Skip to main content
Log in

Rapid detection of carbamate pesticide residues using microchip electrophoresis combining amperometric detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The long-term consumption of food with pesticide residues has harmful effects on human health and the demand for pesticide detection technology tends to be miniaturized and instant. To this end, we demonstrated the first application of indirectly detecting two carbamate pesticides, metolcarb and carbaryl, by gold nanoparticle–modified indium tin oxide electrode in dual-channel microchip electrophoresis and amperometric detection (ME-AD) system. m-Cresol and α-naphthol were obtained after pesticide hydrolysis in alkaline solution, and then separated and detected by ME-AD. Parameters including the detection potential and running buffer concentration and pH were optimized to improve the detection sensitivity and separation efficiency. Under the optimal conditions, the two analytes were completely separated within 80 s. m-Cresol and α-naphthol presented a wide linear range from 1 to 100 μM, with limits of detection of 0.16 μM and 0.34 μM, respectively (S/N = 3). Moreover, the reliability of this system was demonstrated by analyzing metolcarb and carbaryl in spiked vegetable samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material generated or analyzed during this study are included in this published article.

References

  1. Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Organic food and the impact on human health. Crit Rev Food Sci Nutr. 2019;59(4):704–14. https://doi.org/10.1080/10408398.2017.1394815.

    Article  PubMed  Google Scholar 

  2. Leong W, Teh S, Hossain MM, Nadarajaw T, Zabidihussin Z, Chin S, et al. Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of Good Agricultural Practices (GAPs). J Environ Manag. 2020;260:109987. https://doi.org/10.1016/j.jenvman.2019.109987.

    Article  CAS  Google Scholar 

  3. Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017;575:525–35. https://doi.org/10.1016/j.scitotenv.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  4. Dhouib I, Jallouli M, Annabi A, Marzouki S, Gharbi N, Elfazaa S, et al. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system. Environ Sci Pollut Res Int. 2016;23(10):9448–58. https://doi.org/10.1007/s11356-016-6418-6.

    Article  CAS  PubMed  Google Scholar 

  5. Yang EY, Shin HS. Trace level determinations of carbamate pesticides in surface water by gas chromatography-mass spectrometry after derivatization with 9-xanthydrol. J Chromatogr A. 2013;1305:328–32. https://doi.org/10.1016/j.chroma.2013.07.055.

    Article  CAS  PubMed  Google Scholar 

  6. Wong JW, Wang J, Chow W, Carlson R, Jia Z, Zhang K, et al. Perspectives on liquid chromatography-high-resolution mass spectrometry for pesticide screening in foods. J Agric Food Chem. 2018;66(37):9573–81. https://doi.org/10.1021/acs.jafc.8b03468.

    Article  CAS  PubMed  Google Scholar 

  7. Wang R, Sun X, Wang X, Chen J, Wang B, Ji W. Spherical conjugated microporous polymers for solid phase microextraction of carbamate pesticides from water samples. J Chromatogr A. 2020;1626:461360. https://doi.org/10.1016/j.chroma.2020.461360.

    Article  CAS  PubMed  Google Scholar 

  8. Shi Z, Hu J, Li Q, Zhang S, Liang Y, Zhang H. Graphene based solid phase extraction combined with ultra high performance liquid chromatography-tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. J Chromatogr A. 2014;1355:219–27. https://doi.org/10.1016/j.chroma.2014.05.085.

    Article  CAS  PubMed  Google Scholar 

  9. Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, et al. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J Agric Food Chem. 2020;68(28):7298–315. https://doi.org/10.1021/acs.jafc.0c01962.

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Dong T, Zhang Y, Wang S. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products. Anal Chim Acta. 2010;666(1–2):76–82. https://doi.org/10.1016/j.aca.2010.03.051.

    Article  CAS  PubMed  Google Scholar 

  11. Bol’shakova DS, Amelin VG. Determination of pesticides in environmental materials and food products by capillary electrophoresis. J Anal Chem. 2016;71(10):965–1013. https://doi.org/10.1134/s1061934816100026.

