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Abstract
Olive quick decline syndrome (OQDS) is a disorder associatedwith bacterial infections caused byXylella fastidiosa subsp. pauca
ST53 in olive trees. Metabolic profile changes occurring in infected olive trees are still poorly investigated, but have the potential
to unravel reliable biomarkers to be exploited for early diagnosis of infections. In this study, an untargeted metabolomic method
using high-performance liquid chromatography coupled to quadrupole-time-of-flight high-resolution mass spectrometry (HPLC-
ESI-Q-TOF-MS) was used to detect differences in samples (leaves) from healthy (Ctrl) and infected (Xf) olive trees. Both
unsupervised and supervised data analysis clearly differentiated the groups. Different metabolites have been identified as
potential specific biomarkers, and their characterization strongly suggests that metabolism of flavonoids and long-chain fatty
acids is perturbed in Xf samples. In particular, a decrease in the defence capabilities of the host after Xf infection is proposed
because of a significant dysregulation of some metabolites belonging to flavonoid family. Moreover, oleic acid is confirmed as a
putative diffusible signal factor (DSF). This study provides new insights into the host-pathogen interactions and confirms LC-
HRMS-based metabolomics as a powerful approach for disease-associated biomarkers discovery in plants.
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Introduction

Since 2010, olive trees of Salento (southeastern Italy) have
been collapsing due to a severe disease called “olive quick
decline syndrome” (OQDS) [1]. The disease has been as-
sociated with Xylella fastidiosa (Xf) infection, a Gram-
negative pathogen colonizing xylem vessels, thus
impairing water uptake. This bacterium is the well-known
causal agent of other economically important diseases, i.e.

Pierce’s disease [2] in grapes and leaf scorch of almond
and other landscape and ornamental species. In the case of
olive, the widespread occurrence of sapwood fungal infec-
tions (such as Phaeoacremonium and Phaeomoniella,
Pleumostomophora and Neofusicoccum), probably exacer-
bates the effect of Xylella-infections [3]. However, the
pathogenic role of X. fastidiosa subsp. pauca ST53 in the
aetiology of OQDS has been clearly demonstrated by arti-
ficial inoculations on susceptible olive cultivars [4, 5].
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This study also unraveled the long incubation period of the
infections in olives. In fact, the onset of symptoms occurred
more than 1 year after the bacterial inoculation [6]. In this
scenario, the possibility of making an early diagnosis of the
infections is of utmost importance. To date, it is possible to
detect the presence of Xf in olive trees by serological and
molecular methods [7]. However, the long latency period of
the infections and the irregular distribution of the bacterium in
the trees (in particular, in century-old trees of relevant size)
prompted the exploration of alternative tools to unravel the
presence of the infections by detecting bacterial compounds
involved in the infection process, including those related to the
host response.

Metabolomics emerged within the omics technologies as a
valuable aid to understand complex molecular complex in
biological systems [8] and to provide a useful evaluation of
the cellular state at a molecular level. In fact, metabolites can
be observed as the end-products of gene expression and can
represent a "fingerprint" of a cell or tissue. Moreover, they
generally change within either host or pathogen in response
to their specific interactions. In a biological system, the com-
prehensive analysis of all metabolites is a difficult target, not
yet reached for any system. Indeed, the past few years have
seen great advances in high-throughput metabolomics, after
integration with the other “omics” through bioinformatics [8,
9], making significant progress into understanding different
biological processes.

In the recent efforts to comprehend and face OQDS, differ-
ent analytical procedures have been widely employed to
achieve adequate metabolite coverage. A GC-MS method
[10] has been adopted to highlight differences in the compo-
sition of volatile organic compounds (VOC) between healthy
and infected olive tree samples. In a recent work, an LC-MS
untargeted lipidomic analysis of infectedOlea europaea sam-
ples revealed a shortlist of molecules that modulate biofilm
phases in X. fastidiosa subsp. pauca [11].

