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Abstract
Computational analysis is crucial to capitalize on the wealth of spatio-molecular information generated by mass spectrometry
imaging (MSI) experiments. Currently, the spatial information available in MSI data is often under-utilized, due to the
challenges of in-depth spatial pattern extraction. The advent of deep learning has greatly facilitated such complex spatial
analysis. In this work, we use a pre-trained neural network to extract high-level features from ion images in MSI data, and
test whether this improves downstream data analysis. The resulting neural network interpretation of ion images, coined
neural ion images, is used to cluster ion images based on spatial expressions. We evaluate the impact of neural ion images
on two ion image clustering pipelines, namely DBSCAN clustering, combined with UMAP-based dimensionality reduction,
and k-means clustering. In both pipelines, we compare regular and neural ion images from two different MSI datasets. All
tested pipelines could extract underlying spatial patterns, but the neural network-based pipelines provided better assignment
of ion images, with more fine-grained clusters, and greater consistency in the spatial structures assigned to individual
clusters. Additionally, we introduce the relative isotope ratio metric to quantitatively evaluate clustering quality. The resulting
scores show that isotopical m/z values are more often clustered together in the neural network-based pipeline, indicating
improved clustering outcomes. The usefulness of neural ion images extends beyond clustering towards a generic framework
to incorporate spatial information into any MSI-focused machine learning pipeline, both supervised and unsupervised.

Keywords Mass spectrometry imaging · Ion image clustering · Deep learning · Unsupervised learning ·
Representation learning · Spatial pattern recognition

Introduction

Mass spectrometry imaging (MSI) is a powerful, label-free
molecular imaging technology that enables mapping the
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spatial distribution of thousands of biomolecules in a tissue
section, based on a single experiment [13]. Due to its ability
to combine rich biochemical characterization with spatial
information, MSI technology is rapidly being adopted for
a panoply of applications, including biomarker discovery,
clinical diagnostics and drug delivery studies [17, 37, 38].
While a number of different MSI variants exist [11], in
general MSI operates by first overlaying the tissue with a
virtual rectangular grid, and then collecting a mass spectrum
at each grid location. Each of these collected mass spectra
is a histogram of biomolecular ions counts, partitioned by
their mass-to-charge values (m/z), within a target mass-to-
charge range. MSI experiments result in a three-dimensional
data cube, with spatial coordinates (x and y) and a m/z

axis containing the spectral information. Ion images are
constructed by plotting the intensities for a single mass bin
(m/z value) for each acquired pixel, i.e., (x, y) grid location
in the tissue.

Technological advancements continue to push the capa-
bilities of MSI, leading to improvements in specificity,
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sensitivity and speed, which have translated into the detec-
tion of larger numbers of biomolecular species at ever-
increasing spatial resolution. A corollary of these tech-
nological improvements is that MSI datasets have grown
substantially over the years. At the time of writing, a sin-
gle experiment commonly generates tens of gigabytes of
raw data, but this can even range into terabytes. Moreover,
MSI data analysis is encumbered by the large number of
variables measured, in terms of pixels, m/z bins or both.

Unless prior targets of interest are known, it is infeasible
for a researcher to manually investigate and find molecular
differences in these large datasets, and, as a result,
computational approaches have become indispensable to
support data analysis. A wide variety of unsupervised and
supervised machine learning methods have been used in
a broad range of applications. In this paper, we focus on
unsupervised learning methods, which support exploring
the underlying patterns within the MSI data, providing
open-ended exploratory insights in the data. These methods
include factorization methods (i.e., principal component
analysis [34], nonnegative matrix factorization [43]) and
clustering methods [26, 32], e.g., to group spectra or pixels
with similar chemical expression into the same cluster [45].
Supervised learning methods, on the other hand, are used
when prior knowledge or annotations are available, such as
target m/z’s, or regions of interest, which can be used to
guide the analysis, and, for example, extract differentially
expressed molecular ions between regions in the tissue.

Using appropriate distance measures can substantially
improve the outcomes of both supervised and unsupervised
data analysis. A distance measure formalizes how to
quantify similarity between data instances, e.g., between
spectra originating from different pixels or between ion
images associated to different m/z values. A recurring task
in MSI data analysis is identifying which ions are co-
localized, which translates into the problem of clustering
similar ion images. As mentioned previously, such tasks are
ideally tackled in a largely automated fashion to deal with
the large amount of information in each MSI experiment.
In order to answer such questions, a human expert would
implicitly rely on his or her excellent visual pattern
recognition abilities, and will use morphology, anatomical
structure and saliency to assess the ions’ expression.

Unfortunately, it is difficult to translate the extensive
spatial pattern recognition that is so easily performed by
humans into robust, automated data analysis pipelines.
To this day, most data analysis pipelines in MSI forgo
the inclusion of available spatial information altogether
[45]. Pipelines that do account for spatial information
typically use measures such as spatial correlation or cosine
distance to quantify similarity between ion images [27,
41]. As these are global measures, they are prone to miss
relevant, localized differences between ion images. There

have been a number of MSI machine learning methods
that have explicitly focused on including spatial information
into the analysis. Most of these are found in the task
of performing spatial segmentation of a MSI dataset, i.e.,
grouping together pixels by their chemical content, where
both Alexandrov et al. [3] and Bemis et al. [7] have
developed methods to integrate local pixel neighborhood
information directly into the clustering process, in order to
improve clustering results. Others have incorporated spatial
information into the analysis by combining MSI data with
anatomical atlases [1, 46].

In this work, we propose a simple yet powerful approach
to replicating human visual pattern matching. Owing to
its simplicity, our approach can be incorporated in a
wide range of data analysis pipelines, enabling them to
exploit spatial information with few to no modifications.
Our approach is rooted in deep learning, which is a
class of models and associated learning methods based
on artificial neural networks (ANNs). ANNs consist of
layers of neurons, which are simple mathematical functions
capable of doing basic, non-linear transformations of their
inputs. By composing and stacking many layers, a deep
network becomes able to recognize complex patterns in
data, despite consisting of simple building blocks. This
layered information processing resembles the workings of
the brain, starting from low-level signals in initial layers up
to high-level, domain-specific feature recognition in deeper
layers.

