Skip to main content
Log in

Are (fluorinated) ionic liquids relevant environmental contaminants? High-resolution mass spectrometric screening for per- and polyfluoroalkyl substances in environmental water samples led to the detection of a fluorinated ionic liquid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fragmentation flagging (FF), a high-resolution mass spectrometric screening variant that utilizes intentionally produced indicative in-source fragments, was used to screen for per- and polyfluoroalkyl substances (PFASs) in surface waters. Besides expected legacy PFAS, FF enabled the detection of some rarely investigated representatives, such as trifluoromethanesulfonic acid (TFMSA). Additionally, a novel PFAS was detected and identified as tris(pentafluoroethyl)trifluorophosphate (FAP) via MS/MS experiments and confirmed with a reference standard. The first monitoring of FAP in 20 different surface waters revealed a localized contamination affecting three connected rivers with peak concentrations of up to 3.4 μg/L. To the best of our knowledge, this is the first time FAP has been detected in environmental water samples. The detection of FAP, which is exclusively used as a constituent of ionic liquids (ILs), raises questions about the environmental relevance of ILs in general and particularly fluorinated ILs. A following comprehensive literature search revealed that ILs have already been intensely discussed as potential environmental contaminants, but findings reporting ILs in environmental (water) samples are almost non-existent. Furthermore, we address the relevance of ILs in the context of persistent, mobile, and toxic chemicals, which are at present gaining increasing scientific and regulatory interest, and as part of the PFAS “dark matter” that represents the gap between the amount of fluorine originating from known PFAS and the total adsorbable organically bound fluorine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kissa E. Fluorinated surfactants and repellents. 2nd ed. Basel: Marcel Dekker Inc.; 2001.

    Google Scholar 

  2. Backe WJ, Day TC, Field JA. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol. 2013;47(10):5226–34. https://doi.org/10.1021/es3034999.

    Article  CAS  PubMed  Google Scholar 

  3. Rotander A, Kärrman A, Toms LM, Kay M, Müller JF, Gomez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ Sci Technol. 2015;49(4):2434–42. https://doi.org/10.1021/es503653n.

    Article  CAS  PubMed  Google Scholar 

  4. Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res. 2015;22:14546–59. https://doi.org/10.1007/s11356-015-4202-7.

    Article  CAS  Google Scholar 

  5. Becanova J, Melymuk L, Vojta S, Komprdova K, Klanova J. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere. 2016;164:322–9. https://doi.org/10.1016/j.chemosphere.2016.08.112.

    Article  CAS  PubMed  Google Scholar 

  6. Ahrens L. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit. 2011;13(1):20–31. https://doi.org/10.1039/c0em00373e.

    Article  CAS  PubMed  Google Scholar 

  7. Cai M, Yang H, Xie Z, Zhao Z, Wang F, Lu Z, et al. Per- and polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes Peninsula, King George Island, Antarctica. J Hazard Mater. 2012;209-210:335–42. https://doi.org/10.1016/j.jhazmat.2012.01.030.

    Article  CAS  PubMed  Google Scholar 

  8. Taniyasu S, Yamashita N, Moon HB, Kwok KY, Lam PK, Horii Y, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances? Environ Int. 2013;55:25–32. https://doi.org/10.1016/j.envint.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  9. Franco A, Hauschild M, Jolliet O, Trapp S. Atmospheric fate of non-volatile and ionizable compounds. Chemosphere. 2011;85(8):1353–9. https://doi.org/10.1016/j.chemosphere.2011.07.056.

    Article  CAS  PubMed  Google Scholar 

  10. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3(10):344–50. https://doi.org/10.1021/acs.estlett.6b00260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rahman MF, Peldszus S, Anderson WB. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 2014;50:318–40. https://doi.org/10.1016/j.watres.2013.10.045.

    Article  CAS  PubMed  Google Scholar 

  12. Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol. 2001;35:1339–42.

    Article  CAS  Google Scholar 

  13. Dietz R, Bossi R, Rigét FF, Sonne C, Born EW. Increasing perfluoroalkyl contaminants in East Greenland polar bear (Ursus maritimus): a new toxic threat to the Arctic bears. Environ Sci Technol. 2008;42:2701–7.

    Article  CAS  Google Scholar 

  14. Valsecchi S, Rusconi M, Polesello S. Determination of perfluorinated compounds in aquatic organisms: a review. Anal Bioanal Chem. 2013;405(1):143–57. https://doi.org/10.1007/s00216-012-6492-7.

    Article  CAS  PubMed  Google Scholar 

  15. Shi Y, Vestergren R, Nost TH, Zhou Z, Cai Y. Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in Crucian carp. Environ Sci Technol. 2018;52(8):4592–600. https://doi.org/10.1021/acs.est.7b06128.

    Article  CAS  PubMed  Google Scholar 

  16. Felizeter S, McLachlan MS, de Voogt P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ Sci Technol. 2012;46(21):11735–43. https://doi.org/10.1021/es302398u.

    Article  CAS  PubMed  Google Scholar 

  17. Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environ Res. 2019;169:326–41. https://doi.org/10.1016/j.envres.2018.10.023.

    Article  CAS  PubMed  Google Scholar 

  18. Fromme H, Wockner M, Roscher E, Volkel W. ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. Int J Hyg Environ Health. 2017;220:455–60. https://doi.org/10.1016/j.ijheh.2016.12.014.

    Article  CAS  PubMed  Google Scholar 

  19. Ballesteros V, Costa O, Iniguez C, Fletcher T, Ballester F, Lopez-Espinosa MJ. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: a systematic review of epidemiologic studies. Environ Int. 2017;99:15–28. https://doi.org/10.1016/j.envint.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Vestergren R, Xu L, Zhou Z, Li C, Liang Y, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (cl-PFESAs). Environ Sci Technol. 2016;50(5):2396–404. https://doi.org/10.1021/acs.est.5b05849.

    Article  CAS  PubMed  Google Scholar 

  21. Domingo JL. Health risks of dietary exposure to perfluorinated compounds. Environ Int. 2012;40:187–95. https://doi.org/10.1016/j.envint.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  22. Ritscher A, Wang Z, Scheringer M, Boucher JM, Ahrens L, Berger U, et al. Zurich statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environ Health Perspect. 2018;126(8):84502. https://doi.org/10.1289/EHP4158.

    Article  CAS  PubMed  Google Scholar 

  23. Janousek RM, Mayer J, Knepper TP. Is the phase-out of long-chain PFASs measurable as fingerprint in a defined area? Comparison of global PFAS concentrations and a monitoring study performed in Hesse, Germany from 2014 to 2018. TrAC-Trend Anal Chem. 2019. https://doi.org/10.1016/j.trac.2019.01.017.

  24. Willach S, Brauch HJ, