mined by a Kruskal-Wallis test (ESM Fig. S10). This test
showed that the performance difference of FPCA-LDA and
PCA-LDA is only significant in region b for both simulations
with and without background.

Experimental data

The experimental data was published elsewhere [44]. Shortly,
a Ramanmicroscope with an excitation wavelength of 532 nm
was used for the acquisition of the experimental spectra. The
naphthalene-degrading soil bacteria Rhodococcus opacus
DSM 8531 (R. opacus), Novosphingobium aromaticivorans
DSM 12444 (N. aromaticivorans), and Cupriavidus
basilensis DSM 9750 (C. basilensis) were included in the
study and purchased from the Leibniz Institute DSMZ-
German Collection of Microorganisms and Cell Cultures.
Each Raman spectrum is a spectrum acquired from a single
cell of around 75 to 100 single cells. Throughout the experi-
ments, three batches were cultivated and measured. The

aforementioned microorganisms are cultivated separately in
water and in heavy water (D2O). Through this fact, hydrogen
atoms are exchanged by deuterium atoms and the C-H bond is
exchanged by a C-D bond. The corresponding stretching vi-
bration band (C-D stretching) is shifted in the Raman silent
region (for more details on the experimental setup and pre-
processing, we refer to Kumar et al. [44]). In the following, the
two methods, PCA-LDA and FPCA-LDA, were applied on
both raw and pre-processed experimental data. The total num-
ber of spectra used is 2262 and 1131 spectra for the raw ex-
perimental and pre-processed dataset, respectively. The pre-
processing consists of a combination of two spectra for spike
correction so the preprocessed dataset features less spectra
than the raw dataset. We applied two approaches for two
cross-validation, namely the leave one batch out cross-
validation (LOBOCV) and the 10-fold cross-validation (10-
fold CV).

The first step in the FPCA-LDA is to approximate our
experimental Raman data into functions. Therefore, the B-
spline basis functions are used for both the raw and pre-
processed experimental Raman data. The number of basis
functions implemented is equal to 200. The mean spectra for
both raw and pre-processed Raman data and their functional
mean spectra are shown in Fig. 5. The functional mean spectra
(SNR = 278.25) for the raw experimental data represent well
the original data (SNR = 272.38) with a slight reduction of
noise as shown in the left panel of Fig. 5. In the right side of
this figure, the functional mean spectra (SNR = 307.14) of the
pre-processed experimental Raman data (SNR = 302) are il-
lustrated. Like the raw functional mean, the pre-processed
functional mean represents well the original data and a slight
reduction of noise is observed. The elbow method suggested
that the optimal number of basis functions is equal to 80 basis
functions. However, we increased this number to 200 basis
functions because we wanted the functional approximation to
include the C-D/C-H region with high quality.

Fig. 4 The mean sensitivity of applying PCA-LDA and FPCA-LDA on
the simulated Raman data with background and the difference between
bothmethods. The mean sensitivity of PCA-LDA, the mean sensitivity of
FPCA-LDA, and the difference of the mean sensitivities are illustrated on

the left, middle, and right, respectively. In region c, both FPCA-LDA and
PCA-LDA perform equally. While in regions a and b, the FPCA-LDA
method performs better compared to PCA-LDA
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The functional data analysis was applied to the pre-
processed experimental data for each of the classes mentioned
above, and the discrete mean spectra and their functional ver-
sion are shown in Fig. 6. A slight reduction of noise in the
functional approximation is visible (see ESM Table S2), and
this refers to the fact that a large number of basis functions are
used and that the SNR of the pre-processed Raman data is
high (approximately equal to SNR = 302). This SNR is ap-
proximated by calculating the ratio of the peak amplitude at
the C-H band (2930 cm−1) to the standard deviation of the
region between 2408 and 2578 cm−1. The functional approx-
imation showed an improved SNR which is equal to 307.14.

We aim to compare both approaches that were explained in
the workflow in Fig. 1. Therefore, we implemented the PCA-
LDA method on the discrete pre-processed spectra and the
FPCA-LDA method on the functional approximation of these
spectra. In both methods, we tested the model using the two
cross-validation schemes (LOBOCV and 10-fold CV), and
the results are summarized in Fig. 7.