The basic philosophy of an untargeted metabolomics ap-
proach is to detect as many metabolites as possible to maxi-
mize the likelihood of identifying compounds that are dysreg-
ulated in a biological condition. In this research work, using
an untargeted metabolomics approach, we attempted to iden-
tify metabolites produced by the pathogen or metabolites that
represent the biochemical response of the host to the infection.
An efficient analytical method based on a liquid chromatog-
raphy separation coupled to high-resolution mass spectrome-
try (LC-HRMS) permitted us to unravel the main differences
between healthy and Xylella-infected trees. Feature extraction
and two-group analysis was performed by the XCMS online
software. Significant features were used to distinguish sam-
ples taken from healthy (Ctrl) and infected (Xf) olive trees and
to perform partial least square discriminant analysis. To vali-
date our experimental model, cross-model validation and per-
mutation tests were run. Online databases also allowed for the

putative identification of some of the metabolites involved in
OQDS. The relevant results are herein discussed.

Materials and methods

Sampling

Field samples were collected from olive trees in two different
areas of the Salento Peninsula. Ten leaves collected from dif-
ferent brushes of each sample tree were immediately shock-
frozen with liquid nitrogen to block all metabolic processes
and transferred to the laboratory for extraction. All sampled
plants were without OQDS symptoms at different distances
from the infected (desiccated) ones. Table S1 (see
Supplementary Information, ESM) lists the sample label, the
cultivar and healthy/infected state based on real-time PCR
assays carried out as already reported [9].

Extraction protocol and sample preparation

The extraction procedure is a critical step prior to metabolomic
experiments. First, the leaves were immersed in liquid nitrogen,
then manually ground with a pestle and a mortar (pre-cooled
and filled with liquid nitrogen). For the extraction procedure,
ethyl acetate was chosen, which was reported to be the best
extraction solvent in terms of number of metabolites with large
chemical and structural diversity detected by MS [12–14].
Therefore, 300 mg of fine powder was extracted with 1.2 mL
of ethyl acetate in 1.5 mL Eppendorf tubes, sonicated for
15 min, and centrifuged at 12,000 rpm for 20 min. 500 μL of
the supernatant was transferred into a new Eppendorf tube and
the solvent was evaporated under a stream of nitrogen. The
addition of 1 mL of water/acetonitrile 50:50 (v/v) to the dry
extract was followed by sonication (15 min) and centrifugation
(12,000 rpm, 20 min). The supernatants were transferred into
HPLC vials and analyzed by LC-MS.

HPLC-ESI-QTOF analysis

Analyses were performed on an Agilent 1200 series liquid
chromatograph (LC) equipped with a solvent vacuum
degasser, a binary pump, a thermostated autosampler, a
thermostated column compartment and a photodiode array
detector (DAD) and interfaced to an Agilent 6540 Q-TOF-
MS equipped with an ESI source. A general-purpose C18
column (Poroshell 120 SB-C18, 2.1 × 100 mm, 2.7 μm,
Agilent, Milano, Italy) was employed and metabolites were
separated using a mobile phase composed of 0.1% formic acid
in water (A) and 0.1% formic acid in acetonitrile (B). The
gradient elution was set as follows: linear gradient from 5 to
95% B in 45 min, 95% B held for 10 min, linear gradient from
95 to 5%B in 5min and 5%B held for 5 min to equilibrate the
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column at the initial conditions. The flow rate was 300 μL/
min. The run time was 65 min. The column temperature was
set at 25 °C. The sample injection volume was 5 μL. DAD
acquisitions were carried out in the range of 190–600 nm. The
mass spectrometer was operated in full-scan mode in the m/z
range 50–1700 with a scan rate of 1.42 spectra/s, in both
positive and negative ionization modes with the following
experimental parameters: the capillary voltage was 3.5 kV,
the nebulizer (N2) pressure was 30 psi, the drying gas temper-
ature was 350 °C, the drying gas flow was 12 L/min and the
skimmer voltage was 40 V. Internal calibration was achieved
by enabling constant check of reference masses in the calibra-
tion mix solution introduced to the ion source via the dual ESI
port. To identify the molecular structure of significant ions, all
samples were also acquired in both positive and negative ion-
ization modes using the autoMS/MS function, nitrogen as the
collision gas, and a collision energy of 20 eV, under the same
experimental conditions described above. All the measure-
ments were run and recorded with Agilent Mass Hunter soft-
ware (Rev. B.01.04).

