CORRECTION

Correction to: Fluorescence anisotropy study of radiation-induced DNA damage clustering based on FRET

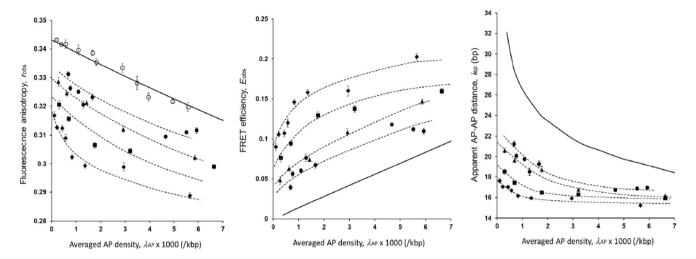
Ken Akamatsu¹ · Naoya Shikazono¹ · Takeshi Saito²

Received: 9 March 2021 / Accepted: 9 March 2021 / Published online: 13 March 2021 © Springer-Verlag GmbH Germany, part of Springer Nature 2021

Correction to: Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-020-03082-w

The authors would like to call the reader's attention to the fact that, unfortunately, there was an error regarding figure 3 in this manuscript; please find the correct figure below. The apparent base separation in a cluster produced by 2.0 MeV/u 4 He²⁺, 0.52 MeV/u 4 He²⁺, and 0.37 MeV/u 12 C⁵⁺ beams demonstrated in the "Abstract" and the "Results and Discussion" sections are changed to be ca. 21, 19, and 18 bp, respectively.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


The online version of the original article can be found at https://doi.org/ 10.1007/s00216-020-03082-w

DNA Damage Chemistry Research Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan

Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan, Osaka 590-0494, Japan

3394 Akamatsu K. et al.

