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Abstract
Peptide mapping analysis is a regulatory expectation to verify the primary structure of a recombinant product sequence and to
monitor post-translational modifications (PTMs). Although proteolytic digestion has been used for decades, it remains a labour-
intensive procedure that can be challenging to accurately reproduce. Here, we describe a fast and reproducible protocol for protease
digestion that is automated using immobilised trypsin on magnetic beads, which has been incorporated into an optimised peptide
mapping workflow to show method transferability across laboratories. The complete workflow has the potential for use within a
multi-attribute method (MAM) approach in drug development, production and QC laboratories. The sample preparation workflow
is simple, ideally suited to inexperienced operators and has been extensively studied to show global applicability and robustness for
mAbs by performing sample digestion and LC-MS analysis at four independent sites in Europe. LC-MS/MS along with database
searching was used to characterise the protein and determine relevant product quality attributes (PQAs) for further testing. A list of
relevant critical quality attributes (CQAs) was then established by creating a peptide workbook containing the specific mass-to-
charge (m/z) ratios of the modified and unmodified peptides of the selected CQAs, to be monitored in a subsequent test using LC-
MS analysis. Data is provided that shows robust digestion efficiency and low levels of protocol induced PTMs.

Keywords Inter-laboratory study . Peptide mapping . Monoclonal antibody . Post-translational modifications (PTMs) . Trypsin
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Introduction

Peptide mapping is commonly used in the biopharmaceutical
industry to confirm that the desired amino acid sequence of a
therapeutic protein has been expressed and to characterise
any post-translational modifications (PTM) present [1, 2].
This information supports bioprocess development, lot to lot
consistency, biosimilarity assessment [3–6], drug stability in
formulation and monitoring the genetic stability of recombi-
nant cell lines [7, 8].

With recent advances in high-resolution accurate mass
(HRAM) mass spectrometry instrumentation and semi-
automated software platforms, distinguishing between closely
related species, and quantitative measurements of these spe-
cies, using MS has become possible [9]. From the 80 biologic
licence applications (BLAs) approved by FDA between 2000
and 2015, 79 BLAs used MS in drug product characterisation
[10]. Recently, in 2015, the first paper was published using
peptide mapping with HRAM LC-MS as a proposed method
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to monitor several critical quality attributes using one analyt-
ical method in the quality control (QC) laboratory [11]. The
described multi-attribute method (MAM) has since then
gained considerable popularity and interest throughout the
biopharmaceutical community [12]. MAM offers the advan-
tage of measuring multiple protein modifications as product
quality attributes (PQAs) during development or critical qual-
ity attributes (CQAs) during testing in a single MS run. This
specificity is possible due to the bottom-up nature of the ap-
proach, where the protein is enzymatically digested to smaller
peptides and then analysed by LC-HRAM MS.

Mass spectrometry provides much more detailed informa-
tion about individual protein modifications than conventional
methods [9, 10], offering powerful information such as mo-
lecular weight and sequence information (MS/MS) to assist
with co-elution challenges, verify sequence coverage and to
identify unknown peaks when they appear.

To cope with the increasing numbers of samples and to
implement the technique in a QC environment with HRAM
LC-MS, sample preparation reproducibility is also required
which can be provided by automation through online diges-
tion or robotic systems [13–17].

Digestion procedures vary from laboratory to laboratory
and there have been many attempts to optimise the conditions
used [1, 2, 17, 18]. The method described in this study over-
comes these difficulties by removing many of the steps in-
volved in the traditional digestion procedure. The protein is
unfolded using heat denaturation [19, 20] and the digest per-
formed with a heat stable trypsin [21–23]. The elevated tem-
perature used could potentially increase the rate of PTM gen-
eration. For example, deamidation during sample preparation
is known to increase with time, temperature and pH [11, 24].
The present work shows that using a temperature of 70 °C,
deamidation can be negated by lowering the reaction rates for
PTM generation by using a reduced pH and increasing the
speed of digestion.

This study describes the use of automated digestion as part
of a fully optimised, robust, global peptide mapping protocol
for monoclonal antibodies, with potential for routine usage in
QC laboratories. In preliminary experiments, automated di-
gestion conditions were optimised in terms of digestion time
and digestion buffer; results were evaluated by mass analysis
of residual intact, undigested protein and by critical
PTM evaluation, with a particular focus at lowering
sample preparation–induced PTMs, such as deamidation
and oxidation. The developed peptide mapping protocol
was then applied to investigate data obtained by diges-
tion of the NIST reference antibody standard and LC-
MS analysis performed at four laboratories in Europe to
assess workflow robustness and ease of method transfer.
Additionally, the stability of targeted CQAs present on
a mAb mixture under forced degradation conditions was
also evaluated.

Materials and methods

Chemical and reagents

Trastuzumab and Bevacizumab drug products were kindly pro-
vided from a Hospital Pharmacy Unit. The NIST monoclonal
antibody (NISTmAb, lot number 14HB-D-002) reference mate-
rial, RM 8671 (2.4 mg mL−1) was purchased from The National
Institute of Standards and Technology (NIST). Thermo
Scientific™ SMART Digest™ kits, magnetic resin option, were
obtained from Thermo Fisher Scientific. LC-MS-grade solvents
(0.1% (v/v) formic acid in water, 0.1% (v/v) formic acid in ace-
tonitrile, formic acid, acetonitrile, water) were sourced from
Fisher Scientific. Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP) and guanidine-HCl were obtained from Pierce. All other
reagents were purchased from Sigma-Aldrich.