Data processing

LC/MS data were first processed using XCMS Online soft-
ware (https://xcmsonline.scripps.edu) [15]. Raw LC-MS data
files were converted into mzML files and uploaded to the on-
line platform in two datasets, containing 17 Ctrl samples and
10 Xf samples. Additional data from samples of different cul-
tivars (18–22 Ctrl samples) were treated with the same proce-
dure. The following parameters were used to process either
positive or negative ion mode data in different pairwise jobs:
feature detection with the centWave algorithm (Δm/z =
15 ppm, minimum and maximum peak width 10 and 60 s,
respectively; S/N threshold = 6); retention time correction
with the usual obiwarp settings (profStep = 0.5); chromato-
gram alignment with mzwid = 0.015, minfrac = 0.5, and bw =
5; parameters for annotation, including ppm error = 5 andm/z
absolute error = 0.015. The results of these pairwise calcula-
tions are presented in a table in which detailed information
about each single metabolite (m/z, p value, fold-change, peak
intensity, retention time, extracted ion chromatogram (EIC),
mass spectrum and box plot) are reported. The identification
of metabolites was achieved by MS/MS spectrum match with
MS-FINDER, which was able to elucidate the formula and
chemical structures from accurate mass precursor ions and
MS/MS spectra [16]. The XCMS csv output file was imported
in SIMCA (version 16). This software was used to perform
principal component analysis (PCA), partial least square dis-
criminant analysis (PLS-DA) and orthogonal projections to
latent structures discriminant analysis (OPLS-DA) and to val-
idate the models. Data were Pareto scaled before performing
PCA, PLS-DA and OPLS-DA methods.

Results

Data analysis

The mzML data files were processed with XCMS Online soft-
ware using pairwise analysis, which allows the comparison of
two groups “control” and “disease”, i.e. healthy and Xf-
infected plants. The analyses were carried out by ESI-MS in
either positive or negative ion mode. The feature detection
carried out by XCMS Online with the centWave method per-
mitted us to extract 26,604 and 9598 features for + and – ion
mode data, respectively, whereas the parametric independent
(unpaired) two-group tests (Welch t test) permitted us to de-
termine the metabolite features whose levels are significantly
different. Figure 1 gives the actual representation of global
metabolomic data in ESI-MS (both + and - ion mode): the
relevant cloud plots (that can be exported directly from
XCMS Online) show those features exceeding both p value
and FC thresholds, set at 0.01 and 1.5, respectively, distribut-
ed along the chromatogram in the upper or lower panel ac-
cording being up or downregulated by the Xf infection.

The number of features with a p value < 0.01 and fold
change > 1.5 were 14.437 in positive ion mode and 6,236
features in negative ion mode. These findings confirm the
greatest sensitivity of ESI-MS (+ ion mode) in global
metabolomic analysis.

The patterns in the data were searched by PCA, an unsu-
pervised multivariate method useful to examine whether the
detected features are able to group samples. This method is
“unsupervised” because it is carried out without data labeling
with class membership. It is also a strong method to dimen-
sionally reduce a data set containing thousands of metabolites,
calculating the few combinations best explaining original data
variance. Figure 2 shows the PCA score plots, showing its
capability to separate healthy and Xf-infected olive tree sam-
ples along PC1 and PC2. The first two PCs explained 67.6%
and 7.25% of the total variance in ESI (+ ion mode, panel A)
and the 62.5% and 7.7% in ESI (− ion mode, panel B).

