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Abstract
For the first time, a prototype HS-GC-MS-IMS dual-detection system is presented for the analysis of volatile organic compounds
(VOCs) in fields of quality control of brewing hop. With a soft ionization and drift time-based ion separation in IMS and a hard
ionization and m/z-based separation in MS, substance identification in the case of co-elution was improved, substantially.
Machine learning tools were used for a non-targeted screening of the complex VOC profiles of 65 different hop samples for
similarity search by principal component analysis (PCA) followed by hierarchical cluster analysis (HCA). Partial least square
regression (PLSR) was applied to investigate the observed correlation between the volatile profile and the α-acid content of hops
and resulted in a standard error of prediction of only 1.04% α-acid. This promising volatilomic approach shows clearly the
potential of HS-GC-MS-IMS in combination with machine learning for the enhancement of future quality assurance of hops.

Keywords Simultaneous HS-GC-MS-IMS . Machine learning . Volatilomics . Brewing hops . Quality control . Partial least
square regression (PLSR)

Introduction

For centuries, hop (Humulus lupulus L.) has been used in the
brewing process, due to its contents of secondarymetabolites that
give beer its typical flavor. Among those, the α- and β-acids
(often referred to as bitter acids) formed in the lupulin glands
of the hop cone are mainly responsible for bitter taste of beer [1].
In contrast, terpenes and terpenoids of the essential oil fraction
and their oxygenated derivatives are responsible for the hoppy
and spicy beer flavor [2]. Even today, the hop price and also the
hop dosage mainly depend on the bitter acid level of the hop
blossoms and, in particular, the α-acid content that mostly con-
tribute to the bitterness during wort cooking [1]. With the

increasing craft beer movement, special flavor hops currently
gain great popularity. For those hop cultivars, the aroma yield
or aroma potential is evenmoremeaningful in terms of suitability
and authenticity [3]. The bitter acid content as well as the essen-
tial oil composition is influenced by several factors, among of
which the date of harvesting is of particular importance. α-Acid
and essential oil contents increase significantly within the last
few days prior to harvesting and are highly variable among cul-
tivars [4]. Furthermore, cultivation and processing conditions
play an important role. It was shown that hop quality is signifi-
cantly influenced by climate change effects, such as extremely
hot and dry summers, which led to poor yields and low α-acid
levels [1, 5, 6]. Additionally, pathogens such as the citrus bark
cracking viroid (CBCDv) may drive losses in crop yields [1, 5,
7]. The evaluation of hop quality bases typically on the chemical
analysis of the essential oil and bitter acid contents, next to sen-
sory evaluation and visual inspection. The European Brewery
Convention (EBC) and the American Society of Brewing
Chemists (ASBC) established a collection of validated analytical
methods for the routine analysis of hop. For the unspecific deter-
mination of the α-acid content, the EBC 7.4 method can be
applied, including the conductometric determination of the lead
conductance value by the reaction of lead acetate and α-acids, as
well as the ASBC method for the photometric determination of
the bitter acids [1]. For the specific determination of the bitter
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acids, the EBC 7.7 method, using high-performance liquid chro-
matography (HPLC) followed by diode array detection or mass
spectrometry, is usually utilized [1]. Both methods require liquid
extraction of the soft resin in hops with methanol and diethyl
ether prior to analysis. The determination of the essential oils
bases on a time-consuming steam distillation according to EBC
7.10, followed by GC-MS or GC-FID analysis [1]. As a result, a
number of methods have been developed to reduce the experi-
mental effort required. Field et al. used a direct headspace solid-
phase microextraction (SPME) coupled to GC-FID instead of
steam distillation for the quantification of specific terpenes [8],
while Aberl and Coelhan described a headspace-trap GC-MS
approach [9]. Čulík et al. used accelerated solvent extraction to
speed up the solvent extraction procedure for bitter acids [10].
Furthermore, the hop storage index (HSI) based on UV/Vis
spectroscopy was established according to EBC 7.13 as a refer-
ence value for hop aging. Storage tests demonstrated that the
bitter acid content decreases steadily and the composition of the
essential oils changes due to oxidation reactions, but the deterio-
ration process can be reduced significantly by inert storage con-
ditions at low temperatures [11–13]. As HSI, the ratio of the
absorption at 275 nm, which is characteristic for the oxidation
products of bitter acids, and at 325 nm, which is characteristic for
the fresh bitter acids, is calculated [1, 12]. However, this method
does not deliver detailed information about the hop quality itself.
An indicator for flavor compound aging is the epoxide fraction,
and therefore, epoxides of caryophyllene and humulene are ana-
lyzed in relation to the non-epoxidized forms. This procedure
again is time-consuming due to the required extraction procedure
and GC analysis.

Multivariate data analysis has already been applied in
the quality control of hop, mostly for authenticity control
[14, 15]. Ocvirk et al. used multivariate cluster analysis
(CA) for the varietal classification of five different hop
varieties concerning the bitter acid and essential oil com-
position [14] that are known to be characteristic for each
hop cultivar [12, 13, 16]. Kovačevič et al. also used GC-
FID combined with principal component analysis (PCA)
and CA for the verification of hop varieties [15]. Farag
et al. used metabolomic fingerprints obtained by 1H-nucle-
ar magnetic resonance (NMR) and Fourier transform ion
cyclotron resonance (FT-ICR)-MS for cultivar classifica-
tion [17], as well as the signal pattern derived from two-
dimensional NMR [18]. Killeen et al. applied partial least
square regression (PLSR) for the quantification of bitter
acids by vibrational spectroscopy [19] and could distin-
guish different hop cultivars due to their bitter acid com-
position by applying principal component analysis to data
derived from Raman and 1H-NMR spectroscopy [16].
Nonetheless, there is one major disadvantage of NMR
and FT-ICR-MS: The complex instrumentation technique
requires much maintenance and technical support next to
high purchasing costs.