Analytical instrumentation

LC-MS analysis was performed using similar but not identical
UHPLC systems coupled to Orbitrap-based mass analysers
operated with the Thermo Scientific™ Ion Max™ source
equipped with the HESI-II-probe (see Electronic
Supplementary Material (ESM) Table S1). All data were ac-
quired using Thermo Scientif ic™ Chromeleon™
Chromatography Data System (CDS) software 7.2.9
(Thermo Fisher Scientific).

Intact mass analysis

Separations were performed using Thermo Scientific™
MAbPac™ RP 2.1 × 100 mm column (Thermo Fisher
Scientific). A binary gradient of 0.1% (v/v) formic acid in
water (A) and 0.1% (v/v) formic acid in acetonitrile (B) was
used. Gradient conditions were as follows: 5% B to 95% B in
11min, hold at 95% B until 12 min, 5%B from 12.1 min until
17 min. Column temperature was maintained at 80 °C and a
300 μL min−1 flow rate was used. UV coupled online to
HRAM MS was used for detection. Full MS acquisition was
obtained at a resolution setting of 35,000 (at m/z 200) with a
mass range of 1500–4500 m/z and AGC target of 3.0 × 106

with a maximum injection time of 100 ms and 10 microscans.
In-source CID was 100 eV. MS tune parameters were as fol-
lows: spray voltage was 3.8 kV, sheath gas flow rate was
20 AU, auxiliary gas flow rate was 10 AU, capillary temper-
ature was 300 °C, probe heater temperature was 275 °C and S-
Lens RF voltage was set to 100.

Peptide mapping protocol

Samples were diluted to 2 mg mL−1 in water. For each sample
digest, sample, digestion buffer (buffer 1, pH 6.5 or buffer 2,
pH 7.2) and 5 mM TCEP (final concentration) were added to
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each lane of a Thermo Scientific™ KingFisher™ deep well
96-well plate as outlined in ESM Table S2, except for one of
the laboratories where digestion was performed using the
same protocol and magnetic beads manually, employing man-
ual timing and magnetic removal of the beads. Trypsin bead
“wash buffer” was prepared by diluting digestion buffer 1:4
(v/v) in water. Bead buffer was neat digestion buffer.
Digestion was performed using a Thermo Scientific™
KingFisher™ Duo Prime Purification System with Thermo
Scientific™ BindIt™ software (version 4.0). Samples were
incubated for 5 to 40 min at 70 °C on medium mixing speed
to prevent sedimentation of beads for the digestion time
course study and beads were removed at each time point.
Following digestion, 100-μL samples were transferred to
300-μL vials and 1 μL of 10% TFA was added (final concen-
tration 0.1% TFA) and immediately analysed by HRAM LC-
MS. The tryptic peptides were separated and monitored using
a Thermo Scientific™ Acclaim Vanquish™ C18, 2.2 μm,
2.1 × 250 mm (Thermo Fisher Scientific, Cat#074812-V).
Analysis was performed using a binary gradient of 0.1%
(v/v) formic acid in water (A) and 0.1% (v/v) formic acid in
acetonitrile (B). Gradient conditions were as follows: 2% B to
40% B in 105 min, increase to 80% B at 111 min until
115 min, drop to 2% B at 115.5 min until 120 min. The
column temperature was maintained at 25 °C throughout
and flow rate was sustained at 300 μL min−1.

Discovery experiment using data-dependent acquisition
(DDA) MS/MS method was performed only from one labo-
ratory and consisted of full positive polarity MS scans at a
resolution setting of 70,000. A resolution setting of
140,000 at m/z 200 was used for full MS-targeted monitoring
experiments. Mass range was set to 200–2000 m/z and AGC
target value of 3.0 × 106 with a maximum injection time of
100 ms and one microscan. In-source CID was set to 0 eV.
MS2 settings were as follows: a resolution setting of 17,500 (at
m/z 200), AGC target value of 1.0 × 105, isolation window set
to 2.0 m/z, signal intensity threshold of 1.0 × 104, normalised
collision energy set to 28, top 5 precursors selected for frag-
mentation and dynamic exclusion set to 7 s. MS instrumental
tune parameters were set as follows: spray voltage was 3.8 kV,
sheath gas flow rate was 25 AU, auxiliary gas flow rate was
10 AU, capillary temperature was 320 °C, probe heater tem-
perature was 150 °C and S-lens RF voltage set to 60.

Degradation study

ICH stability samples were prepared based on temporal stress
(40 °C) for 0, 3 and 6 months. Each sample of each time point
was prepared and analysed in true triplicates, i.e. independent
digestions, at a concentration of 12 mg/mL per digest. Sample
consisted of a mixture of 6 mAbs produced in one of the
laboratories involved in the study.

Data processing

Peptide identification and PTM assessment were performed
using Thermo Scientific™ BioPharma Finder™ software ver-
sion 3.1, according to parameters summarised in ESM
Table S3. A target peptide workbook was created containing a
list of peptides for the most prominent PTMs including all the
detected charge states. The results were selected to include com-
ponents with up to 1 missed cleavage. Moreover, peptides con-
taining Na+/K+ adducts were excluded together with non-specif-
ic, unknown modifications and gas phase ions as these peptides
could be variable and were of too low abundance to significantly
change the final values. The target peptide workbook contains
information about the selected target peptides that will be used to
run a targeted peptide monitoring analysis by exporting the data
to a file (.wbpf) compatible with the Chromeleon™ software.
ESM Table S4 summarises parameter settings for PTM quanti-
tation using Chromeleon CDS and ESMTable S5 details theMS
component table for the studied PTMs. ICIS peak detection was
selected as the MS peak detection algorithm.