In the case of computer vision tasks, the initial layers
of the network act as image feature extractors, whereas
deeper layers make higher level abstractions over those
detected features [42]. In recent years, deep learning has
shown tremendous potential in visual recognition tasks,
having outperformed the state of the art machine learning
algorithms in many computer vision tasks, and even human
experts in certain biomedical tasks [19]. The strength of
deep learning methods is their ability to learn and combine
both low-level and high-level features and abstractions from
image data. Deep learning has also previously been used
in the context of MSI without the inclusion of spatial
information. Thomas et al. [44] and Inglese et al. [20]
have used a neural network autoencoder approach for the
dimensionality reduction of MSI data, whereas Behrmann
et al. [5] have used a supervised deep learning pipeline for
the classification of tumor cores in tissue microarrays.

While deep neural networks are very powerful, the
disadvantage is that they are complex, and have a high
number of parameters to be learned, and as such require a
huge amount of—ideally labeled—data to learn powerful,
high-level abstractions. Directly learning those parameters
from scratch every time for new datasets poses a big
computational challenge, and is prone to overfitting in
a setting such as MSI, where a lot of data is available
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on individual tissues, but the number of different tissues
measured in a study is often limited, which is required to
achieve good generalization. The issue of overfitting can be
mitigated to a certain extent using data augmentation, for
example by applying transformations to the original data
[24] or by using generative adversarial networks [16, 35] to
automatically generate new representative data.

Moreover, deep learning is highly conducive to transfer
learning, in which models trained for a certain task are re-
purposed for other, related tasks [8]. In transfer learning,
the requirement that the training data must have the same
distribution as the test data is relaxed, i.e., a model is
trained on one task, and the learned model is (fully or
partially) transferred to another task. The more similar
the task is, the better this approach generally works.
Model-based transfer learning is particularly powerful for
computer vision applications [23], because a lot of implicit
knowledge, i.e., general image feature recognition, is shared
amongst most practical tasks. Oquab et al. [30] have shown
that the front layers of a convolutional neural network, that
has been pre-trained on a large-scale annotated dataset, can
be efficiently transferred to another computer vision task
where limited data is available. Furthermore, the researchers
noted that the way the neural networks interpreted the
images was reminiscent of a human operator. A number of
other studies have shown similar potential for re-purposing
of neural networks for various downstream tasks [21, 25].

In this work we will use the well-known Xception
network [14], which has been trained on the ImageNet
database [24] consisting of over a million images. Due to
the large variety of the images included in this dataset,
networks that perform well on this dataset, perform well on
many other computer vision tasks [23], and as such can be
used as general purpose, image feature extractors. Xception,
for example, has previously been successfully used for
feature extraction in various life science applications such
as microscopy and electron microscopy [36, 47]. In the
context of MSI, we will pass each ion image in the dataset
through the network Xception, which generates a vector
representation of each image, that encodes the high-level
features within the image.

Mathematically, we use the neural network as an
embedding function for ion images. The aim of this strategy
is to map images with a high visual similarity close together,
largely in line with how a human observer would interpret
spatial resemblance between the original images. We will
call these vector representations neural ion images, to
highlight their origin and clearly contrast them with regular
ion images. Note that these neural ion images are abstract,
high-dimensional representations without any direct visual
interpretation.

In their recent work, Ovchinnikova et al. [31] have
also used Xception for evaluation of MSI ion image co-
localization (abbreviated as ColocML). Here, the Xception
model was used to compare the visual ranking of ion image
similarity by human experts to those produced by various
distance measures and algorithms, such as the Xception
network. Here, however, the Xception network was used in
a supervised way, i.e., it was further trained using labels
provided by human experts. The algorithm showed good
performance in this task, albeit similar in performance
to standard cosine distance for their use case and tests
(assessing the algorithm over different datasets). In contrast,
our approach uses the pre-trained Xception model in a
completely unsupervised way, without any domain transfer
or fine tuning, and as such we show that it is directly usable
for a wide breadth of applications in MSI, regardless of how
much domain-specific data or computational resources are
available. The authors of ColocML have made their data
and rankings available to the MSI community, and as such
are a valuable resource that will be used to benchmark our
method.

It is important to stress that the resulting neural ion
images can conceptually replace regular ion images as
inputs for most downstream machine learning and statistical
analyses, both supervised and unsupervised. Using neural
ion images enables improving existing data analysis
pipelines to better incorporate spatial expression patterns
with minimal change to the full pipeline.

In this work, we focus on assessing the merits of
neural ion images for the unsupervised task of clustering,
i.e., grouping together, ion images based on their spatial
expression. Similar to how factorization is often used in
the context of MSI, the clustering of ion images reveals
the different spatial patterns that are present in a MSI
dataset. This is done by visualizing the mean ion image
for each of the different clusters (or groups) of ion images
that are found in the dataset. Furthermore, this method
provides direct insight into which m/z values exhibit
comparable spatial expressions, compared to factorization
where this relationship is not always straightforward [45].
Alexandrov et al. [2] previously applied a probabilistic
clustering algorithm (a Gaussian mixture model) to cluster
ion images in MALDI MSI datasets based on their spatial
similarity. Similarly, by Konicek et al. [22] used k-
means to cluster together ion images in a TOF-SIMS
dataset. Here, our goal is to improve on this work
by integrating the pre-trained Xception model into the
clustering pipeline, and as such find clusters with a higher
specificity, based on localized spatial features, and with
a greater consistency in the images assigned to the same
cluster.
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Methods

Materials

We demonstrate our proposed method on two MSI datasets,
namely one from human lymph node and one from a mouse
kidney tissue.

The first dataset is collected from a human lymph
node tissue sample using the Bruker rapifleX MALDI
Tissuetyper. The tissue sample was removed and snap
frozen in liquid nitrogen (−80 ◦C). Tissue sections of 7
μm thickness were acquired using a cryostat and thaw-
mounted onto ITO-coated glass slides, after which 2,5-DHB
matrix was deposited by sublimation. Experiments focused
on the 620 to 1200 m/z range, using a sampling resolution
of 10 μm, collecting roughly 500,000 pixels and 8000 ion
images for this tissue. The lymphoma sample was acquired
from the Leuven University Hospital Biobank and usage
was approved by the Ethics Committee Research UZ / KU
Leuven (S-55498).