In the last decade, ion mobility spectrometry (IMS) with
radioactive ionization in combination with chemometrics
gained popularity in food analysis [20–23]. Gerhardt et al.
used headspace GC-IMS (HS-GC-IMS) for the classification
of virgin olive oils [20, 22] as well as for authenticity control
of honey [21]. In drift time IMS, ions are separated in the drift
tube at atmospheric pressure, according to their mass, charge,
and collision cross section (CCS), resulting in a high resolving
power. Proton affine substances such as esters, aldehydes, and
ketones are reported to be detectable in trace levels, because
they are mainly ionized by proton transfer reactions [24].
Furthermore, the use of low radiation tritium ion sources of
only 300 MBq requires no license accordance to EU directive
29/96 EURATOM [25]. IMS works as highly selective, sen-
sitive, and very robust detection systemwithout requiring high
technical effort. In combination with chemometrics, HS-GC-
IMS represents an excellent tool for flavor profiling without
requiring time-consuming sample preparation procedures.
Specifically, the 2D data generated by GC-IMS are highly
suitable for complex compound fingerprints as being found
in hops, which was shown in a feasibility study limited to
German hop samples by Kurzweil et al. [26]. Optimally, these
2D data and data fromMS techniques could be combined to a
more complete view on the flavor compound fingerprint.

Consequently, the aim of this study was the development
of a fast and cost-efficient benchtop volatilomics strategy for
the flavor profiling of hops to evaluate quality and to lay the
basis for authenticity control. The focus was set on minimal
sample preparation, robustness, and ease of use. For this pur-
pose, a HS-GC-MS-IMS prototype is presented for the first
time. This setup allows the parallel detection of MS and IMS
spectra by single injection resulting in an increased acquisition
of information and the opportunity of the direct comparison of
both techniques for substance identification. A further aim
was the development of a suitable data analysis and machine
learning toolset for the highly complex data generated by the
prototype setup to classify hop cultivars and potentially, to
quantitate the α-acid content via the gas phase. To the best
of our knowledge, simultaneous GC-IMS-MS has not been
used for the analysis of hops so far.

Material and methods

Reagents and sample preparation

Type 90 hop pellets were used with regard to a higher homo-
geneity of the hop samples. One gram of type 90 pellets of 65
different commercially available brewing hops (listed in
Electronic Supplementary Material (ESM) in Table S1) was
dried with liquid nitrogen and ground by mortar and pestle. A
total of 100 ± 10 mg of the resulting hop powder was trans-
ferred to a 20-mL headspace vial, 2 mL of a sodium chloride
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solution (300 g/L deionized water) was added, and the vial
was sealed with a screw cap. All samples were measured in
duplicate. Prior to sample preparation, the hops were stored in
vacuum seal bags at 4 °C protected from light.

Stock solutions of reference compounds were prepared in
sunflower oil (GLOBUS-Holding GmbH & Co. KG, St.
Wendel, Germany) as solvent and in the concentration range
of 10 mg/g for myrcene (Sigma Aldrich GmbH, Steinheim,
Germany), β-caryophyllene (Carl Roth GmbH & Co. KG,
Karlsruhe, Germany), and α-humulene (Sigma Aldrich);
1 mg/g for linalool (Sigma Aldrich) and limonene (Sigma
Aldrich), as well as 0.1 mg/g for α-pinene (Acros
Organics™ by Thermo Fisher GmbH, Kandel, Germany),
and β-pinene (Alfa Aeser by Thermo Fisher GmbH, Kandel,
Germany).

Instrumentation

All sample measurements were performed on a prototype,
dual-detector HS-GC-MS-IMS system, based on an Agilent
5973 mass spectrometer (Agilent Technologies Deutschland
GmbH, Waldbronn, Germany) and an OEM ion mobility
spectrometer module (Gesellschaft für Analytische
Sensorsysteme mbH, Dortmund, Germany), coupled to an
Agilent 6890 GC (Agilent Technologies) via a three-way
Dean’s switch plate (Agilent Technologies), to compensate
for the pressure differences in the detection systems (ESM
Fig. S1). Detection was carried out in parallel on both detec-
tors. HS sample injection was performed using a CombiPAL
autosampler (CTC Analytics AG, Zwingen Switzerland),
equipped with a static headspace sampling unit and a gas-
tight 2.5-mL heatable syringe (Hamiltion, Reno, USA) at
60 °C to avoid condensation effects. A headspace volume of
1 mL was injected into a split/splitless injector operated at
250 °C and a split ratio of 1:10, after an incubation time of
10 min at 50 °C and 500 rpm. The syringe was flushed for
3 min before each sample injection cycle to avoid carry over.
A ZB-5ms column (30 m × 0.25 mm× 0.25 μm, Phenomenex
Inc., Torrance, USA) was installed in the GC operated with a
carrier gas flow of 4 mL/min of helium and an oven program
of 40 °C initial temperature followed by a temperature ramp of
10 °C/min to 250 °C hold for 5 min (total run time: 26 min).
After chromatographic separation, the gas flowwas split at the
splitter plate and transferred to two identical retention gaps of
1-m length and 0.1-mm inner diameter, each leading to one of
the two coupled detectors. An additional make-up gas flow of
helium was added by a custom EPC regulator at the split point
for maintaining a sufficient gas flow of 2.3 mL/min to IMS in
order to reduce peak broadening. Heated transfer lines were
operated at 200 °C (IMS) and 250 °C (MS), respectively.