The analytical instrument method, data processing method
and reporting were first created by one laboratory and then trans-
ferred as a complete eWorkflow™ procedure to be uploaded on
the individual instruments at each site. The results obtained were
directly taken from automatic reporting in Chromeleon CDS
without any further data manipulation except for the retention
time adjustment and peak area integration review. Distribution
of experimental parameters as an eWorkflow™ supports the
application of identical parameters for data acquisition and data
analysis at each site.

Results and discussion

When performing peptide mapping analysis, the digestion
step is by far the most difficult step to reproduce between
different operators and laboratories. Without a reproducible,
and preferably automated, digestion procedure, the rest of the
peptide mapping protocol may be compromised, especially
for implementation of the workflow as routine analysis in a
QC environment. In particular, peptide mapping protocols
may influence correct evaluation of PTM values due to intro-
duction of artificially induced modifications as a result of the
numerous steps and excessive sample handling involved. For
these reasons, we decided to use temperature-induced dena-
turation with heat-stable trypsin immobilised on magnetic
beads for ease of use and simple automation.

Intact protein analysis for evaluation of digestion
completeness

In preliminary experiments, digestion completeness was in-
vestigated for three mAbs (bevacizumab, NISTmAb and
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trastuzumab) by intact protein analysis using a time course
experiment to determine the optimal length of digestion, while
minimising the risk of potential experimentally induced mod-
ifications. The breakdown and disappearance of the intact
mAb to a stable peptide pattern was monitored in the UV trace
(data relative to trastuzumab are presented in ESM Fig. S1).
The use of magnetic beads allowed the time course to be

automated with precise stop points and removal of trypsin at
the required times.

Two of the studied mAbs showed the presence of a portion
of the protein in some intact form after 60 min (data not
shown). RPLC-UV-MS analysis (ESM Fig. S2a) showed a
charge envelope under the peak eluting at retention time
7.15–7.50 min for trastuzumab, which upon deconvolution

Buffer 1, 5min

10 20 30 40 50 60 70 80 90 100
Time (min)

Buffer 1, 10min

Buffer 1, 15min

Buffer 1, 20min

Buffer 1, 25min

Buffer 1, 30min

Buffer 1, 35min

Buffer 1, 40min

Buffer 2, 5min

10 20 30 40 50 60 70 80 90 100
Time (min)

Buffer 2, 10min

Buffer 2, 15min

Buffer 2, 20min

Buffer 2, 25min

Buffer 2, 30min

Buffer 2, 40min

Buffer 2, 35min

Fig. 1 Zoomed view (5–100 min)
of stacked base peak
chromatograms (BPCs) obtained
from peptide mapping experi-
ments of trastuzumab for the di-
gestion time course study using
KingFisher™ Duo Prime system
for both buffer 1 (pH 6.5) and
buffer 2 (pH 7.2) with 5 mM
TCEP addition, and without any
further reduction or alkylation
steps
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resulted in a mass of approximately 100 kDa (data not shown).
While it was not possible to assess the exact nature of this
fragment, it was clear that digestion efficacy needed to be
boosted. TCEP, a reducing agent that is active at reduced pH
[25], was added and significantly improved the digestion ef-
ficiency and removed the need for an additional reduction step
(ESM Fig. S2b). Loss of trypsin activity was monitored with
different TCEP concentrations from 1 to 10mM. 5 mMTCEP

proved to be ideal for enhancing protein digestion by reducing
disulphide bonds, also eliminating the need for a reduction
step following automated digestion.

The digestion time and the pH of digestion buffer were also
investigated to limit the rate of deamidation [24].
Traditionally, trypsin digestion is performed at slightly basic
pH of 8 to 8.5; the buffers tested in this study had a pH of 6.5
and 7.2 at room temperature that decreased to pH ~5.9 and
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Fig. 2 Average relative abundance (n = 3) of some identified PTMs: a deamidation; b oxidation and c N-glycosylation on the Fc region for trastuzumab
time course study using buffer 1 and buffer 2 respectively
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6.5, respectively, when the temperature was elevated to 70 °C.
Reduction in pH with elevated temperature is a known phe-
nomenon [26]. The lowest pH value used was that which had
no significant effect on the activity of the trypsin used (data
not shown). LC conditions are also critical for monitoring
PTMs together with column length which would enhance res-
olution; the optimised gradient conditions are shown in the
experimental section and were selected to ensure a good sep-
aration of deamidated peptides from the unmodified forms.

Peptide mapping analysis for digestion time course
and PTM study

The time course data indicated that complete digestion was
achieved within 30 min for the mAbs used in this study.
Figure 1 shows the base peak chromatogram (BPC) obtained
from peptide mapping experiments of trastuzumab for the
digestion time course study for both buffer 1 (pH 6.5) and
buffer 2 (pH 7.2) with 5 mM TCEP addition, and without
any further reduction or alkylation steps. One hundred percent
sequence coverage was attained for all the time points, even
the earlier time points where digestion was observed to be
incomplete (ESM, Figs. S3 and S4, and Table S6).