The comparison between the PCA-LDA and FPCA-LDA
methods using the LOBOCV is illustrated in the first row of
Fig. 7. The mean sensitivities are shown in panel a. Similar
performance for both methods can be shown with a slight
improvement in the values for the FPCA-LDA method, in

Fig. 5 The discrete and the functional mean spectra for the raw and pre-
processed Raman data. On the left, the raw Raman data is illustrated
through their discrete mean spectra and their functional mean spectra in

black and red, respectively. In the right panel, the pre-processed Raman
data is also illustrated through their discrete mean spectrum and their
functional mean spectrum in black and red, respectively

Fig. 6 The mean spectra per class (C. basilensis, N. aromaticivorans, R.
opacus) for the pre-processed experimental data (left) and their functional
approximation (right). The discrete mean spectra per class are shown on
the left. Their functional counter parts are illustrated on the right side. A

reduction of noise in the functional version is deduced, where the mean
intensity with the standard deviation for specific wavenumbers of both
versions is illustrated in ESM Table S2. Beside this noise reduction, no
Raman spectral features are removed
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particular in the region where the number of components is
larger than 32. A reduction of the standard deviation is visible
in the case of the FPCA-LDAmethod. Although the function-
al data analysis resulted in smoothed function, this did not
affect the classification output. Therefore, the functional ap-
proach conserved the important features needed in the classi-
fication. The maximum mean sensitivity for the PCA-LDA
method refers to the model with 45 components with a mean
sensitivity of 0.77 ± 0.16. However, the maximum sensitivity
for the FPCA-LDA method refers to a model with 50 compo-
nents with a value of 0.79 ± 0.14. The corresponding confu-
sion matrices for the model with the highest mean sensitivities
are illustrated in panel c in black and red for PCA-LDA and
FPCA-LDA, respectively. In the second row of Fig. 7, the
mean sensitivities of PCA-LDA and FPCA-LDA using the
10-fold CV are shown. Similarly to panel a, both methods
are performing analogously. A small reduction of the standard
deviation is shown in the case of the FPCA-LDA. Even
though functional data analysis resulted in smoothed function,
this did not affect the classification output. Therefore, the
functional approach conserved the important features needed
for the classification. The maximum mean sensitivity for the
PCA-LDA method refers to the model that includes 45 com-
ponents with a value of 0.91 ± 0.07. However, the maximum
sensitivity for the FPCA-LDA method refers to a model with
47 components with a value of 0.91 ± 0.06. The

corresponding confusion matrices for the model with the
highest mean sensitivities are illustrated in panel d for PCA-
LDA and FPCA-LDAmethods in black and red, respectively.

The functional data analysis was also applied to the raw
experimental data, and the discrete mean spectra and their
functional versions are shown in the ESM in Fig. S8. In these
plots, a slight reduction of noise in the functional approxima-
tion is visible. This small noise reduction refers to the fact that
a large number of basis functions are used and that our exper-
imental Raman data contain less noise (SNR = 272.38). Also
in the case of the raw data, we want to compare both ap-
proaches that were explained in the workflow in Fig. 1.
Therefore, we implemented the PCA-LDA method on the
discrete raw spectra and the FPCA-LDA method on the func-
tional approximation of these spectra. In both methods, we
tested the model with two cross-validation schemes
(LOBOCV and 10-fold CV), and the results are summarized
in the ESM in Fig. S9.

The comparison between the PCA-LDA and FPCA-LDA
using the LOBOCV is illustrated in the first row of ESM Fig.
S9. The mean sensitivities are shown in panel a. Similar per-
formance can be shown for both methods with a slight im-
provement for the FPCA-LDA method. Particularly in the
region where the number of components is larger than 40
and in the region where the number of components is around
20 components, the FPCA-LDA performs better .