The IMS module was equipped with a 3H radioactive ion-
ization source. A voltage of 5 kV was applied to the drift tube
of 9.8-cm length operated at 90 °C with a constant nitrogen

drift gas flow of 150 mL/min of 99.9999% gas purity. A
number of six IMS spectra were averaged, respectively, each
recorded in positive mode with a repetition rate of 21 ms, an
injection pulse width of 150 μs, and a blocking and injection
voltage of 70 and 2500 mV, respectively.

The MS consisted of an electron impact (EI) ion source
operated with an ionization energy of 70 eV at 230 °C and a
single quadrupole at 150 °C scanning a mass range ofm/z 50–
550.

Data pre-processing

All obtained spectra were concatenated to an array (number of
samples × retention times × drift times or mass to charge (m/z)
ratios) for IMS and MS data, respectively. SAVITZKY-GOLAY

smoothing was applied to both data sets to reduce random
noise. Drift time (DT) and retention time (RT) alignment
was applied to the IMS data followed by interpolation of the
DT axis. The DT was normalized to the reactant ion peak
(RIP) position and the RT to the RT of nitrous oxide visible
in each spectrum. MS data were aligned in RT direction only
and log transformation was applied. Afterwards, the amount
of data was reduced by extracting the region of relevant sig-
nals between 1.3 and 15 min in each spectrum. Finally, repli-
cated measurements were summarized to one single mean
spectrum per sample resulting in two data sets of a 65 ×
2785 × 1554 (sample number × RT × DT) cube of IMS data
and a 65 × 2392 × 160 (sample number × RT × m/z ratios)
cube of MS data. Before applying the different algorithms,
the three-dimensional arrays were unfolded to two-
dimensional matrices, respectively, and mean centering was
applied.

Chemometric data analysis

For reduction of dimensionality and for data visualization,
principal component analysis (PCA) was applied to both data
sets as unsupervised multivariate analysis method. For the
comparison of the aroma profiles of the different cultivars,
hierarchical cluster analysis (HCA) was applied including
the first five principal components (PCs) obtained by PCA.
The distance between clusters was determined by Ward’s
method with Euclidean distances as distance metric. Based
on the results of the PCA score plot, partial least square re-
gression (PLSR) was used to investigate the potential correla-
tion. The PLSR model was built on a training set of 55 sam-
ples and a response vector containing the corresponding α-
acid concentration values. The test set of the remaining sam-
ples was used for model validation covering the whole cali-
bration range of α-acid concentrations. Figures of merit were
calculated as shown in the section below. To prevent
overfitting, the optimum number of latent variables (LVs)
was determined by considering the validation results by
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stepwise increase of the number of LVs. Finally, PLSR load-
ing plots were used for the identification of volatile organic
compounds (VOCs) responsible for the observed correlation.

Figures of merit

To determine the quality of the applied PLSR model, the de-
termination coefficient (R2) and the root mean square error of
calibration (RMSEC) were calculated:

R2 ¼ 1−
∑n

i¼1 ci−cregið Þ2

∑n
i¼1 ci−c

� �2 ð1Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ci−cregið Þ2
n

s
ð2Þ

where ci is the actual concentration of the training set, c
reg
i the

corresponding concentration calculated by the built model, c
the arithmetic mean of ci, and n the number of samples of the
training set.

For validation the root mean square error of prediction
(RMSEP)

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ci−cpredi

� �2

n

vuut
; ð4Þ

the systematic error (Bias)

Bias ¼
∑n

i¼1 ci−cpredi

� �

n
; ð5Þ

the standard error of prediction (SEP)

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ci−cpredi −Bias
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n−1
;
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and the relative percentage error of prediction (RE) were cal-
culated

RE %ð Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ci−cpredi

� �2

∑n
i¼1ci2

;

vuut ð7Þ

where ci is the actual concentration of the test set, cpredi the
corresponding predicted concentration calculated by the re-
gression model, and n the number of samples of the test set.

Software

For mass spectral data acquisition and mass spectra compari-
son, the MSD ChemStation Software (Agilent Technologies)
was used. Data export and SAVITZKY-GOLAY smoothing of the

IMS data were performed with the LAV Software version
2.2.1 (Gesellschaft für Analytische Sensorsysteme mbH).
Further data pre-processing of IMS andMS data, model build-
ing, validation, and calculation of figures of merit were imple-
mented in own MATLAB routines and carried out in
MATLAB (The MathWorks Inc., Natick, MA, USA) using
the Statistics and Machine Learning Toolbox (MathWorks).

Results and discussion

A number of 65 different pelletized samples of hop cultivars
from harvesting years 2015–2018 (ESM Table S1) were ana-
lyzed by a prototype HS-GC-MS-IMS setup. Hop pellets are
mixtures of different hop lots for balancing the variability
caused by growing conditions, storage, and other effects.
Further, such a mixing enables better storage stability [27, 28].