Deamidation is the most likely modification to be affected
by the high temperature [11, 24]. As such, similar time course
experiments were used to monitor the generation of this and
other PTMs over time. Nine deamidation events were found,
all of which were at a low level (from 0.1 to 2%) apart from
HC N55 and LC N30 which were ~4% and 9% respectively,
values confirmed by previous reports [27]. Measurement at
each time point was conducted in triplicate and produced
quantitative results with good standard deviations, even low
abundant species (Fig. 2a). There was a small increase in
deamidation levels over the digestion time period spanning
from 5 to 40 min, which was more noticeable for the HC
N55 and LC N30 sites. This indicates good control of the rate

of deamidation and would allow longer digestion times if
desired. The rate of deamidation will still be dependent on
the site of the modification; however, we have not observed
any sites which posed a problem during our studies using
multiple mAb targets. Comparison between the two buffers
did not result in significant differences, except for HC N318
where low pH buffer (pH 6.5) reduced deamidation up to 80%
(Fig. 3) although levels were below 2%. Overall, buffer 2
(pH 7.2) showed slightly higher levels of deamidation for
HC N55, LC N30 and LC N137 when using a digestion time
of 30min. Buffer 1 reduced digestion-induced deamidation by
up to 20 to 80% compared to the levels observed during di-
gestion at pH 7.2 (Fig. 3 and ESM Tables S7 and S8). Levels
are also lowered when compared to previously reported data
generated using long digestion times in basic buffer [28].

Oxidation is also known to be sensitive to excessive sample
handling and suffers from low reproducibility across different
analysts and laboratories [29]. During the same time course
experiments, the level of oxidation was seen to remain stable
for those sites more prone to oxidation (M255 and M431 of
the IgG1 HC) when using buffer 1 (Fig. 2b). Using buffer 2,
oxidation levels were reduced at the start of the digestion until
the levels increased again after 30 min for the M255 site.
Those differences have been reported from other laboratories
[29, 30] and could be justified by the fact that peptides con-
taining oxidised methionine showed complex elution behav-
iour and certain variability is due to oxidation processes pro-
duced in-sample, in-column and in-source. Oxidation of
M431 remained stable along the time course study. In any
case, oxidation levels were below 1.5% values and did not
increase with digestion time.

Glycosylation was also monitored during the digestion
time course. Most abundant glycan structures were monitored
closely and the ratio of the relative abundance of each was
unchanged and very consistent during the whole time course
(Fig. 2c).

Fig. 3 Effect of buffer pH on deamidation levels: average relative
abundance (n = 3) of deamidated sites for trastuzumab 30-min digest
using buffer 2 and buffer 1
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Fig. 4 Relative levels of missed cleavage and non-specific cleavage for
NISTmAb RM 8671
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The actual values obtained for each modification found
during the digestion time course are shown in the ESM as
Table S7 and S8 as an average of triplicate sample analysis.
The relative standard deviation for peptide peak area response
for triplicate digestions is in a very close range for each mod-
ification time point, even with very low abundance emerging
peptides. Optimised digestion conditions were established for
30min at 70 °Cwith buffer 1 according to the observed results
for time course study.

Inter-laboratory peptide mapping study

To ensure the workflow could be potentially utilised in a real
QC environment with reliable method transferability, the
complete optimised protocol was performed in four different
laboratories located in four different countries with different
operators. Three of the laboratories used an automated trypsin
protocol while only one used the same protocol and magnetic
beads manually, employing manual timing and magnetic re-
moval of the beads as detailed before for peptide mapping
protocol.

Missed cleavages and non-specific cleavages were evalu-
ated on NISTmAb MS/MS experiments from 3 sites and cal-
culated as reported by Mouchahoir et al. Missed cleavages
values varied from 48.5 to 58.6% between the 3 laboratories
with excellent intra-lab RSD values (< 4.3%) and inter-lab
RSD < 10%. Relative levels of non-specific generated pep-
tides varied from 2.7 to 3.6% between labs (RSD < 15.4%).
Intra-lab precision expressed as RSD value was < 5.3%
(Fig. 4).

The data generated indicate that the digests performed in
each laboratory are practically identical including the sites of

cleavage and the relative amounts present with a few unique
peptides found at very low levels resulting frommissed cleav-
ages events, visualised using the Venn diagram [31] in Fig. 5.
There are a number of missed cleavages observed with the
applied peptide mapping protocol as shown in the sequence
coverage maps (Fig. 6a and b); however, several of these are
essential to obtain full sequence coverage. A perfect digestion
pattern with no cleavage sites missed would generate a high
number of small hydrophilic peptides that would not be
retained on the C18 column.

To keep the list for the monitoring step more concise, only
peptides with no or one missed cleavage were included.
Allowing up to only 1 missed cleavage allows these areas of
the sequence to be detected without generating an excessively
long component list (ESM Table S9). The precision of the
digestion ensures that these essential single missed cleavage
peptides are always present. The precision of the digests
across the labs and locations was excellent. From the total
generated peptides, 98 are seen in all four sites with a very
minimum number of unique peptides (Fig. 5), even for the
non-automated digestion protocols, optimised digestion is ro-
bust, easily transferable and no longer a problematic step in
the peptide mapping workflow.

Within the four laboratories, different types ofUHPLCpumps
were used (ESM Table S1). Due to this and the use of four
individual columns, one at each site, the chromatographic sepa-
ration can be expected to show some degree of variability and
thus, the data analysis and reporting method must be flexible to
take this into account. As an example, BPC peptide pattern and
the extracted ion chromatograms are shown for the peptide
DTLMISR with and without the methionine oxidation at M255
in Fig. 7. The retention times for the selected peptides vary by
almost 2 min between laboratories. Accurate identification is
based on retention time and the accurate mass of the peptide.
Due to the high mass accuracy, a wide window can be placed
on the peptide retention time to allow for retention time drift in
the method. The retention times of the peptides can also be
updated manually in the component table as was done for the
present study (ESM Table S5).