Fig. 7 The mean sensitivities and the confusion matrices of PCA-LDA
and FPCA-LDAmethods using LOBOCV and 10-fold CV using the pre-
processed Raman data. Panel a represents the mean sensitivities of PCA-
LDA and FPCA-LDAmethods using LOBOCV in black and red, respec-
tively. The confusion matrices of the models with the highest mean

sensitivity are illustrated in panel c. Panel b refers to the mean sensitivities
of the PCA-LDA and the FPCA-LDAmethods using 10-fold CV in black
and red, respectively. The confusion matrices of the models with highest
mean sensitivity are illustrated in panel d
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Additionally, a reduction of the standard deviation is visible in
the case of the FPCA-LDA. Although functional data analysis
resulted in a smoothed function, this did not affect the classi-
fication output. Therefore, the functional approach conserved
the important features needed in the classification. The maxi-
mum mean sensitivity for the PCA-LDA method was
achieved by a model that includes 48 components and the
mean sensitivity was 0.77 ± 0.16. However, the maximum
sensitivity for the FPCA-LDA method was seen for a model
with 44 components and the mean sensitivity was 0.78 ± 0.15.
The corresponding confusion matrices for the model with the
highest mean sensitivities are illustrated in panel c in black
and red for PCA-LDA and FPCA-LDA methods, respective-
ly. In the second row of ESM Fig. S9, the mean sensitivities of
PCA-LDA and FPCA-LDA methods using the 10-fold CV
are visible. Similar to panel a, both methods perform analo-
gously with a slight improvement in the case where the
FPCA-LDA method was applied, particularly in the region
where the number of components is larger than 20 compo-
nents. Furthermore, a reduction of the standard deviation is
shown in the case of the FPCA-LDA method. Although func-
tional data analysis resulted in smoothed function, this did not
affect the classification output. Therefore, the functional ap-
proach conserved the important features needed for the clas-
sification. The maximum mean sensitivity for the PCA-LDA
method refers to the model that includes 50 components with a
value of 0.89 ± 0.08. However, the maximum sensitivity for
the FPCA-LDA method could be seen for a model with 50
components (0.9 ± 0.06). The corresponding confusion matri-
ces for the models with highest mean sensitivities are illustrat-
ed in panel d in black and red for the PCA-LDA and the
FPCA-LDA methods, respectively.

Conclusion

In this manuscript, we tested the application of the functional
data analysis on Raman spectral data. Therefore, we compared
the functional approach, e.g., the functional principal compo-
nent analysis followed by a linear discriminant analysis
(FPCA-LDA) to the classical approach, the principal compo-
nent analysis followed by linear discriminant analysis (PCA-
LDA). Our study consists of testing both approaches on sim-
ulated and experimental Raman data. Within the simulated
data, we investigated two scenarios: one with and one without
background contribution. For both scenarios, we constructed
63 different simulations by changing the mean signal-to-noise
ratio (SNR) and the shift in the peak position that was used to
construct the abnormal class. A 10-fold cross-validation (10-
fold CV) was used to evaluate the model performance in both
scenarios. We could show that the functional approach
(FPCA-LDA) performed better in region b of both Fig. 3
and Fig. 4, where the SNR and the shift in the peak position

values are inversely proportional. However, both methods
perform statistically similar in region a and region c of the
same figures. In these both regions, either the quality of the
spectra is low (low SNR) in combination with a small peak
shift (region a) that both models do not work or the spectral
quality is so good (region c) that both methods perform per-
fectly. These outcomes were similar for both scenarios (sim-
ulated Raman data with and without background). Then, we
evaluated both approaches on experimental Raman spectra.
Therefore, raw and pre-processed Raman data were used.
Two cross-validation methods were implemented, the leave
one batch out cross-validation (LOBOCV) and 10-fold CV.
A slight improvement in the classification performance is
shown when comparing the mean sensitivities between the
PCA-LDA and the FPCA-LDA methods for the raw and the
pre-processed experimental data. Moreover, these results were
similar regarding the use of the cross-validation methods. This
outcome of analyzing functional data on the experimental data
is in accordance with the simulation data with or without
background since the signal-to-noise ratio in the experimental
data is high. However, the functional approach is sensitive to
the choice of the number of basis functions, making this se-
lection a very challenging task, which is an advantage of the
classical approach. Furthermore, in terms of computation
power, the functional version takes more time since an addi-
tional approximation step is needed before applying the func-
tional PCA.

In conclusion, the functional data analysis can be consid-
ered a promising tool for analyzing Raman spectra, especially
when the quality of the data is low. This property makes func-
tional data analysis a great tool to analyze spectra which were
acquired fast, or in vivo which both yield low-quality Raman
spectra. It might be that the function data analysis is not so
sensitive to a missing wavenumber calibration, because func-
tions are utilized, and that functional data analysis can be used
with spectra with a different spectral resolution. These points
need further investigation and will be investigated in the
future.
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