Direct comparison of IMS and MS data

IMS and MS spectra were recorded in parallel from each sam-
ple by the HS-GC-MS-IMS setup. The exemplary volatile
profiles of the hop variety Citra are shown in Fig. 1. For a
better direct comparison, the MS data are given in form of a
3D heatmap (retention time ×m/z × intensity), while IMS data
are given as retention time × drift time × intensity. Due to the
significantly high abundance of myrcene in hops, the MS data
were log-transformed in order to allow a graphical comparison
as given in Fig. 1.

It can be seen that IMS spectral data are much denser
and complex compared with the EI-MS data. The reason
for this effect may be explained by two aspects: On the
one hand, terpenes show a strong fragmentation behavior
under EI conditions, which results in very similar frag-
ments for different isomers or closely related compounds.
This leads to the similar patterns observed in the mono-
terpene and sesquiterpene zone. On the other hand, IMS
provides a clearly softer ionization, which leads to more
stable ions being additionally separated by their ion-
neutral CCS values. However, both techniques have their
distinct characteristics: Mono- and sesquiterpenes, the
dominating species of the hop essential oil, can be dis-
tinguished in EI-MS (Fig. 1a) by their fragmentation be-
havior, resulting in dominating fragments of m/z 136,
121, 93, and 69 for monoterpenes (white box) and m/z
204, 121, 93, and 69 for sesquiterpenes (red box). In
general, unequivocal differentiation of isomeric terpenes
in unit-resolved MS is only feasible when comparing the
spectra of reference compounds. The fragmentation be-
havior is highly structure-dependent with regard to dif-
ferences in fragment ion abundances. Consequently, in
the case of co-elution of substances of similar fragmen-
tation behavior, this information is interfered. In IMS
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spectra, monoterpenes and sesquiterpenes can be distin-
guished better due to the 2D separation with different
normalized drift times of 1.258 (monomers) and 1.711–
1.858 (dimers) for monoterpenes, or respectively 1.477
and 1.567 (monomers) for the sesquiterpenes (Fig. 1b).
Isomeric terpenes often feature monomers of identical
mobility, but with different relative abundances of their
dimers or a variation in the number of product ions.
Interestingly, terpene alcohols such as linalool show ion
patterns with similar drift times as the corresponding
terpenes, although the molecules differ in mass and
CCS values. This behavior has already been reported
for isomeric hydrocarbons or hydrocarbons with different
substituents by Borsdorf and Neitsch [29], indicating a
complex underlying ion chemistry during the ion forma-
tion process, such as elimination or rearrangement reac-
tions. From the IMS spectra, it is clearly visible that
there are co-eluting compounds in the monoterpene re-
gion of the IMS spectrum (Fig. 1b). Here, the comple-
mentary separation of GC and IMS allows distinguishing
these compounds from the terpene signals, because their
DT clearly differs. These signals belong to minor volatile
components of hops, such as ketones, aldehydes, carbox-
ylic acids, and esters of different chain length and branch
type [1, 2, 9, 13], which are reported to be byproducts
from terpene biosynthesis and from degradation process-
es of lipids and bitter acids [2]. An exemplary set of
substances was identified as 2-butanone (8), 2-
heptanone (9), and 2-nonanone (10) via reference stan-
dards in the GC-IMS data. The EI-MS spectrum features
a much more complex fragmentation pattern. Here, a
time-consuming comparison of fragments and their abun-
dances versus reference substance spectra is required for

the identification without further information about the
identity of the interfering substance. In contrast, the
IMS spectra allow identifying substances more easily or
at least assign these substances to a substance class;
however, the combination of MS and IMS data may lead
to an even more simplified identification due to the com-
plementary information.

At the current stage, extensive libraries of IMS drift time
spectra are not yet available. For this reason, an in-house gen-
erated reference library of hop aroma compounds was built for
similarity-based search in obtained mass and drift time spec-
tra. For MS data, the probability-based matching algorithm
(PBM), which uses m/z as well as abundance values, was
applied for mass spectral comparison implemented in the
ChemStation Software [30] and resulted in the match quality
value representing the degree of similarity between the spec-
tra. The calculation of a match quality value for IMS spectra is
less straightforward, because the number of ions and relative
abundance is highly dependent on concentration. For this rea-
son, RT and DT were only used for substance identification.
Commonly known, simple mono- and sesquiterpenes as well
as monoterpene alcohols of the hop essential oil fraction were
identified. RT, match quality values, RIP-normalized DT, and
K0 values are listed in Table 1.

The comparison of the RTs from both techniques shows
only slight deviations of 0.05–0.09 min, while for the sesqui-
terpenes, deviations between 0.21 and 0.26 min were ob-
served. This slight increase in RT for later eluting compounds
can be attributed to peak broadening, caused by adsorption
effects in the non-heated ionization cell of the IMS, being
already considerably reduced by an additional make-up gas
flow at the Dean’s switch plate after the analytical column.
This approach delivered nearly identical chromatographic

ba

sesquiterpenes

sesquiterpenes

senepretonomsenepretonom
8 8*

9

10 10*

1 1*
2
3 3*

2*
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5
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5*

6

7

1

23
4

5

6
7

1 α-pinene
2 β-pinene
3 myrcene
4 limonene
5 linalool
6 β-caryophyllene
7 α-humulene
8 2-butanone
9 2-hexanone
10  2-nonanone