The second dataset is collected from a mouse kidney
tissue section. The tissue sample was snap frozen in liquid
nitrogen at necropsy. Tissue sections were collected in a
cryostat (CM3050S, Leica, Buffalo Grove, IL; chamber
temp. −20◦C and object temp. −18◦C) at 10 μm thickness
and thaw-mounted onto ITO-coated glass slides. 2,5-DHB
matrix prepared at 25 mg/mL in methanol:water (1:1, v:v)
(0.5% TFA) was applied to the tissue sections using a TM
Sprayer (HTX Technologies, Chapel Hill, NC) automated
spray device. The following parameters were used to

achieve a target matrix density of 0.4938 mg/cm2: flow rate
0.05 ml/min; N2 pressure 10 psi; spray temperature 70 ◦C;
velocity 1350 mm/min; track spacing 3 mm; track offset 1.5
mm; 16 passes. MALDI MSI was conducted at a sampling
resolution of 50 μm on a Bruker scimaX MRMS. Fullscan
data was acquired from m/z 200-1200 using 250 laser shots
per pixel at a frequency of 2 kHz and an estimated resolving
power of 66K at m/z 400. The mouse kidney tissue was
collected internally at GSK. This study was conducted in
accordance with the GSK Policy on the Care, Welfare and
Treatment of Laboratory Animals and was reviewed by the
Institutional Animal Care and Use Committee either at GSK
or by the ethical review process at the institution where the
work was performed.

Ion image clustering

In order to assess the merits of our deep learning approach,
and to demonstrate how it can be easily integrated into any
data analysis pipeline, we will investigate two different,
well-known clustering methods, both with and without the
use of neural ion images. Figure 1 gives an overview of the
ion image clustering workflow, and shows three separate
processing blocks, which will be discussed in greater
detail below. In the first block, “Shared preprocessing”, all
images of the MSI dataset receive a common preprocessing
treatment. The second block, “Generation of neural ion
images”, contains the neural network steps, and either
passes the ion images through the pre-trained neural
network to generate “neural ion images”, or leaves the

Fig. 1 Pipelines: the top panel contains a series shared preprocess-
ing steps. The lower left panel shows the additional steps (in blue)
from our proposed method compared with regular clustering pipelines
(in red). The additional steps from our proposed model include

spatial patch generation, neural network embedding and neural ion
images access. Finally two different clustering methods are conducted,
which are DBSCAN (after UMAP dimentionality reduction) and
k-means
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images unaltered (“regular ion images”). In the third and
final block, “Clustering steps”, the clustering of the images
is done using k-means or a combination of UMAP and
DBSCAN (U-D for brevity), and takes as an input either
neural or regular ion images. This results in a total of four
different ion image clustering pipelines, which we will refer
to as regular U-D, neural U-D, regular k-means, and neural
k-means.

Shared preprocessing

Before applying any clustering pipeline, we perform basic
preprocessing on the raw spectra and, afterwards, outlier
removal and standardization on the resulting ion images.
These procedures are done separately for each dataset.

1. Spectral preprocessing The lymph node data is nor-
malized based on Total Ion Current (TIC) and baseline
corrected using median filtering. The mouse kidney
data is normalized based on TIC and peak picked. Peak
picking was conducted using a S/N threshold of 5 and
the Gibbs, harmonic, and magnetron peaks were fil-
tered during acquisition. The SQLite peak list files were
processed in MATLAB using custom software to recal-
ibrate each spectrum using a linear best fit model and
then bin corresponding peaks across all spectra in the
dataset to a common m/z. The binned data was then
converted to imzML for further processing.

2. Ion image standardization The ion images for both
datasets are individually winsorized and then standard-
ized to a common range prior to clustering.

Winsorizing is a well-known robust statistical estimation
technique which limits extreme values to reduce the effect
of potential outliers [18, 48]. Winsorizing involves clipping
extreme values, usually symmetrically on both extremities
of a distribution, before computing location statistic(s) of
interest such as the mean. In our case, we only winsorized
above the 95th percentile to reduce the impact of high
intensity outliers commonly found inMSI data. Winsorizing
the lower extremity is not necessary for spectral data since
there is an explicit limit at 0 intensity. After winsorizing,
the resulting pixel intensities for each image are scaled to
the range [0, 1]. The resulting preprocessed images will
henceforth be referred to as regular ion images, and serve as
input for the next stage of the pipeline.

Generation of neural ion images

Our proposed approach involves a couple of extra steps
to convert regular ion images into neural ion images.
Generating neural images from individual regular ion
images is done as follows:

1. Patch generation A neural network typically requires
images of certain shape as inputs. Since ion images can
be of any shape, we first define a set of overlapping
patches across the ion images, which decouples our
pipeline from any specific shape of ion images.

2. Generating patch embeddings The pixel data for each
patch is fed into the neural network as a single
data instance, which results into an associated neural
embedding per patch.

3. Aggregating patch-level embeddings The neural ion
image is constructed by aggregating the embeddings of
individual patches into a single vector representation for
each regular ion image.

We discuss each of the aforementioned steps in more
detail below.

1. Patch generation Ion images tend to be larger than
the default input size expected by neural networks. For
example, the Xception network we used [14], accepts
square patches of 299 × 299 pixels by default, with a
minimum of 71 × 71 pixels. These shape mismatches
can be fixed via patch generation, which is especially
common when using convolutional neural networks
to analyze high-resolution images. Patch generation
means that, rather than providing the full image to
the network, the image is instead split up into smaller
“patches” that are then given as an input to the network,
thus preserving all the details in the original image in
one or several patches. An example of patch generation
is shown in Fig. 2. The size of the patches is important

Fig. 2 From left to right: a regular ion image from the mouse kidney
dataset, generated patches with different sizes. In order to get the ideal
size of patches, we upsample the full ion image before splitting into
multiple patches. All results were obtained using upsampled patches,
as indicated in pink, which have a physical size of roughly 1.85× 1.85
mm
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as it determines the context that the network “sees” in
one go. Therefore, we tested different patch sizes, as
described in the “Results and discussion” section.

2. Generating patch embeddings A neural network is
used to generate a vector representation (embedding)
of each patch, which ideally captures all relevant
morphological information present in the patch. The
network itself is pluggable in our pipeline, so other
networks could also be used. We leveraged the widely
used Xception model because it has shown strong
performance on recent benchmarks [14], despite being
relatively small compared to other models with only
36 convolutional layers. Owing to its small size, its
inference speed is higher than that of many other
models with comparable accuracy [10]. Finally, by
using a pre-trained network, we avoid the demanding
task of designing and training the network, which would
require a lot of data as well as computational resources.
We use the Xception network as is available in the Keras
Python package https://keras.io/.

3. Aggregating patch-level embeddings Finally, after
obtaining an embedding associated to each patch, these
must be integrated into a final vector representation
that constitutes the neural ion image. We opted to
use max-pooling because the neural ion image then
essentially captures whether a spatial pattern (single
output feature in all patch embeddings) was detected
in any of the patches. This optimizes the neural ion
images’ sensitivity to detect localized features.

Clustering steps

We use two different clustering approaches in this work,
namely DBSCAN, combined with UMAP, and k-means
clustering. As both of these clustering pipelines expect
vector inputs, regular ion images were reshaped to vectors
(neural ion images are already vectors). In this work,
we purposefully selected two fundamentally different
clustering methods to properly assess the merits of using
neural ion images instead of regular ion images.

UMAP-DBSCAN The first approach, DBSCAN, which
stands for Density-Based Spatial Clustering of Applications
with Noise [15], is a popular density-based clustering algo-
rithm that inspired several extensions (i.e., HDBSCAN [12,
40]). DBSCAN aims to find high density regions in feature
space where samples are closely packed, i.e., samples that
have a lot of other closely resembling samples (neighbors).
Based on a user-defined radius, the algorithm estimates a
minimum density level (i.e., minimum number of neighbors
within a radius). Clusters are then regions where groups of
samples exceed this density threshold, whereas points that
are in low density regions are put in a common noise cluster.

DBSCAN is widely available in different implementations,
here we use the scikit-learn implementation [33].

Given that we are clustering ion images, each pixel can
be seen as a separate feature, or measured variable, and, as
such, the number of features per image is very high (e.g.,
∼ 500,000 pixels per regular ion image for the lymph node
dataset, thousands of variables per neural ion image). High-
dimensional feature spaces are inherently sparse due to the
curse of dimensionality [6], which encumbers the process
of identifying clusters based on density [45]. It is therefore
advisable to first do a dimensionality reduction step prior
to performing DBSCAN, which we did using Uniform
Manifold Approximation and Projection (UMAP) [28].
Briefly, UMAP aims to form a topological representation
of the original high-dimensional data by finding local
manifold approximates using their local fuzzy simplicial set
representation. Prior work has shown promising results of
applying UMAP on spectra in MSI data [39] (as opposed to
ion images as we are doing here).

In this paper we used UMAP to reduce the dimension-
ality of regular and neural ion images to three prior to
applying DBSCAN. Mapping to three dimensions enables
visualizing the resulting embedding, which helps in inter-
preting the results, and is sufficiently low-dimensional to
effectively support DBSCAN. Different parameters were
manually optimized for UMAP and DBSCAN for the dif-
ferent models because the inputs for each pipeline are very
different. To facilitate a fair comparison, we did a range of
experiments and selected the most promising model with
selected parameters for each approach. For the regular ion
images, each ion image was reshaped to a vector of size one-
by-“number of pixels”, and cosine was used as the distance
measure between the resulting image vectors in the UMAP
algorithm. For the neural ion images, similarly the cosine
distance was used as the distance measure between the neu-
ral ion image vectors. The Python code by UMAP’s creator
was used [29]. For brevity, we will refer to combination of
UMAP-DBSCAN as U-D.

k-means The second clustering algorithm used in this paper
is the well-known k-means clustering [9], which is available
through scikit-learn [33]. k-means is a highly popular
clustering algorithm used in a wide variety of applications
owing to its simplicity and speed [4]. Conceptually, it tries
to separate objects in a number of groups with low intra-
group variance by minimizing the squared distance between
samples and the prototype vector (mean) of the cluster
they are associated to. The Euclidean distance (standard in
k-means) was used for all experiments.

Practical differences between U-D and k-means In contrast
to DBSCAN, k-means requires the number of clusters to be
decided in advance, as we will discuss further below. The
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ability to explicitly reject certain samples from clustering
grants DBSCAN increased robustness to noise and outliers
compared to k-means, which always forces each sample into
a cluster. Conceptually, owing to its non-linear nature, U-
D is expected to identify more subtle trends within data,
but requires more expertise to optimize its various tuning
parameters. From a computational perspective, k-means is
significantly faster.

Evaluation of clustering results

We proposed different methods to evaluate the quality of the
resulting clusters from the different pipelines.

Number of clusters

After clustering, we first check the number of meaningful
clusters. Meaningful clusters should not include the noise
cluster as defined by DBSCAN (as previously discussed)
or clusters that contain a single image when using k-
means. Furthermore, we also consider clusters that only
contain noisy images to be non-meaningful clusters. This
is especially relevant in the lymph node data, where no
peak picking was done, and as a result a lot of noisy
images are expected in the dataset. We assume that, the
more meaningful clusters are extracted, with distinct mean
images, the more likely it is that more underlying structures
are detected from the dataset.

Relative isotope ratio (RIR)

In order to objectively compare the performance of different
clustering pipelines, we propose a metric that quantifies how
well a clustering groups ion images stemming from isotopic
m/z values. Two m/z values are considered isotopes if and
only if the following criteria are met:

1. The spectral distance equals 1.003m/z±δ, where δ �= 0
allows for small deviations in mass-to-charge values.
The value of δ depends on the mass accuracy of
the MSI data. We set δ equal to 0.1Da and 0.01Da

for the lymphoma and kidney data respectively. This
spectral distance is primarily intended to identify
carbon isotopes, however if δ is set large enough this
will capture other isotopes as well.

2. The corresponding ion images should exhibit a clearly
similar spatial expression, which we assess using Pear-
son correlation. Specifically, the correlation between
both ion images should be at least 0.85.