    Article  Google Scholar 

  12. Tang W, Ge S, Gao F, Wang G, Wang Q, He P, et al. On-line sample preconcentration technique based on a dynamic pH junction in CE-amperometric detection for the analysis of biogenic amines in urine. Electrophoresis. 2013;34(14):2041–8. https://doi.org/10.1002/elps.201300116.

    Article  CAS  PubMed  Google Scholar 

  13. Chu Q, Jiang L, Tian X, Ye J. Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta. 2008;606(2):246–51. https://doi.org/10.1016/j.aca.2007.11.015.

    Article  CAS  PubMed  Google Scholar 

  14. Xu JJ, Peng Y, Bao N, Xia XH, Chen HY. Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes. J Chromatogr A. 2005;1095(1–2):193–6. https://doi.org/10.1016/j.chroma.2005.09.077.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng X, Wang Q, Zhang S, Zhang W, He P, Fang Y. Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta. 2007;71(3):1083–7. https://doi.org/10.1016/j.talanta.2006.06.001.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Lin J, Chen Y, Lin C, Lin X, Liu S, et al. Sensitive amperometric detection for capillary electrophoresis of phenol carbamates with in-line thermal hydrolysis strategy. Electrophoresis. 2019;40(12–13):1648–55. https://doi.org/10.1002/elps.201800484.

    Article  CAS  PubMed  Google Scholar 

  17. Yan XX, Liu WF, Yuan Y, Chen CP. Indium tin oxide coated PET film contactless conductivity detector for microchip capillary electrophoresis. Anal Methods. 2015;7(12):5295–302. https://doi.org/10.1039/c5ay00661a.

    Article  CAS  Google Scholar 

  18. Wang L, Liu WF, Li S, Liu TT, Yan XX, Shi YY, et al. Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst Technol. 2016;22(4):677–86. https://doi.org/10.1007/s00542-015-2465-z.

    Article  CAS  Google Scholar 

  19. Xu BB, Guo JC, Fu YS, Chen XY, Guo JH. A review on microfluidics in the detection of food pesticide residues. Electrophoresis. 2020;41(10–11):821–32. https://doi.org/10.1002/elps.201900209.

    Article  CAS  PubMed  Google Scholar 

  20. Sierra-Rodero M, Fernandez-Romero JM, Gomez-Hens A. Determination of fluoroquinolone antibiotics by microchip capillary electrophoresis along with time-resolved sensitized luminescence of their terbium (III) complexes. Microchim Acta. 2014;181(15–16):1897–904. https://doi.org/10.1007/s00604-014-1266-x.

    Article  CAS  Google Scholar 

  21. Zhu G, Bao C, Liu W, Yan X, Liu L, Xiao J, et al. Rapid detection of AGs using microchip capillary electrophoresis contactless conductivity detection. Curr Pharm Anal. 2019. https://doi.org/10.1016/j.foodchem.2012.04.062.

  22. Liang RP, Meng XY, Liu CM, Qiu JD. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis. 2011;32(23):3331–40. https://doi.org/10.1002/elps.201100403.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar KS, Kang SH. Ultra-fast simultaneous analysis of genetically modified organisms in maize by microchip electrophoresis with LIF detector. Electrophoresis. 2007;28(22):4247–54. https://doi.org/10.1002/elps.200700273.

    Article  CAS  PubMed  Google Scholar 

  24. Lee HG, Kumar KS, Soh J-R, Cha Y-S, Kang SH. Ultra-fast simultaneous detection of obesity-related coenzymes in mice using microchip electrophoresis with a LIF detector. Anal Chim Acta. 2008;619(1):94–100. https://doi.org/10.1016/j.aca.2008.01.012.