These results suggested that the PCA represents an effec-
tive tool to distinguish Ctrl (healthy) and Xf (infected) olive
trees. Actually, notwithstanding there are two different culti-
vars, the trend is unique, and no outlier has been identified.
Filtering out those features that did not change significantly
between the two groups, i.e. using the same features shown in
the cloud plot of Fig. 1, the effectiveness of PCA in
distinguishing the two groups was confirmed. As a result, a
valid classification of these metabolomic data could be obtain-
ed [17] and PLS-DA and OPLS-DA were used to further
investigate the discrimination ability of these significant me-
tabolites. Both methods are among the most often used super-
vised method in metabolomics and maximize the covariance
between experimental data and dummy-dependent y-variable-
containing group labels. Moreover, OPLS-DA permits the
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separation of group-predictive and group-unrelated variance,
calculating the further components orthogonal to the first. The
model calibration was performed on about 80% of samples of
each class, i.e. on 22 samples, whereas the training set
consisted of the remaining ones as reported in Table 1.

The selection of latent variables and the cross validation
of the model was performed using cancellation groups on
the basis of Venetian blinds because the samples are or-
dered. Obviously, at this point, only the training set (WS or
working set in SIMCA) is considered. Two different vali-
dation runs (3 and 4 cancellation groups) gave similar re-
sults in terms of error rate: in order to not overfit experi-
mental data, 2 latent variables and 3 cancellation groups

were selected to calculate the final models. Their perfor-
mance is summarized in Table 2.

The reliability of the models can also be ascertained from
the obtained PLS-DA (Fig. 3a and b) and OPLS-DA (Fig. 3c
and d) score plots: all the samples, in both the training set and
the test set, have been plotted in the figures and the modeling
capabilities are evident, with a correct classification of all the
test samples that have not been used in the model fitting (ESM
Table S2). The model is also robust towards samples not be-
longing to Ogliarola and Cellina, which represent the cultivars
that have been considered in the present work: 5 samples of
different cultivars, all not affected by OQDS are correctly
classified as healthy (see ESM, Fig. S2 and Tables S3-S6).

Fig. 1 XCMS Cloud plot representation of the dysregulated metabolite features for ESI-MS (a) positive ion mode and (b) negative ion mode: green
bubbles represent the up-regulated features whereas the red ones represent the down-regulated features. Bubble diameter is proportional to fold change

Fig. 2 Score plot of principal component analysis (PCA) on metabolomic data acquired in ESI-MS (a) positive ion mode and (b) negative ion mode
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Feature annotation, i.e. the metabolite identification, is a
key step to find those biomolecule markers of the infection
that are potentially useful to develop a new analytical method
based on a targeted metabolomic approach aiming at an early
diagnosis of the infection. Among these thousands of features,
only those exhibiting the most significant fold changes were
searched in detail. Tentative metabolite identification was
based on the in silico MINE database and in the PubChem
compound database available in MS-FINDER, which also
allows us to score and rank candidate structures. Tables 2 lists
some of the significant metabolites with their retention time,
accurate m/z value, fragment ions, fold change, p value, and
ion mode. This software was also used to confirm annotation
by comparing the experimental MS/MS spectra with the com-
puter generated ones. The high-resolution MS/MS spectra of
metabolites identified and discussed below are reported in Fig.
S1 (see ESM).

As can be seen in Table 3, some flavone and flavonoid-O-
glucosides were detected as significantly dysregulated. This
result is not surprising because flavonoids are widely distrib-
uted and some of them are involved in response to microbial
attack in different host-pathogen systems [18]. Changes in the
levels of metabolites belonging to the class of fatty acids, both
saturated and unsaturated, were also recorded in the chromato-
grams. In Fig. 4 the extracted ion chromatograms for Ctrl and
Xf samples (ESI-MS, − ion mode) shows how palmitic acid
and stearic acids are upregulated in Xf-infected samples. Oleic
acid was also upregulated, with a 6-fold increase in the Xf
samples.