NIBRT
Ireland

TFS
UK

TFS
Switzerland

Symphogen
Denmark

Fig. 5 Venn diagram of the peptides identified from automated
NISTmAb trypsin digestions performed in four different laboratories.
Peptide lists include all the peptides within ± 5 ppm accuracy and
including up to one missed cleavage peptides

�Fig. 6 a Sequence coverage map of NISTmAb heavy chain obtained
from automated trypsin digestions performed in three different
laboratories and non-automated digestion performed in Switzerland.
The coloured bars show the identified peptides, with the numbers in the
bars reflecting the retention time. The different colours indicate the pep-
tide recovery in the MS1 scan: red > 50%, orange > 20% and yellow >
10% represent good recovery. Green, > 5%, light blue > 2% and cyan >
1% represent fair recovery and grey-white scale shows poor recoveries <
1%. b Sequence coverage map of NISTmAb light chain obtained from
automated trypsin digestions performed in three different laboratories and
non-automated digestion performed in Switzerland. The coloured bars
show the identified peptides, with the numbers in the bars reflecting the
retention time. The different colours indicate the peptide recovery in the
MS1 scan: red > 50%, orange > 20% and yellow > 10% represent good
recovery. Green, > 5%, light blue > 2% and cyan > 1% represent fair
recovery and grey-white scale shows poor recoveries < 1%
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Relative levels of each PTM were studied from each par-
ticipating laboratory to compare the quantitative results using
triplicate sample analysis. Modifications from the analysis are
shown in Table 1 with the values of each PTM monitored
from NIST mAb. Reported PTM values showed lower
amounts of sample preparation–induced modifications as well

as lower variability than other inter-laboratory studies where
NIST mAb was also used [29, 30, 32].

Analysis of variance (ANOVA) was used to evaluate intra-
and inter-laboratory precision [33, 34]. It is important to point
out that the relative levels of the studied CQAs will impact the
precision values, observing the highest variability for relative
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Fig. 6 (continued)
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abundances < 2% of deamidation levels (ESM Table S10).
Intra-laboratory precision expressed as the relative standard
deviation (RSD) was overall < 10% for most PTMs, except
for deamidation of N364 and ~N392/N387whose values were
between 42 and 20%, respectively. Inter-laboratory precision
demonstrated the highest variability for deamidation of N364,
relative abundances varied from 0.05 to 0.37%, and
deamidation of ~N392/N387 where relative abundances var-
ied from 0.29 to 0.79%. Excellent precision was observed for
oxidation, Lys loss, pyroglutamate formation and the N-gly-
cosylation levels (ESM Table S10).

The levels of deamidation and succinimide formation are all
below 2% and 3.6%, respectively, and show comparable values
at all four sites. The formation of succinimide and the conversion

to isoaspartic acid and aspartic acid is an equilibrium reaction that
will depend on environmental conditions, so some variation in
the numbers can be expected. However, in this study, the com-
parative results are still close (Fig. 8a, Table 1).

The lysine loss measurement from the C-terminus was
comparable between laboratories from 87 to 90% (Fig. 8b,
Table 1). Inter-laboratory precision was excellent giving high
confidence in the results (RSD < 3%). The M255 oxidation
(Fig. 8c, Table 1) is very low yet only varied between 0.8 and
1.2% between laboratories with a much tighter tolerance with-
in the triplicate injections of the same laboratory (RSD <
3.5%). N-terminal glutamine (Gln) to pyroglutamate
(PyroGlu) was also monitored in this study and was shown
to be at completion in all four laboratories (Fig. 8d, Table 1).

XIC: 418.220 (z=2), 835.433 (z=1)
XIC: 426.218 (z=2), 851.429 (z=1)NL: 1.50E8

NL: 2.41E6

DTLM255ISR
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NL: 1.31E9
NL: 2.25E7

28.35min
33.54min

NL: 1.64E9
NL: 1.81E7

29.16min
34.53min

NL: 5.78E8
NL: 8.68E6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Time (min)
Fig. 7 BPC (black trace) and XICs for peptide DTLM255ISR non-modified (blue trace) and oxidised (orange trace) obtained in the four different
laboratories
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As expected, glycosylation profile proved to be very stable
and consistent across sites, as confirmed by the laboratory
comparison results shown in Fig. 9. All four laboratories
returned similar N-glycosylation data with minimal variability
for most of the most abundant glycoforms (intra-lab precision
< 10% and inter-lab precision from 9.9 to 67.2%). Reported
N-glycans were over 1% of relative levels, and no sialylated
glycan structure is shown as they were detected at low levels
(< 1%), which is in accordance with reported values for
NISTmAb [32].

Sequence coverage map comparison from each individual in-
strument is shown in Fig. 6a and b for heavy and light chains
respectively. Full sequence coverage is achieved for NISTmAb

heavy and light chains, except for two of the laboratories where
> 98.5% was achieved for HC. In those instances, the missing
peptide corresponded to 1:A341-R347 (AKGQPR)which can also
be detected in peptides containing 2 missed cleavage events
(TISKAKGQPR and AKGQPREPQVYTLPPSR).