To assess the quality of isotope grouping for a given
clustering, we count the number of isotopes that are
correctly grouped in the same clusters and divide this count
by the total count of isotopes in the dataset. This fraction

F ∈ [0, 1] captures how many of the isotopes in the dataset
are clustered together (higher is better). However, this
fraction favors large clusters, because then the probability of
clustering isotopes together increases. This can intuitively
be seen by the trivial edge case of having a single cluster,
in which all isotopes are obviously clustered together, thus
yielding a seemingly perfect score.

As such, because the expected value of F depends on the
size of the clusters in a clustering, we benchmark the isotope
fraction of a given clustering (Fclust ) to that of a simulated
random clustering with the same cluster sizes (Frandom).
This random clustering is simulated in a bootstrap fashion
to get a consistent estimate of the expected isotope fraction.
Our relative isotope ratio metric R is the relative increase
in isotope grouping for a given clustering compared to its
random baseline, i.e.,R = Fclust /Frandom ∈ [0, ∞), where
higher is better. Any clustering that is better than random
should yield R � 1.

Visualization of clustering results

In order to visualize the spatial results, we compute the
mean ion image for each cluster by first winsorizing each
ion image from all clusters, followed by stratified averaging
over all m/z images per cluster. Those mean ion images
then show the various spatial patterns detected by different
clustering pipelines. We also generate a mean spectrum for
each dataset with clusters assignment for each m/z value.

Furthermore, for U-D clustering, we visualize the 3D
embeddings after UMAP dimensionality reduction, which
results in a 3D scatter plot where each m/z image is a point
with clusters assignment. This scatter plot illustrates how
all m/z images are split and clustered in different groups,
the distance between different clusters, and the tightness of
each cluster.

Finally, we utilize histological information from con-
comitant microscopy images to check whether the clusters
are biologically relevant. These microscopy images were
obtained on serial sections to the MSI data. To assess bio-
logical relevance, we construct a false color image from the
mean ion images of 3 different clusters, where each image
uses a separate color channel (RGB), which is then overlaid
onto the microscopic image. If the overlay shows a clear co-
localization of cluster images and morphological patterns in
the associated microscopic images, it can be assumed that
the clusters are biologically relevant.

Results and discussion

We start by preprocessing the data, as per the “shared
preprocessing” block described in Fig. 1. Spectral prepro-
cessing differs for both datasets: the lymph node dataset is
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TIC normalized and baseline corrected, whereas the mouse
kidney dataset is TIC normalized and peak picked. Next,
each individual ion image is winsorized, substituting pix-
els with outlying intensity values, after which it is scaled
so that pixel intensities lie between 0 and 1. After the
shared preprocessing, we start one of four different clus-
tering pipelines, namely UMAP-DBSCAN on regular ion
images (regular U-D), UMAP-DBSCAN on neural ion
images (neural U-D), k-means on regular ion images (reg-
ular k-means), and k-means on neural ion images (neural
k-means). Each of the four clustering pipelines is used to
process the human lymph node and mouse kidney datasets
separately.

Generation of neural ion images

Once the MSI data is preprocessed, the regular ion images
can be used to create neural ion images using the pre-trained
neural network. First, we need to generate image patches
with a size appropriate for the pre-trained Xception network.
As explained previously, the size of the patches is important,
as this determines the context that the network receives as
an input. We therefore aimed to select a patch size with a
physical size that is large enough to capture morphological
patterns and anatomical structures, testing various patch
sizes.

We found that patches with sides of a physical size of
around 1–2 mm work well in practice. For the lymph node
dataset, at a 10-μm sampling resolution, this results in a
patch size of 150 × 150 pixels, in a total image size of
1183 × 696 pixels. For the mouse kidney dataset, we tried
to get patches with a similar size, however, given the 50
μm resolution, a patch with the minimum pixel size of
71 × 71 for the Xception network would still be too large
(∼ 3.5 mm). We therefore upsample the ion images for
mouse kidney data with a factor of two, so that we obtain
more, smaller patches with a more appropriate physical size.
Figure 2 shows a patch generation example from mouse
kidney dataset, with the original patch sizes highlighted in
blue and the patches after upsampling indicated in pink.
Furthermore, it is important to note that we use overlapping
patches to avoid edge artifacts, e.g., missing anatomical
structure because it was located at the edge of a patch. In our
patch generation procedure, we ensured a 40 to 50% spatial
overlap between patches.

Using this procedure, we generate image patches for each
ion image in theMSI dataset. The image patches are batched
per ion image and are sequentially fed to the pre-trained
network, which analyzes each patch and extracts low- and
high-level image features from them. This translates to a
vector per patch, that scores the various features detected by
the network. The results for the individual patches are then
combined in a max-pooling layer at the end of the network,

which registers whether a spatial pattern is detected in any
of the patches, to increase sensitivity for localized features.
The result is a single vector (of size 2048) per ion image,
which captures the “interpretation” of each ion image by the
neural network, i.e., the neural ion image.

With both the regular and neural ion images available,
we can use these as input for the clustering algorithms, in
order retrieve the different spatial ion expressions in the
dataset.

Human lymph node dataset

UMAP-DBSCAN clustering results

We apply each of the four clustering pipelines to the human
lymph node dataset, starting with the U-D pipelines. First
we perform UMAP dimensionality reduction on both the
regular and neural images, which maps the images from the
original 500,000 (regular) and 2048 dimensional (neural)
space respectively to a three dimensional embedding space.
The goal here is to map similar images close together
in this new embedding space. The resulting embeddings
are shown in the scatterplots in Fig. 3, where each point
represents a m/z image. This dimensionality reduction
serves a double purpose, first it serves as an important
preprocessing step to facilitate subsequent clustering with
DBSCAN, and second, mapping to 3 dimensions allows us
to visualize the embeddings and get some insight into what
is happening. We then use DBSCAN to find regions of high
density (i.e., groups of images that are highly similar in the
embedding space) in the data, retrieving 21 and 22 clusters
for the regular and neural pipelines respectively, as show in
Table 1. The different clusters are assigned different colors
in the scatter plot, and we see clear clusters of similar m/z

images in the embeddings.
Overall, the neural pipeline shows more localized

clusters than the regular one. This is what we would expect,
as the neural pipeline should make a better distinction of
images based on localized extracted features by the neural
network, than the more global cosine distance used in the
regular pipeline. We also see a relatively large localized
purple cluster in the neural U-D case, which is the noise
cluster that DBSCAN defines (517 images); in the regular
U-D pipeline this cluster is larger (1671 images, around
20% of total images) and much more spread out in the
embedding space.

On inspection, the noise cluster in the regular pipeline
shows a great number of images that still contain spatial
structure, and were thus wrongly classified as noise. While
the neural pipeline was not perfect, the noise cluster
contains far less images with spatial structure. We note that
the spatial resolution of this dataset is very high, but as a
trade-off the mass resolution is relatively low. As such, even
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Fig. 3 Scatter plots of resulting embeddings in 3 dimensional
space after applying non-linear UMAP dimensionality reduction and
DBSCAN clustering on the lymph node dataset. Each point represents
a m/z image, with its colors showing cluster assignment as determined

by DBSCAN. The left and right panels show clusterings on the regu-
lar and neural ion images respectively. The Neural U-D pipeline shows
more localized and clearly defined clusters of m/z images than the
regular U-D pipeline

though the dataset is not peak picked, many of the m/z bins
contain spatial signal.

Overall, when comparing cluster assignments for the
neural and regular pipelines, the neural pipeline showed
a much better assignment of ion images, and a greater
consistency in the spatial structure of images assigned to
individual cluster, resulting in better, more representative
mean cluster images. Figure 4 shows examples of the
clustering of the lymph node dataset for the regular and
neural clusterings. The bottom of the Figure shows the
full mean spectrum with colors indicating assignments of
m/z values to the clusters for neural and regular pipelines
(top and bottom, respectively). A zoom-in for part of
the spectrum is shown with detailed cluster assignments,
showing marked ion images at the top. By their relative

spectral distance of ∼ 1 Da, and similar spatial distribution,
we can assume that these marked images are probably
isotopes, and as such we would expect all of these images to
be allocated to the same cluster. In the left panel, in purple,
we see assignments for each of these images for the regular
pipeline. The images shown are the mean images of the
cluster to which the different marked images are assigned.
Firstly, we see that only two of the isotope images are
assigned to the same cluster, whereas the other two images
are assigned to different clusters, and secondly, we see that
the mean images of the clusters that the images are assigned
to, do not closely resemble the original isotope images.
The neural pipeline, on the other hand, uses the features
extracted by the neural network to correctly assign all
images to the same cluster, with a mean image that closely

Table 1 Overview of
experimental results per
configuration. RIR indicates
relative isotope ratio (higher is
better, best per dataset marked
in bold). Noise images shows
the size of the noise cluster
identified by DBSCAN

Dataset Clustering Ion images Clusters RIR Noise images

Lymph node UMAP-DBSCAN Neural 22 66.6 517

Lymph node UMAP-DBSCAN Regular 21 57.7 1671

Lymph node k-means Neural 20 64.5 /

Lymph node k-means Regular 20 56.2 /

Mouse kidney UMAP-DBSCAN Neural 40 35.4 401

Mouse kidney UMAP-DBSCAN Regular 21 20.4 63

Mouse kidney k-means Neural 60 35.6 /

Mouse kidney k-means Regular 20 23.4 /
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Fig. 4 Ion image clustering results of the lymph node dataset. Panel B
shows the full mean spectrum with cluster assignments for each m/z

bin, for the neural (top) and regular (bottom) U-D pipelines. Panel A
shows a zoom-in of the mean spectrum, highlighting an isotopic distri-
bution, and four associated ion images. The purple (regular) and blue
(neural) panels show the clusters (shown as mean images) to which the

associated ion images are assigned. The neural pipeline shows better
cluster assignments than the regular pipeline as (i) all isotope images
are assigned to one and the same cluster, and (ii) its mean cluster
image matches the associated isotopic ion images more closely than
the regular pipeline
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resembles that of the original ion images, thus performing
much better at this task. Furthermore, the mean cluster
images of the neural pipeline show better definition of
spatial structure, compared to those of the regular pipeline,
which are generally much more blurry, indicating a more
diverse collection of underlying images.

This trend is observable in a large number of the clustered
images, as is confirmed when we look at the Relative
Isotope Ratio (RIR), in Table 1. This ratio measures the
overall number of isotopes in a cluster compared to a
randomized clustering, as explained in the “Relative isotope
ratio (RIR)” section. The higher this number, the more
isotope ion images are assigned to the same cluster, which is
the expected behavior. Looking at the table, we can see that
the neural pipeline scores much better at this metric than
the regular one, demonstrating the added benefit of adding
a neural network-based interpretation layer to the pipeline.

Finally, we verify the clustering results by comparing
the mean cluster ions with the stained H&E microscopy
image of a neigboring tissue section. Figure 5 shows three
example mean cluster images, originating from the neural
U-D pipeline, on the right, highlighting different salient
structures in the lymph node tissue. The center image
shows a composite image overlaid on the microscopy,
where each mean cluster image is assigned a different color
channel, namely red, green and blue, that shows a clear
overlap of the anatomical structure observed in microscopy
with the biochemical information obtained from the MSI

data. The green cluster image clearly shows the Germinal
Centers (balloon-shaped structures) found in lymphoid
tissue. These are important areas for humoral immunity as,
at these sites, activated B cells (B lymphocytes) accumulate
and undergo further processing. The high-resolution, non-
rigid registration was performed using Aspect Analytics’
proprietary registration pipeline.

k-means clustering results

Next, we apply k-means clustering directly on both the
regular and neural ion images, as a baseline comparison,
and an example of how neural images can be readily
plugged in to existing algorithms. We experimented with
different numbers of clusters, and found that, in line with the
DBSCAN experiments, 20 clusters provided the best results
in terms of detected meaningful clusters and RIR (see
Table 1). For the regular k-means pipeline, this results in 6
clusters which contain only a single image that had no clear
spatial structure (and which we thus consider to be noise
clusters). This is probably due to the high dimensionality
of the data (500,000 pixels—features), and the sensitivity
of k-means to noise. The neural pipeline did not show such
single image clusters, even when increasing the number of
clusters, probably due to the lower dimensionality of the
neural images (2048) and a better grouping of the neural ion
images due to the feature recognition by the neural network.
When comparing the RIR, we see a similar trend to the

Fig. 5 (Left) H&E-stained
microscopy image of
neighboring lymph node tissue
section. (Right) Three example
mean cluster images for the
neural U-D pipeline. (Center)
Composite image combining the
three mean cluster ion images
overlaid onto the microscopy,
showing clear co-localization of
anatomical structures (via
morphology) with the
biochemical information
obtained through clustering of
the ion images from MSI
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U-D pipeline, namely an upregulation in the numbers of
isotopes that are captured by the same cluster, when using
the neural images over the regular ion images. This indicates
that clustering results are better with the neural network
input than without, which we also saw in manual inspection
of the clusters.

Mouse kidney data

In order to assess the general applicability of our methods,
we also apply our clustering pipelines on a high mass
resolution dataset obtained in mouse kidney, that has a
significantly lower spatial resolution than the lymph node
dataset, respectively 50 vs. 10 μm.

As the spatial resolution affects the fine structure
observed in the ion images, we want to see whether the
neural network approach can improve clustering results
similarly to the high spatial resolution lymph node dataset.
As discussed above, we upsample the image data, so that
patches are generated with a similar physical dimension to
those in the lymph node data. We then pass the ion images
through the neural network to perform feature extraction
and generate the neural ion images, exactly as we did in the
lymph node data.

UMAP-DBSCAN clustering results

We first apply the U-D pipeline to the regular and neural
ion images. As can be seen in Table 1, DBSCAN finds
significantly more clusters in the neural (40) pipeline than
the regular (21) one. Furthermore, similarly to the lymph
node data, the RIR is significantly higher for the neural
pipeline than the regular one, indicating that the retrieved
clusters in the neural pipeline succeed in clustering together
more isotopic ion images than the regular one, meaning that
we not only get more clusters, but that these are also more
relevant. When looking at the noise clusters, we see that this
time the noise cluster in the neural pipeline is larger than
the regular one, however the size is only 8.2% of the total
number of ion images. We note that this time the data is peak
picked, and thus the noise cluster is much smaller.

The quality of the clustering is illustrated by the example
shown in Fig. 6, which shows three sets of ion images
corresponding to three different isotopical distributions.
Again, the blue panel shows mean cluster images for the
neural pipeline, whereas the purple panel shows those for
the regular pipeline. Similarly to the lymph node dataset,
the neural pipeline correctly assigns images of the same
isotope distribution to the same cluster. Contrary to the
lymph node data, in this example, the regular pipeline also
assigns the isotopic images to the same cluster. However,
when comparing the mean cluster images to which the
isotopic images are assigned, we see that, while not perfect,

those of the neural pipeline match the isotopic images much
closer than those of the regular pipeline. The neural pipeline
succeeds in creating clusters with a higher specificity, which
allows for distinguishing of the salient spatial distributions
in the isotopic images atm/z 856.63 and 856.66. In contrast,
the regular pipeline groups these patterns together, likely
because it uses a more “global” distance measure that is
prone to ignoring localized structure. More generally, we
see a lot of these clusters that capture fine spatial structure,
which are missing in the regular pipeline. Figure 7 shows
how different mean ion images obtained with the neural U-
D pipeline clearly differentiate distinct anatomical regions
in the kidney, overlaying these on the H&E of a neighboring
tissue section.

k-means clustering results

Finally, we apply k-means to the regular and neural ion
images. When testing different numbers of clusters on the
regular ion images, we run into the same issues as we did
with clustering the regular ion images in the lymph node
dataset when we increase the number of clusters, namely
that we get a lot of clusters with a single ion image, due to
the high sparsity of the data in the original feature space.
For the best results in terms of detected meaningful clusters
and RIR, we obtained around 20 clusters, similar to the
regular U-D pipeline, which collects the most meaningful
clusters and where there are no trivial clusters containing
single ion images. Again, we do not encounter this issue
with the neural pipeline, presumably due to a better packing
of the data through neural feature extraction, and the lower
dimensionality of the data (37,365 pixels per regular ion
image versus 2048 dimensions in the neural ion images).
As such we are able to explore more clusters via the neural
pipeline. Similarly to the U-D results, we find clusters that
better highlight localized structure in the neural pipeline,
however, interestingly, the RIR for k-means is similar to
that of U-D, showing that the relatively simple k-means
performs surprisingly well on this dataset, compared to the
much more involved U-D pipeline.

Benchmark on ColocML data

Finally, we benchmark our neural ion image pipeline
with the ColocML data by Ovchinnikova et al. [31]. In
this dataset, human experts scored a set of ion images
from 0 to 10 based on similarity to a given target ion
image (0 and 10 meaning identical and nothing alike,
respectively). Ovchinnikova et al. calculated the distance
between the target image and the set of example ion
images for a number of image-based distance metrics,
including a distance calculated using an Xception-based
pipeline. The similarities for each distance metric were
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Fig. 6 Ion image clustering results of the mouse kidney dataset.
The figure shows a zoom-in of the mean spectrum, highlighting
an isotopic distribution, and marked associated ion images. Cluster
assignments in the mean spectrum are shown for each m/z bin, for
the neural (top) and regular (bottom) UMAP-DBSCAN pipelines. The

purple (regular) and blue (neural) panels show the mean images for the
clusters to which the marked ion images are assigned. Similar to the
lymph node dataset, the neural pipeline shows better cluster assign-
ments than the regular pipeline, with mean cluster images that show a
closer match to the assigned cluster images

then compared with the expert scores using correlation.
From their comparison, the cosine distance showed the best
overall performance, outperforming the Xception-based
metric by a small margin. The authors indicated some
surprise in this finding, given the proven track record of
deep learning for such applications.

First, we repeat the benchmark using our variation on
the Xception pipeline. As previously discussed, we found
that physical pixel size was of significant importance in
generation of the neural ion images. As such, we could
unfortunately only use part of the ColocML data, for which
this information was available (n = 23 out of 182 datasets,
listed in SI).