Discussion

In the present work, we employed an untargeted metabolo-
mics approach to identify the main changes in the metabolic
profile of olive leaves affected by the “olive quick decline
syndrome”. Significant upregulated or downregulated metab-
olites detected by ESI-MS (either in + or – ion mode) and
reported in Tab. 3 are discussed below.

Diosmin. The deprotonated molecule [M-H]− was ob-
served in the ESI-MS (− ion mode) at m/z 607.1614.
Diosmin is a polyphenol with a flavonoid structure, showing
high solubility in water, and its presence appears to be includ-
ed in defence response activities by blocking protein synthesis
in viruses [19]. In our samples, the diosmin was downregulat-
ed in Xf samples, whichmay be ascribed to the defence mech-
anisms being activated in infected plants.

Diosmetin 7-O-beta-D-glucopyranoside has been also
identified in ESI-MS (− ion mode) as a downregulated metab-
olite in Xf samples (5.3-fold) at m/z 461.0673 and it is often
cited as having antioxidant and antimicrobial effects [20].

Taxifolin (also known as dihydroquercetin), having a
chemical formula of C15H12O7 was identified at m/z
303.0485 (ESI-MS, − ion mode). The potential interest in
taxifolin is mainly focused on its antioxidant properties. In
our results, the amount of taxifolin was downregulated with
a 6.7-fold change.

Ligstroside. Ligstroside is a glucoside secoiridoid involved
in plant metabolism. It is a secondary plant metabolite having
a chemical structure containing one phenol ring and a formula
of C25H32O12 and was identified at m/z 523.1752 in ESI-MS
(− ion mode). Ligstroside is generally present in olive trees'
lipidic fraction and in extra-virgin olive oil (EVOO), and its
antioxidant, anticarcinogenic, anti-inflammatory and immu-
nomodulatory properties have been assessed [21]. In our
study, this metabolite is downregulated, and it is discrimina-
tive for the infected leaves (1.9-fold change) in comparison
with infected ones (Xf).

Kaempferol and Luteolin. These metabolites are signifi-
cantly downregulated, with up to a 5.6-fold change measured

Table 1 Sample partition in Ctrl (healthy olive trees) and Xf (infected
ones) classes, as well as in training and test sets

Ctrl (healthy olive trees) Xf (infected olive trees) Total

Training set 14 8 22

Test set 3 2 5

Total 17 10 27

Table 2 PLS-DA and OPLS-DA models component description and predictive performances

Component R2X R2X (cum) Eigenvalue R2Y R2Y(cum) Q2 Q2 (cum)

PLS-DA (ESI-MS data, positive ion mode) 1 0.629 0.629 13.8 0.859 0.859 0.844 0.844

2 0.0609 0.69 1.34 0.127 0.986 0.464 0.916

PLS-DA (ESI-MS data, negative ion mode) 1 0.601 0.601 13.2 0.83 0.83 0.814 0.814

2 0.0593 0.66 1.31 0.145 0.975 0.526 0.912

OPLS-DA (ESI-MS data, positive ion mode) P1 (Predictive) 0.542 0.542 11.9 0.986 0.986 0.917 0.917

O1 (Orthogonal in X) 0.149 0.149 3.27

OPLS-DA (ESI-MS data, negative ion mode) P1 (Predictive) 0.504 0.504 11.1 0.975 0.975 0.874 0.874