Inter-laboratory stability study of degraded mAb
mixture

The developed peptide mapping protocol was then applied to
investigate the stability of targeted CQAs present on a mAb
mixture under forced degradation conditions. Two different lab-
oratories (site A and site B) received the same sampleswhich had

Table 1 Summary of PTMs identified and quantified for NIST mAb in the four different laboratories using peptide monitoring method and compliant
CDS data processing

Modification Sequence Relative abundance (n = 3)

Ireland Denmark UK Switzerland

HC N328+Deam VSNKALPAPIEK 0.30 0.50 0.33 0.50
CKVSNK

VSNK

HC N364+Deam NQVSLTCLVK 0.37 0.20 0.29 0.05
EEMTKNQVSLTCLVK

HC~N392/N387+
Deam

GFYPSDIAVEWESNGQPENNYK 0.79 0.21 0.24 0.64

HC~N392/N387+Succ GFYPSDIAVEWESNGQPENNYK 2.06 2.27 2.73 2.60

HC N318+Succ VVSVLTVLHQDWLNGK 2.05 2.61 2.66 2.25
VVSVLTVLHQDWLNGKEYK

HC D283+Succ FNWYVDGVEVHNAK 2.18 3.40 1.56 3.56
TPEVTCVVVDVSHEDPEVKFNW

YVDGVEVHNAK

HC M255+Oxid DTLMISR 1.26 1.29 1.05 0.92

HC K450 Lys loss SLSLSPGK 87.01 88.49 90.73 88.79
WQQGNVFSCSVMHEALHNHYT

QKSLSLSPGK

HC Q1+Gln->PyroGlu QVTLR 99.29 99.31 99.75 99.32

HC N300+M5 EEQYNSTYR 1.71 1.29 1.10 1.22
TKPREEQYNSTYR

HC N300+A1G0F EEQYNSTYR 6.05 5.04 11.26 10.95
TKPREEQYNSTYR

HC N300+A2G0F EEQYNSTYR 41.13 40.14 37.36 37.05
TKPREEQYNSTYR

HC N300+A1G1F EEQYNSTYR 4.06 3.68 5.92 6.13
TKPREEQYNSTYR

HC N300+A2G1F EEQYNSTYR 36.11 38.65 33.86 34.89
TKPREEQYNSTYR

HC N300+A2G2F EEQYNSTYR 6.92 8.49 7.02 7.31
TKPREEQYNSTYR

HC N300+A2Ga1G1F EEQYNSTYR 0.91 1.42 1.09 1.21
TKPREEQYNSTYR

HC N300+unglycos EEQYNSTYR 3.06 1.29 2.39 1.25
TKPREEQYNSTYR

6843Inter-laboratory study of an optimised peptide mapping workflow using automated trypsin digestion for...



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

HC N328
Deam

HC N364
Deam

HC
~N392/N387

Deam

HC
~N392/N387

Succ

HC N318
Succ

HC D283
Succ

Deamidation/Succinimide formationa

0.0

20.0

40.0

60.0

80.0

100.0

HC K450 Lys Loss

Lys Lossb

0.0

20.0

40.0

60.0

80.0

100.0

HC Q1 Pyro-Glu

Pyroglutaminationd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

HC M255 Oxid

c Oxidation

A
ve

ra
ge

 R
el

at
iv

e 
A

bu
nd

an
ce

Fig. 8 Comparison of the qualitative results for PTM values from 4 different laboratories for the analysis of NIST mAb digestions: deamidation/
succinimide formation (a); Lys loss (b); oxidation (c) and pyroglutamination (d) of NIST mAb

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

A
ve

ra
ge

 R
el

at
iv

e 
A

bu
nd

an
ce

N-Glycosylation

Fig. 9 N-Glycosylation of NIST
mAb over four laboratories. The
combined area counts from
EEQYN300STYR and the single
missed cleavage product
TKPREEQYN300STYR were
used in the final evaluated result
shown

6844 Millán-Martín S. et al.



Ta
bl
e
2

Su
m
m
ar
y
of

P
T
M
s
id
en
tif
ie
d
an
d
qu
an
tif
ie
d
fo
r
th
e
st
ab
ili
ty

st
ud
y
of

m
A
b
m
ix
tu
re

in
tw
o
di
ff
er
en
tl
ab
or
at
or
ie
s
us
in
g
pe
pt
id
e
m
on
ito

ri
ng

an
d
co
m
pl
ia
nt

C
D
S
da
ta
pr
oc
es
si
ng

Se
qu
en
ce

P
ro
te
in

A
vg

re
l.
ab
un
da
nc
e
40

°C
_0

m
on
th
s

(n
=
3)

A
vg

re
l.
ab
un
da
nc
e
40

°C
_3

m
on
th
s

(n
=
3)

A
vg

re
l.
ab
un
da
nc
e
40

°C
_6

m
on
th
s

(n
=
3)

Si
te
A

S
ite

B
S
ite

A
S
ite

B
S
ite

A
Si
te
B

K
G
N
Y
G
N
Y
G
K

m
A
b4
_H

C
N
10
1+

de
am

id
at
io
n

6.
02

(1
.8
1)

4.
81

(5
.5
7)

18
.8
1
(3
.3
3)

16
.0
4
(5
.1
2)

21
.6
1
(1
.3
7)

24
.2
3
(3
.3
5)

A
SQ

D
IN

N
Y
L
N
W
Y
Q
Q
K
PG

K
m
A
b6
_L

C
~N

30
+
de
am

id
at
io
n

1.
27

(7
.5
4)

0.
46

(8
.0
8)

28
.0
8
(1
.1
4)

25
.5
2
(0
.6
7)

44
.6
8
(1
.4
0)

43
.6
5
(0
.1
6)

G
FY

P
SD

IA
V
E
W
E
S
N
G
Q
PE

N
N
Y
K

m
A
b1
_H

C
~N

38
9+

de
am

id
at
io
n

1.
66

(6
.3
3)

0.
19

(7
.4
1)

2.
54

(7
.9
1)