Fig. 1 2D spectra of the hop variety Citra measured by EI-MS (a) and
IMS (b). The regions for monoterpene ion signals are highlighted in
white, for sesquiterpene ion signals in red, respectively. All identified
substances are labelled with arrows in the MS spectrum or surrounded

by dashed lines in the IMS spectrum and belong to α-pinene (1), β-
pinene (2), myrcene (3), limonene (4), linalool (5), β-caryophyllene (6),
α-humolene (7), 2-butanone (8), 2-hexanone (9), and 2-nonanone (10).
Higher molecular cluster ions (dimers) are indicated by an asterisk
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conditions for both detection systems, which is, to our knowl-
edge, described for the first time for the combination of IMS
andMS detection in GC. Budzyńska et al., who used a parallel
injection with two independent injection lines for IMS and
MS [31], were not able to directly correlate the resulting data,
because of strongly differing retention behavior. Furthermore,
it was virtually impossible to ensure identical chromatograph-
ic conditions, being crucial for the subsequent data analysis.

With regard to substance identification, the low match
quality values of limonene (38) and linalool (46) either indi-
cate a co-elution event or did not show anymatch. Again, IMS
spectra provided much more usable information. In Fig. 2, the
elution zone of linalool and limonene in a hop sample is com-
pared with a reference standard spectrum. It can be seen that

there is an overlap of an unknown ion with the monomer ion
of linalool in the hop sample (Fig. 2a), when being compared
with the reference spectrum (Fig. 2b). For limonene, no over-
lap can be seen in the monomer region, but in the dimer region
(Fig. 2c), when being compared with the reference spectrum
(Fig. 2d). The ion pattern and the drift times indicate tentative-
ly another monoterpene or mono-terpenoid, however.

This example demonstrates the potential of the combina-
tion of EI-MS and IMS for differentiating substance classes in
complex mixtures. With this approach, an additional dimen-
sion of information is available due to characteristic drift
times, even in the case of co-elution. The drift time separation
significantly increases selectivity and paired with the high
sensitivity for proton affine substances such as ketones,

Table 1 Results of the substance identification of common terpenes and terpene alcohols of the hop variety Citra

Number Name (molecular mass) EI-MS IMS

Retention timeMS

(min)
Match quality
valueMS

Retention timeIMS

(min)
Drift times (RIPrel)* (K0 [cm

2/Vs])**

1 α-Pinene (136.23 g/mol) 5.47 90 5.52 1.258, 1.745, 1.767, 1.818 (1.630, 1.175,
1.160, 1.128)

2 β-Pinene (136.23 g/mol) 6.11 93 6.17 1.258, 1.735, 1.808 (1.630, 1.182, 1.134)

3 β-Myrcene (136.23 g/mol) 6.23 91 6.30 1.258, 1.769, 1.795 (1.630, 1.159, 1.142)

4 Limonene (136.23 g/mol) 6.82 38 6.88 1.258, 1.736, 1.795 (1.630, 1.181, 1.142)

5 Linalool (154.25 g/mol) 7.78 46 7.87 1.258, 1.736, 1.787 (1.630, 1.181, 1.147)

6 β-Caryophyllene
(204.36 g/mol)

12.11 96 12.32 1.494, 1.586 (1.372, 1.293)

7 α-Humulene
(204.36 g/mol)

12.56 90 12.82 1.552 (1.321)

*The drift times are normalized to the reactant ion drift time

**K0 ¼ K 273
T

� �
P
760

� �
with K ¼ L

tdE
, where L is the drift tube length (cm), td is the drift time (s), E is the electrical field (V/cm), T is the drift tube

temperature (K), and P is the pressure inside the drift tube (Torr)

Fig. 2 Selected areas of the IMS spectrum of the Citra hop sample (a, c) compared with reference IMS spectra of linalool (b) and limonene (d) of the
1 mg/g stock solution in sunflower oil
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aldehydes, and alcohols; IMS is a powerful addition to an
already established EI-MS setup, if not even being a full sub-
stitution in some cases. To maximize the use of the gathered
data from IMS and MS for substance identification, the m/z-
based identification could be supplemented by the K0 values
and the retention time indices for being used in database
search, which is ongoing research at the moment. The combi-
nation of IMS and MS in the prototype used in the present
study increased overall selectivity significantly and helped
identifying substances, which were not identified unequivo-
cally before.

Aroma profiling of hop cultivars by HS-GC-IMS-MS
and multivariate data analysis

The 65 different hop samples were analyzed with the proto-
type dual-detection setup in order to find characteristic flavor
profiles and to identify cultivars with a chemically similar
profile. While it is already understood that the detection of
substances does not necessarily relate to their odor threshold
and as such, the sensorial perception, it is still very helpful to
identify similarities of hop cultivars on a molecular level.

As first step in the processing of the data, PCA was applied
to both IMS and MS data for dimension reduction as well as
for the visualization of possible clusters of hop samples with
similar VOC profiles. As described before, the MS data fea-
tured an extremely dominant signal from the most abundant
terpene myrcene, while the other compounds showed much
lower intensities. This led to an overrating of the highly abun-
dant signals, being not an optimal starting point for a PCA.
For this reason, a log transformation of the MS data was per-
formed as a pre-processing step. In contrast, IMS measure-
ments featured an increase of higher molecular cluster ions
in the case of an increasing analyte concentration. This led
to a higher selectivity in the context of multivariate analysis,
as the number of signals increases and not the absolute inten-
sity of one signal only. This effect is constant under given
conditions and the prerequisite that the RIP signal is still
abundant.