Following the ColocML workflow, we first calculate
the neural ion images for the target ion image and the
example ion images. We then determine similarity based
on cosine similarity for neural ion images, and compare
this to the similarity obtained through calculating the
cosine similarity directly on regular ion images (using the
ColocML methodology).

Using the comparison proposed by [31], we indeed find
that cosine distance outperforms the neural ion images, as
was also observed in their work.

While the applied methodology of comparing rankings
between various algorithms and human experts is concep-
tually sensible, we propose an adjustment in methodology
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Fig. 7 (Left) H&E-stained
microscopy image of
neighboring kidney section.
(Right) Three example mean
cluster images for the neural U-
D pipeline. (Center) Composite
image combining the three mean
cluster ions overlaid onto the
microscopy. The co-localization
of morphological patterns in the
microscopic image and the
spatial expressions in these mean
cluster images corroborates the
biological relevance of the
clustering results

to make the results less opaque. Upon inspection of expert
scores and their associated ion images, we found that images
with expert scores less than or equal to 1.0 are highly sim-
ilar, and up to 2.0 are reasonably similar. Images with a
score of 2.0 and higher, however, often differ from the
target image in such a way, that scores become subjec-
tive, and difficult to interpret, in the authors’ opinion (see
Supplementary information for more details and some

examples). Additionally, for many images with scores above
2.0, their relative similarity is often highly debatable. To
avoid influencing the benchmark heavily by these funda-
mentally dissimilar images, we believe it is best to focus on
expert scores below 1.0 or 2.0.

Rather than calculating a global score across all images,
we propose to break it down into segments according to
given expert score, as shown in Fig. 8. We compared both

Fig. 8 Performance comparison between using neural ion images as a
distance metric versus cosine distance on raw ion images, compared
to human expert similarity scores as determined in [31]. (top) ranking
performance for both distance metrics at given cutoff in human expert

scoring, displaying the fraction of total ground truth images correctly
ranked in the top by each distance metric as outlined above (higher is
better). (bottom) the total amount of ground truth ion images per cutoff
in expert score
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distance metrics against the human expert scoring at a given
cutoff for each segment for each set of ion images, using the
following procedure:

1. Select the set of ground truth comparison images Struth

with a score less than or equal to the cutoff, yielding N

images.
2. Select the set Srank ofN top ranked images based on the

similarity metric (neural ion images / cosine distance).
3. Count how many of the ground truth images are in the

top rank via the similarity metric, i.e., |Struth ∩Srank| ∈
[0, N] (higher is better).

From Fig. 8, we see that neural ion images outperform
cosine distance at identifying highly similar images (expert
score below 1.0), but its advantage is lost as ion images
become more dissimilar. This supports our initial hypothesis
that the neural ion images should be able to distinguish
highly localized features, whereas cosine distance provides
a more global similarity measure.

When considering improvements in the application of
clustering ion images, as studied in this work, the key
is improving the similarity metric for reasonably similar
images, rather than images that are dissimilar. Especially in
a density-based clustering approach, an improved scoring
for highly similar images is a considerable advantage, as this
will lead to more condensed clusters.

It is the authors’ opinion that this is true for many practical
applications, since ranking images based on similarity is
only a useful conceptual task if the images are somewhat
similar. The more dissimilar a set of images becomes from
a given target, the lower the agreement of human experts
in their relative ranking (see Supplementary information
for examples). Conceptually, ranking dissimilar images is
comparable to determining whether a cat or dog is more
similar to an apple, since the only pertinent conclusion is
that neither are similar.

Conclusions

We set out this work with the observation that the spatial
information available in MSI is often under-utilized in its
computational analysis, in part due to the fact that it is non-
trivial to translate the complex spatial pattern recognition
that humans perform on a daily basis into simple algorithms.
The advent of deep learning, particularly convolutional
neural networks and their derivatives, has significantly
advanced the state of the art in computer vision, making it
possible to capture high-level abstractions, learned through
training complex models based on millions of images.

Moreover, a key strength of neural networks is the fact
they can often be transferred between related tasks, such as

object detection in computer vision. This enables the direct
use of pre-trained neural networks to detect complex spatial
patterns without having to train such a model from scratch
for each application, which would often be intractable due
to the required amount of data and computational resources.
In this work we have used such a general-purpose pre-
trained model as a general feature extractor to find spatial
similarities between ion images in MSI data. Each ion
image was fed through the network, and the resulting
network interpretation, the neural ion image, was used for
subsequent clustering of ion images.

We evaluated the clustering results of two different
ion image clustering pipelines, namely the density-based
DBSCAN clustering algorithm, combined with non-linear
dimensionality reduction using UMAP, and the pervasive k-
means clustering algorithm. In both pipelines, we compared
regular ion images and neural ion images from two different
MSI datasets, namely a human lymph node and a mouse
kidney dataset.

All of the tested pipelines allowed for extraction of
underlying spatial patterns in both datasets, showing insight
in the underlying data. However, in all our experiments,
the neural pipelines provided a better assignments of
ion images, with more fine-grained clusters, and greater
consistency in the spatial structures assigned to individual
clusters, resulting in more representative mean cluster
images. Specifically, our experiments indicated that using
neural ion images enables the subsequent clustering
pipelines to better account for localized, salient differences
between ion images to obtain a fine clustering result, in
contrast to the baseline methods which were less effective
in identifying clusters with localized differences.

To quantify our results, we introduced a new metric
called Relative Isotope Ratio, which measures the rate at
which ion images of the same isotope are assigned to the
same cluster, thus capturing biological relevance to a certain
degree based on both spatial and spectral information.
The newly introduced RIR metric quantitatively confirmed
the merits of using neural ion images, thus corroborating
our previously mentioned qualitative observations regarding
improved clustering specificity.

Finally, we benchmarked the neural ion images pipeline
on the ColocML dataset, and showed that it outperforms
cosine distance at identifying highly similar ion images.

The proposed methodology can be readily used to
incorporate an advanced form of spatial information
into any MSI-focused machine learning pipeline, both
supervised and unsupervised, and this without the need for
large amounts of training data, or high computational needs.
Furthermore, towards the future, a neural network could
be trained specifically on MSI data, which we expect will
further improve performance of our proposed pipeline.
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