0.
44

(5
.7
8)

3.
28

(8
.3
3)

0.
69

(3
.7
0)

G
FY

PS
D
IA

V
E
W
E
SN

G
Q
PE

N
N
Y
K

m
A
b1
_H

C
~N

38
4+

N
H
3
lo
ss

1.
70

(5
.4
8)

0.
33

(3
.9
9)

1.
99

(3
.8
4)

0.
34

(4
.2
6)

1.
98

(2
.3
0)

0.
30

(5
.5
7)

V
V
SV

L
T
V
L
H
Q
D
W
L
N
G
K

m
A
b1
_H

C
N
31
5+

de
am

id
at
io
n

0.
96

(0
.5
2)

0.
65

(6
.2
9)

1.
19

(4
.2
5)

0.
70

(3
.9
9)

1.
48

(1
.8
8)

0.
61

(3
.7
9)

V
V
SV

L
T
V
L
H
Q
D
W
L
N
G
K

m
A
b1
_H

C
N
31
5+

N
H
3
lo
ss

3.
89

(4
.6
9)

2.
67

(4
.2
8)

4.
31

(3
.4
3)

2.
68

(4
.0
9)

4.
59

(6
.2
9)

2.
47

(2
.9
8)

A
SQ

D
V
D
T
A
V
A
W
Y
Q
Q
K
PG

K
m
A
b2
_L

C
~D

30
+
is
om

er
is
at
io
n

3.
42

(3
.9
6)

2.
33

(5
.6
3)

47
.7
5
(3
.6
3)

40
.6
6
(1
.0
8)

45
.9
2
(1
.4
3)

A
SQ

D
V
D
T
A
V
A
W
Y
Q
Q
K
PG

K
m
A
b2
_L

C
~D

30
+
H
2O

lo
ss

0.
16

(5
.7
9)

0.
13

(9
.8
6)

2.
14

(3
.5
0)

2.
52

(2
.8
1)

2.
03

(4
.3
8)

2.
83

(0
.4
8)

FN
W
Y
V
D
G
V
E
V
H
N
A
K

m
A
b1
_H

C
D
28
0+

is
om

er
is
at
io
n
0.
73

(6
.7
1)

0.
57

(3
.3
2)

6.
06

(2
.1
1)

4.
71

(3
.7
1)

9.
59

(2
.8
6)

7.
74

(2
.5
5)

FN
W
Y
V
D
G
V
E
V
H
N
A
K

m
A
b1
_H

C
D
28
0+

H
2O

lo
ss

0.
06

(3
.6
3)

0.
22

(2
.9
7)

0.
17

(4
.7
1)

0.
37

(1
.1
1)

0.
18

(2
.0
0)

0.
35

(3
.1
2)

D
T
L
M
IS
R

m
A
b1
_H

C
M
25
2+

ox
id
at
io
n

3.
40

(2
.2
5)

2.
81

(5
.0
4)

5.
93

(3
.1
9)

4.
94

(2
.1
9)

5.
82

(2
.2
0)

5.
59

(1
.8
4)

D
IQ

M
T
Q
S
P
SS

L
SA

S
V
G
D
R

m
A
b3
_L

C
M
4+

ox
id
at
io
n

1.
79

(7
.2
3)

0.
06

(1
9.
61
)

2.
46

(6
.8
2)

0.
09

(5
.8
9)

1.
77

(3
.7
5)

0.
09

(8
.6
0)

L
L
M
Y
IS
R

m
A
b3
_L

C
M
48
+
ox
id
at
io
n

0.
45

(7
.9
3)

–
0.
59

(6
.1
2)

–
0.
58
2
(1
.7
0)

–

W
Q
Q
G
N
V
FS

C
SV

M
H
E
A
L
H
N
H
Y
T
Q
K

m
A
b1
_H

C
M
42
8+

ox
id
at
io
n

1.
87

(6
.0
4)

1.
16

(6
.9
0)

2.
35

(4
.6
9)

1.
91

(3
.6
8)

2.
38

(1
2.
20
)

2.
27

(3
.2
1)

L
L
IY

W
A
ST

R
m
A
b2
_L

C
W
50
+
ox
id
at
io
n

0.
18

(2
.8
0

0.
24

(5
.3
7)

0.
55

(0
.3
8)

0.
70

(8
.5
8)

0.
87

(7
.2
3)

1.
01

(4
.9
3)

D
V
V
M
T
Q
SP

L
SL

PV
T
L
G
Q
PA

SI
SC

R
m
A
b1
_L

C
M
4+

ox
id
at
io
n

1.
85

(2
.5
1)

0.
56

(4
.5
3)

5.
04

(1
.9
6)

3.
26

(1
.5
6)

5.
20

(9
.0
2)

3.
63

(1
.1
5)

A
SG

Y
T
FT

SY
W
M
Q
W
V
R

m
A
b2
_H

C
W
33
+
ox
ol
ac
to
ne

0.
20

(3
.9
4)

0.
35

(4
.0
6)

3.
97

(6
.3
3)

6.
89

(2
0.
13
)

6.
18

(0
.6
4)

12
.1
7
(5
.5
4)

6845Inter-laboratory study of an optimised peptide mapping workflow using automated trypsin digestion for...



6.
02

18
.8

1

21
.6

1

1.
27

28
.0

8

44
.6

8

1.
66 2.
54

3.
28

1.
70

1.
99

1.
98

0.
96

1.
19

1.
483.