The results are shown in Fig. 3 as score plots of principal
component (PC) 1 and 2 of the IMS and MS data, respective-
ly. The two score plots clearly differ from each other regarding
the relative location of the samples and the explained variance.
The latter is an effect of the log transformation, reducing over-
all variance. The explained variance (EV) in MS data is only
20.7% for the first 2 PCs; the EV for the IMS data is 53.4%. In
general, this can be interpreted in such way that the profiles of
the hop cultivars seem to be highly different and not charac-
terized being of high covariance. Consequently, more princi-
pal components were used and HCA was applied to the PCA
data by including the first five PCs. The dendrograms obtain-
ed are plotted in Fig. 4. Small Euclidean distances indicate
high similarities of the VOC profiles. Clusters of cultivars

obtained in both dendrograms are highlighted in colored box-
es and connected by lines.

As already expected from the score plots shown in Fig.
3, the dendrograms from both techniques differ from each
other, but in some cases provide similar clusters of the
hop samples investigated (highlighted cultivars in boxes).
Although for both data sets the VOC profile was ana-
lyzed, the data contained different information, due to
differences in selectivity and sensitivity of the detection
systems. The hops included in the present sample set were
obtained from different harvesting years, with different
climatic conditions, harvesting dates, storage conditions,
and storage periods. In summary, they differ in state of
aging. Thus, it is possible that hops that differ from each
other in fresh state could now show more similarities and
the opposite case, hops of similar flavor in fresh state
could now differ from each other. However, in both den-
drograms, the special flavor hops cv. Ariana (sample no.
58), cv. Mandarina Bavaria (no. 62), and cv. Huell Melon
(no. 08) from the year 2017 (dark blue box) form one
cluster of small Eucl idean dis tances, while cv.
Mandarina Bavaria (no. 54) and Ariana (no. 41) from
the year 2018 (orange box) form an own cluster with high
Euclidean distances to the cluster from the year 2017. Cv.
Huell Melon (no. 57) from the year 2016 shows smaller
Euclidean distances to the cluster of the year 2017.
Finally, the hop cultivars show similarities within one
harvesting year and clearly differ between different har-
vesting years. The corresponding IMS spectra are shown
in Fig. S2 in the ESM. Cultivars from the years 2018 and
2016 seem to have higher contents of certain terpenes
such as limonene and α-humulene compared with the cul-
tivars from the year 2017. This observation is in accor-
dance with the results described by Gahr and Schüll [32],
who report more intense differences of flavor compounds
induced by differing climate conditions between harvest-
ing years compared with varietal differences of the culti-
vars Ariana and Callista. In the present study, cv. Callista
(no. 28) shows small Euclidean distances compared with
the hop cultivars Cascade (no. 30), cultivated in the USA,
and Hallertauer Cascade (no. 37), cultivated in Germany
(corresponding IMS spectra, ESM Fig. S3). High degrees
of similarity for the aroma profile of cv. Cascade and cv.
Hallertauer Cascade are also reported in the literature
[33].

HCA can serve as a fast and simple method for comparing
VOC profiles of a high number of different hop samples.
Initial indications are given about similarities that can then
be characterized more detailed by investigating the raw spec-
tra. The comparison of flavor profiles is of special concern
with regard to breeding new cultivars of special flavor hops
or of hops more resistant against the adverse effects of climate
change, pests, and diseases [3].
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Possible correlations between the VOC profile and the
α-acid content

When taking a closer look to the sample distribution in the
score plots (Fig. 3), it is remarkable that hop samples with
very low α-acid content, such as cv. Lubelski (2%) and cv.
Strisselspalter (1.8%), are located at the outer left side of PC 1,
while hop samples with very high α-acid content, such as cv.
Vic Secret (18.1%) or cv. Eldorado (15%), are located at the
outer right side of PC 1. This observation indicated that the
VOC profile of hops is affected by the α-acid content, which
becomes even more obvious from the results shown in Fig. 5.
Here, the hop samples were assigned to three groups: “low α-
acid level hops” for α-acid levels from 1% (% w/w) to 6.9%
(36 samples), “middle α-acid level hops” from 7.0 to 10% (15
samples), and all remaining samples of higher content to “high
α-acid level hops” (14 samples).

Although no clustering occurred, a general trend was ob-
served. The samples seem to be separated horizontally along
the first PC. For illustration, the 97.5% tolerance ellipses of
the squared Mahalanobis distances are plotted. In both
models, the three groups clearly overlap, and the middle α-
acid level hops can be considered transitional group between
the low and high α-acid level hops. Of course, the observed
sample distribution could be randomly, e.g., due to cultivar
differences appearing in the VOC profile. To prove this,
PLSRwas applied by correlating the data to the corresponding
α-acid values, given from the package labelling of the hop
samples. Therefore, the IMS and MS data were split into a
training set (blue dots) of 55 samples and a test set (red dots) of
10 samples, distributed all over the full calibration range, re-
spectively. Hop samples of low α-acid content clearly

dominated the training set data, but they reflected the distri-
bution of bitter and aroma hops of the actual hop variety list
published by the International Hop Grower’s Convention
(IHGC) in the year 2018 very well, where only 67 hops
(25%) of 266 total hop varieties are bitter hops [34]. The
regression plots and the figures of merit of the PLSR results
obtained with IMS and MS data are shown in Fig. 6.