O1 (Orthogonal in X) 0.156 0.156 3.44
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Fig. 3 Scatter plots for the
predicted scores of the two
components retained in the PLS-
DA and OPLS-DA models cal-
culated for both ESI-MS ion
modes: (a) PLS-DA, ESI-MS, +
ion mode; (b) PLS-DA, ESI-MS,
− ion mode; (c) OPLS-DA, ESI-
MS, + ion mode; and (d) OPLS-
DA, ESI-MS, − ion mode.
Healthy (Ctrl) and Xf-infected
samples (Xf) belonging to the
training set are coloured in green
and in red, respectively, whereas
all the test samples are in blue.
Variables were filtered according
to p value <0.01 and fold change
> 1.5 for both ESI modes
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for kaempferol. Both kaempferol and luteolin have the same
molecular formula and mass and were distinguished by their
different MS/MS spectra (ESM Fig. S1). It has been widely
reported that flavonoid content in plants is responsible for
antimicrobial activity, especially towards Gram-negative bac-
teria [22].The results in the present study thus illuminate one
of the possible effects of microbial attack, i.e. the demolition
of the antioxidant potential of flavonoids, paving the way for
rapid infection of the Xf-attacked plants.

Solavetivone has been identified at m/z 219.1653 in ESI-
MS (+ ion mode). This is a stress compound with a
sesquiterpenoid structure, and is thus implicated in disease
resistance [23]. It is most likely produced by the plant as a
result of post-infection stress. Given that it is expressed in
major concentrations in Xf leaves (12.6-fold higher with re-
spect to the controls), this molecule could represent a biolog-
ical marker of infection.

Sinapic acid. The metabolite having a m/z 225.0747 ESI-
MS (+ ion mode) was identified as sinapic acid, which is
constitutively expressed in the leaves of healthy trees. But,
its concentration decreases (3.4 times) when the plant is in a
state of stress.

Pyridoxine (Vitamin B6). Pyridoxine has been identified at
m/z 170.0804 in ESI-MS (+ ion mode). In the context of self-
defence against oxidative stress, we found that pyridoxine,
one of the six isoforms of vitamin B6, was expressed with
concentrations 8.4 times higher by the infected trees,

indicating that the plant had implemented its defences against
the infection. Moreover, it has been recently reported that
vitamin B6 could play a key role as a signalling molecule to
alert the plant of the need for ammonium, a nitrogen source
necessary for the biosynthesis of vital compounds, such as
amino acids and proteins [24].

Abscisic acid. The deprotonated plant hormone abscisic
acid [M – H]− was found at m/z 263.1264 in ESI-MS (− ion
mode). Low-energy CID-MS/MS analysis of this precursor

Table 3 Significant metabolites identified in healthy (control) and Xf
samples whose dysregulation between not-infected and infected plant
samples is discussed in the text. For each recognized metabolite, along
with electrospray mode, formula, exact mass, and retention time, the

values explaining the differences are reported: fold change, p value and
dysregulation trend. These metabolites have been confirmed by MS/MS
experiments (ESM Fig. S1)

Metabolite ESI-MS ion mode Formula m/z RT (min) Fold change p value Change trend

Pyridoxine + C8H11NO3 170.0804 1.1 8.4 1.23E-06 UP

β-Ionone + C13H20O 193.1577 11.42 30.2 2.17E-08 UP

Taxifolin – C15H12O7 303.0485 12.13 6.7 1.82E-06 DOWN

Kaempferol – C15H10O6 285.0376 12.14 5.6 3.69E-06 DOWN

Solavetivone + C15H22O 219.1663 13.19 12.6 4.35E-12 UP

Diosmin – C28H32O15 607.1614 13.88 2.0 1.11E-03 DOWN

Diosmetin 7-O-beta-D-glucopyranoside – C22H22O11 461.0673 13.88 5.3 6.43E-10 DOWN