90

4.
31

4.
59

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

A
V

E
R

A
G

E
 R

E
L

A
T

IV
E

 A
B

U
N

D
A

N
C

E

DEAM IDA TION & N H3  LO SS
mAb4_HC N101+Deam mAb6_LC ~N30+Deam

mAb1_HC ~N389+Deam mAb1_HC ~N384+NH3 Loss

mAb1_HC N315+Deam mAb1_HC N315+NH3 Loss

a

4.
81

16
.0

4 24
.2

3

0.
46

25
.5

2

43
.6

5

0.
19

0.
44

0.
69

0.
33

0.
34

0.
30

0.
65

0.
70

0.
612.

67

2.
68

2.
47

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

DEAM IDA TION & N H3  LO SS 
mAb4_HC N101+Deam mAb6_LC ~N30+Deam
mAb1_HC ~N389+Deam mAb1_HC ~N384+NH3 Loss
mAb1_HC N315+Deam mAb1_HC N315+NH3 Loss

SITE A SITE B

b

3.
42

47
.7

5

45
.9

2

0.
16 2.
14

2.
03

0.
73 6.

06 9.
59

0.
06

0.
17

0.
18

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

A
V

E
R

A
G

E
 R

E
L

A
T

IV
E

 A
B

U
N

D
A

N
C

E

ISOM ER IZATIO N & H2 O LOSS
mAb2_LC ~D30+Isom mAb2_LC ~D30+H2O Loss

mAb1_HC D280+Isom mAb1_HC D280+H2O Loss

2.
32

40
.6

6

38
.9

8

0.
13 2.

52

2.
83

0.
58 4.

71 7.
74

0.
22

0.
37

0.
35

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

ISOM ER IZATIO N & H2 O LOSS
mAb2_LC ~D30+Isom mAb2_LC ~D30+H2O Loss

mAb1_HC D280+Isom mAb1_HC D280+H2O Loss

3.
40

5.
93

5.
82

1.
79 2.

46

1.
77

0.
45 0.
59

0.
58

1.
87 2.

35 2.
38

0.
18 0.

55 0.
87

1.
85

5.
04 5.

20

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

A
V

E
R

A
G

E
 R

E
L

A
T

IV
E

 A
B

U
N

D
A

N
C

E

OX ID ATION
mAb1_HC M252+Oxid mAb3_LC M4+Oxid

mAb3_LC M48+Oxid mAb1_HC M428+Oxid

mAb2_LC W50+Oxid mAb1_LC M4+Oxid

2.
81

4.
95 5.

59

0.
06

0.
09

0.
09

0.
00

0

0.
00

0

0.
00

01.
16 1.

91 2.
27

0.
24 0.

70 1.
01

0.
56

3.
26 3.

63

4 0 C _ 0 M _ AV G 4 0 C _ 3 M _ AV G 4 0 C _ 6 M _ AV G

OXID ATION
mAb1_HC M252+Oxid mAb3_LC M4+Oxid
mAb3_LC M48+Oxid mAb1_HC M428+Oxid
mAb2_LC W50+Oxid mAb1_LC M4+Oxid

c

Fig. 10 Degradation study using the complete compliant peptide mappingworkflow. Comparison of the qualitative results for targeted PTM values from
2 different laboratories for the analysis of thermal stressed samples. Deamidation/NH3 loss (a); isomerisation/H2O loss (b); oxidation (c)
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been left to degrade at 40 °C for several months. Chosen modi-
fications were tracked in each sample using the same experimen-
tal procedures as previously described. Table 2 shows the com-
parative results from the two individual laboratories for the
targeted attributes. Values in parenthesis show the RSD of the
triplicate analysis for each of the studied CQAs, showing excel-
lent precision for each laboratory with overall RSD < 10%.

Deamidation levels rose throughout the incubation period
at 40 °C (Fig. 10a) for those asparagine (N) residues more
prone to deamidation, i.e. the LC N30 and HC N101 sites.
Aspartic acid isomerisation also increased for LC D30 after
3 months and then maintained stable at 6 months (Fig. 10b).
Oxidation levels also tended to slightly increase over time and
maintained stable at 6 months (Fig. 10c), especially for HC
M252 and LC M4 sites for the studied mAb mixture.

Conclusions

We demonstrated a complete peptide monitoring workflow
including the digestion, transferred seamlessly across different
laboratories. While the aim of this work is to prove workflow
robustness and accuracy, this could also be considered as a
preliminary study to the implementation of a MAM approach
in a QC lab. The results suggest that it is indeed possible to
deliver a method to QC environments in various geographies
that brings the benefit of HRAMMS data to the characterisa-
tion of therapeutic monoclonal antibodies.

A simple digestion protocol has been developed and tested
which is easily automated using magnetic beads enabling oper-
ators to generate a predictable, precise and robust digestion each
time irrespective of the user or location. Each stage of themethod
has been optimised for ease of use as well as functionality, in-
cluding the use of compliant automated control and data process-
ing which would otherwise be prone to individual interpretation.
Instrument control and reporting was secured in a Chromeleon
eWorkflow which was transferred to each laboratory. The auto-
mated digestion method described here has been tested using a
multitude ofmAb samples to ensure global applicabilitywith fast
and easy implementation and provides very high precision of
digestion. The digest occurs in a controlled and precise manner
and allows robust tracking of PTMs. The target peptides included
in the component table were selected to ensure correct reproduc-
ible results of all the attributes measured while keeping the com-
ponent list as simple as possible. The method was transferred
between different laboratories to show excellent precision of
the digestion and corresponding results. The chosen monitored
PTMs were shown to be easily tracked in a forced degradation
study with the same inter-laboratory precision.
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