Pareto scaling was applied to the IMS data as additional
pre-processing step from which an improvement of the RE
from 13.51% without scaling to 11.49% with scaling could
be obtained. No improvement was observed for the RE of the
MS data. Here, a decrease from 24.57% without scaling to
27.64% with scaling was obtained. Generally, in PLSR, the
calibration can be improved continuously by increasing the
number of LV for model building. However, there is a high
risk of overfitting. It must be kept in mind that the information
content in the data and, therefore, in the LVs is limited. The
higher the number of chosen LVs, the higher the risk of in-
cluding random noise. An indication of overfitting is an in-
creasing calibration error, while the prediction error decreases.
Considering that the best model fit was achieved for the IMS
data with five LVs and for the MS data with two LVs (Fig. 6).
For both techniques, a clear correlation can be observed be-
tween the VOC profiles and the corresponding α-acid level of
the hop samples, with a R2 of 0.9681 and a RMSEC of 0.73%
α-acid for the IMS data andwith a R2 of 0.9153 and a RMSEC
of 1.19% α-acid for the MS data. However, for the prediction
of the α-acid level calculated with an external test set, the
model built with IMS data shows much smaller error rates
than the model built with MS data. The RE is 11.49% for
the IMS data, with a RMSEP of 0.99% α-acid and a SEP of
1.04%α-acid. ForMS data, the RE of 24.57%, the RMSEP of

Fig. 3 Score plot of the principal component analysis of hop aroma profiles obtained by ion mobility spectrometry (a) and mass spectrometry (b)
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2.12%α-acid, and the SEP of 2.13%α-acid of theMS data lie
clearly above. These results demonstrate the high importance
of an independent test set. While the PLSR calibration results
of theMS data appear promising, the prediction results show a
comparatively poor model fit. Killeen et al. applied PLSR on
spectroscopic data measured by IR, NIR, and Raman correlat-
ed to HPLC quantification results and obtained RMSEC and
RMSEP values between only 1.2 and 1.8%α-acid for all three
techniques [19]. The error values in the present study, obtain-
ed by applying PLSR on IMS spectra, are comparable and

even slightly lower. It should be noted that the actual α-acid
content of the hop samples was not analyzed, but only taken
from the manufacturers’ specifications. The α-acids are re-
ported to be relatively stable under inert storage conditions
at low temperatures [1, 11, 12]. Nonetheless, the models could
be even better, when the actual values would have been con-
sidered. However, the results give raise to the question, why
the volatile profile can be correlated to the non-volatile α-
acids and why the IMS data are more suitable for the regres-
sion model than the MS data. One possibility could be that

Fig. 4 Dendrograms of the hierarchical cluster analysis obtained for the scores of the ion mobility spectrometry (top) and mass spectrometry (bottom)
data with five principal components. Cultivars of interest are highlighted in colored boxes and connected by lines between both dendrograms
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degradation and reaction products of the α-acids are detect-
able in the volatile profile. Kishimoto et al. identified some
esters of increased concentrations in beer hopped with aged
hops and proposed that these components were formed by
esterification of short-chain fatty acids derived from the deg-
radation ofα-acids [35]. Thus, highα-acid hops could contain
such degradation products in higher amounts than low α-acid
hops. In addition, Sharpe and Laws report a correlation

between the amounts of α-acids and myrcene [13]. It was
shown by Hartley that the loss of α-acids during storage was
higher in hops with higher contents of essential oils and he
postulated that myrcene could initiate the oxidation ofα-acids
by the formation of peroxides [13, 36]. Another possibility
could be that low α-acid level hops simply contain higher
levels of essential oils, because they are often used as aroma
hops. In contrast, Aberl and Coelhan [9] showed that bitter

Fig. 6 Regression plots of the partial least square regression (PLSR) of
the ion mobility spectrometry data (left) and mass spectrometry (right)
data correlated to the α-acid content (% w/w) of the hop samples. The
figures of merit are the determination coefficient (R2), the root mean

square error of correlation (RMSEC), the root mean square error of pre-
diction (RMSEP), the systematic error (Bias), the standard error of pre-
diction (SEP), and the relative percentage error of prediction (RE)

Fig. 5 Score plot of the principal component analysis of hop aroma profiles obtained by ion mobility spectrometry (a) and mass spectrometry (b) after
grouping with 97.5% confidence ellipses of the squared Mahalanobis distances
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hops, providing high α-acid level hops, tend to contain higher
levels of essential oils compared with aroma hops. In addition,
Patzak et al. describe a positive correlation of the number and
size of lupulin glands with the content of bitter acids in differ-
ent hop cultivars [37]. In this context, it is important to note
that α-acids and terpenes are synthetized via the same biosyn-
thetic pathway and their composition is characteristic for the
genotype of a hop cultivar [38, 39]. While bitter acids are
located exclusively in the glandular trichomes of the hop
cones, terpenes are mainly present in the trichomes, and also
accumulate in further plant compartments [38]. More precise-
ly, mono- and sesquiterpenes are formed from the two basic
precursors dimethylallyl pyrophosphate (DMAPP) and
isopentenyl diphosphate (IPP), while bitter acids are formed
by prenylation of polyketides by DMAPP [38–40]. IPP that
can be converted to DMAPP by IPP isomerase is produced in
the cytosolic mevalonate (MVA) pathway and the plastidial
deoxyxylulose phosphate (MEP) pathway, the so-called non-
mevalonate pathway. Goese et al. show with isotope labelling
that the bitter acids are primarily deriving from the MEP path-
way [39], as well as monoterpenes, while sesquiterpenes can
be more assigned to the MVA pathway in plants in general,

but not exclusively [39, 40]. However, Nagel et al. found out
by enzyme analysis of hop glandular trichomes that the MEP
predominates as building pathway for the essential oils in hops
[41]. For this reason, there is a further possibly consisting in a
functional relation between the bitter acid formation and the
terpene metabolism in hop trichomes.