Jasmonic acid – C12H18O3 209.1180 15.26 8.2 1.22E-07 UP

(S)-Abscisic acid – C15H20O4 263.1264 15.67 3.3 9.05E-09 UP

Ligstroside – C25H32O12 523.1752 16.09 1.9 3.96E-03 DOWN

Luteolin – C15H10O6 285.0376 12.14 5.6 3.69E-07 DOWN

Sinapic acid + C11H14O5 225.075 20.35 3.4 3.00E-04 DOWN

Maslinic acid – C30H48O4 471.3472 30.50 3.3 2.72E-09 UP

12-HETE – C20H32O3 319.2298 32.30 5.0 3.00E-05 DOWN

Palmitic acid – C16H32O2 255.2330 36.52 10.5 3.00E-05 UP

Heptadecanoic acid – C17H34O2 269.2489 36.86 7.9 4.05E-06 UP

Oleic acid – C18H34O2 281.2504 37.76 6.0 5.00E-05 UP

Stearic acid – C18H36O2 283.2670 51.87 1.6 6.00E-04 UP
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Fig. 4 Comparison of extracted ion chromatogram (EIC) of some fatty
acid metabolites in ESI-MS (negative ion mode) between Ctrl and Xf-
infected samples

471HPLC-MS/MS method applied to an untargeted metabolomics approach for the diagnosis of “olive quick decline...



ion was initiated by loss of carbon dioxide to afford the [M-
CO2]

− product ion at m/z 220.97 [25]. In our study, the
abscisic acid was upregulated, with a 3.3-fold change.
Concurring with the regulation of stomatal aperture and adap-
tation to drought, low temperature and salinity, this compound
clearly plays a role in the plant response to Xf infection [26].

Jasmonic acid at m/z 209.1180 was identified in ESI-MS
(−ion mode) and it is upregulated in samples from infected
plants. Considering that jasmonate regulates plant responses
to different stresses such as drought [27], this endogenous rise
in JA, as observed in the present work, can be seen as a host
response to infection.

Ionone. Ionone is a volatile organic compound (VOC)
whose concentration is about 30 times higher in infected sam-
ples, suggesting its implication in the defence-resistance pro-
cess. As a VOC, indeed, it functions both as a defence factor
and as a signalling molecule, [28] and it could have a key role
in a range of interactions between plants (allelopathy) and
between plants and non-plant organisms.

Fatty acids (FAs). It is noteworthy to mention that oleic
acid belongs to a class of unsaturated fatty acids which have
been proposed to be involved in Xf quorum sensing, a cell-to-
cell communication system [5, 13]. These pathogen-derived
lipid molecules, known as diffusible signal factors (DSF) [29]
play a key role in Xf, as they modulate a wide set of biochem-
ical processes. A complex mechanism of DSF regulation,
based on population size, influences the expression of several
Xf virulence traits, such as biofilm formation, adhesiveness
and motility [30]. Moreover, the higher concentration of oleic
acid in Xf samples is consistent with recent findings [11],
which report a significant accumulation of this compound in
Xf-infected olive samples. In light of this finding, we believe
that selected FAs may also be considered as valuable markers
of OQDS infection.

To summarize, an untargeted metabolomics approach was
applied to olive leaf samples with the aim of understanding the
main differences between healthy plants and plants with
OQDS. An extraction procedure with ethyl acetate was con-
firmed to be an effective extraction method, permitting the
detection of thousands of features. The results of multivariate
analysis showed a perfect clustering of the two pools of sam-
ples (Ctrl and Xf) based on two principal components (PC1
and PC2). The first allowed the separation of healthy from
infected samples, and the second permitted distinction among
different cultivars. Based on these data, PLS models were
calculated and validated. A few molecules associated with
features displaying significant changes between the two data
sets could be identified: some are substances implicated in
host response to infections, others are involved in Xf quorum
sensing. A significant dysregulation of some metabolites be-
longing to the flavonoid family, evidencing a decrease in the
host's defence capabilities after Xf infection, has been shown
for the first time. Once these results are confirmed on a wider

sample, they also may be considered as markers for an early
diagnosis of OQDS. This would help in planning a strategy for
an efficient therapy.
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