    Article  CAS  PubMed  Google Scholar 

  25. Kailasa SK, Kang SH. Microchip-based capillary electrophoresis for DNA analysis in modern biotechnology: a review. Sep Purif Rev. 2009;38(3):242–88. https://doi.org/10.1080/15422110903095136.

    Article  CAS  Google Scholar 

  26. Islam K, Chand R, Han D, Kim YS. Microchip capillary electrophoresis based electroanalysis of triazine herbicides. Bull Environ Contam Toxicol. 2015;94(1):41–5. https://doi.org/10.1007/s00128-014-1378-3.

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Hahn JH. Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis. Anal Chem. 2007;79(18):7182–6. https://doi.org/10.1021/ac070721h.

    Article  CAS  PubMed  Google Scholar 

  28. Rawtani D, Khatri N, Tyagi S, Pandey G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag. 2018;206:749–62. https://doi.org/10.1016/j.jenvman.2017.11.037.

    Article  CAS  Google Scholar 

  29. Wu L, Wang Z, Shen B. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl. Nanoscale. 2013;5(12):5274–8. https://doi.org/10.1039/c3nr00571b.

    Article  CAS  PubMed  Google Scholar 

  30. He Y, Xu B, Li W, Yu H. Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem. 2015;63(11):2930–4. https://doi.org/10.1021/acs.jafc.5b00671.

    Article  CAS  PubMed  Google Scholar 

  31. Liu G, Lu M, Huang X, Li T, Xu D. 2018, Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors (Basel, Switzerland); 18(12). https://doi.org/10.3390/s18124166.

  32. Cao J, Wang M, She Y, Abd El-Aty AM, Hacimuftuoglu A, Wang J, et al. Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles. Mikrochim Acta. 2019;186(6):390. https://doi.org/10.1007/s00604-019-3485-7.

    Article  CAS  PubMed  Google Scholar 

  33. Hasanoglu Ozkan E, Yetim NK, Tumturk H, Sari N. Immobilization of acetylcholinesterase on Pt(II) and Pt(IV) attached nanoparticles for the determination of pesticides. Dalton Trans. 2015;44(38):16865–72. https://doi.org/10.1039/c5dt03004h.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Carmona L, Martin A, Sierra T, Gonzalez MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis. 2017;38(1):80–94. https://doi.org/10.1002/elps.201600232.

    Article  CAS  PubMed  Google Scholar 

  35. Santalad A, Zhou L, Shang F, Fitzpatrick D, Burakham R, Srijaranai S, et al. Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J Chromatogr A. 2010;1217(32):5288–97. https://doi.org/10.1016/j.chroma.2010.06.024.

    Article  CAS  PubMed  Google Scholar 

  36. Peng S, Hong T, Liang W, Liu W, Chen C. A multichannel microchip containing 16 chambers packed with antibody-functionalized beads for immunofluorescence assay. Anal Bioanal Chem. 2019;411(8):1579–89. https://doi.org/10.1007/s00216-019-01601-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81202378 and 81311140268), the Fundamental Research Funds for the Central Universities of Central South University (1053320183003 and 1053320190355), the Hunan Provincial Innovation Foundation for Postgraduate (CX20190246), the Shenzhen Science and Technology Innovation Committee of China (JCYJ20170413105329648), the Science and Technology Program of Hunan Province (2017SK2164), and the Natural Science Foundation of Hunan Province (2020JJ9020).

Author information

Authors and Affiliations

Authors

Contributions

Chuanpin Chen designed the work and contributed significantly to the analysis and manuscript preparation; Zixuan Ren, Xingchen Zhou, Xingxing Gao, and Yan Tan performed material preparation, data collection, and analysis. The first draft of the manuscript was written by Zixuan Ren and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chuanpin Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Zhou, X., Gao, X. et al. Rapid detection of carbamate pesticide residues using microchip electrophoresis combining amperometric detection. Anal Bioanal Chem 413, 3017–3026 (2021). https://doi.org/10.1007/s00216-021-03237-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03237-3

Keywords

Navigation