To investigate which substances are mainly responsible for
the observed correlation, the loading and score plots of the
first two LVs of the IMS data can be considered (Fig. 7).

However, not one single specific substance only shows very
high (red) or low (blue) loading values (Fig. 7a and b). There are
signals in all regions of the spectrum from all substance classes
that show intensive loading values. This fact indicates that not
one single compound is responsible for the correlation, but rather
the concentration ratio of several compounds. In consideration of
the corresponding score plot (Fig. 7c), samples of positive score
values in LV1, in particular high α-acid level hops, contain
higher amounts of α-pinene (1), β-pinene (2), myrcene (3), lim-
onene (4), and β-caryophyllene (6) and lower levels of linalool
(5) and α-humulene (7) compared with samples of negative
score values in LV1. For low α-acid hops, this ratio is inverse.
The arrow in Fig. 7c with corresponding color gradient illustrates

Fig. 7 Loading plots derived from the first (a) and second (b) latent
variable and score plot (c) of the partial least square regression of the
ion mobility spectrometry data. Signals belong to α-pinene (1), β-

pinene (2), myrcene (3), limonene, linalool (5), β-caryophyllene (6), α-
humulene (7), and 2-nonanone (10)

Fig. 8 Loading plots derived from the first (a) and second (b) latent variable and score plot (c) of the partial least square regression of the mass
spectrometry data
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the separation. Also, minor volatile compounds that do not be-
long to the terpenes seem to have an impact on the correlation
and show high and low loading values. Samples of negative
score values in LV2 contain higher amounts of terpenes and
lower amounts of minor volatile compounds compared with
samples with positive loading values. Additionally, the signals
of certainmonoterpenes are less intensive in LV2 compared with
LV1 and seem to have less impact on LV2. Attention should be
paid to compounds of similar RTs. They are resolved in IMS, but
cannot be detected or differentiated in MS. For comparison, the
loading and score plots of the two first LVs obtainedwith theMS
data are shown in Fig. 8. Subsequently, this information is not
accessible from the MS data. That could be one reason for the
higher errors of prediction for the MS data obtained in Fig. 6.

The results indicate a relationship between the metabolism of
volatile aroma compounds in hops and the biosynthesis of α-
acids. To investigate the origin of the observed correlation, an
extensive studywith fresh hops directly from pelletization should
be done to exclude the influence factor of storage. At the current
state, it seems plausible that certain terpenes mostly or exclusive-
ly formed in the lupulin trichomes dominate in hops rich in
lupulin glands, while there is also a positive correlation postulat-
ed between the degradation of α-acids and essential oils [36].

Conclusion

The prototype HS-GC-MS-IMS setup presented herein allows
the simultaneous generation of complementary IMS and MS
data.With a soft ionization and drift time-based ion separation
on the one hand and a hard ionization and m/z-based separa-
tion on the other hand, substance identification in the case of
co-elution is improved, substantially. An additional make-up
gas flow after the column split reduces peak broadening and
high deviations in RT between the both detection systems. In
this study, HS-GC-MS-IMS was used for the analysis of the
highly complex VOC profile of hop (Humulus lupulus L.) as
example for application. Growing conditions, harvesting time,
and processing and storage conditions influence the hop qual-
ity. Routinely applied analytical methods for hop quality as-
surance are either time-consuming and cost-intensive or less
meaningful. The usage of HS-GC-MS-IMS in combination
with chemometrics such as PCA and HCA enables a fast
search for similarity between the flavor profiles of different
hop cultivars. When using HCA, initial indications are given
for similarities in the aroma profiles of certain hop cultivars
within the same harvesting year or cultivated in different
growing areas. Furthermore, the results of the PCA indicate
a relationship between the α-acid levels and the aroma profile
of hops. PLSR was applied to the IMS data leading to a
RMSEC of only 0.73% α-acid next to a RMSEP of 0.99%
α-acid and a SEP of only 1.04%α-acid. Further investigations
are needed to understand this relationship, but the loading and

score plots of the PLSRmodel indicate that the biosynthesis or
degradation of α-acids and terpenes results in a specific ratio
of some aroma compounds in the VOC profile of hops. With
regard to degradation processes taking place during storage, a
more extensive study with fresh hop pellets is required.

In conclusion, HS-GC-MS-IMS or even HS-GC-IMS on
its own in combination with intelligent machine learning strat-
egies is a promising tool for the future quality control of
brewing hops; however, further research will be necessary.
In particular, this approach could help to objectify sensory
assessments and to identify differences or similarities between
hop cultivars from different harvesting years or growing re-
gions. Compared with the standard EBC methods, no time-
consuming extraction procedures or hazardous chemicals,
such as lead acetate or diethyl ether, are required. The quality
status of hop including the volatile aroma profile and possibly
the α-acid level can be recorded by one single injection only.
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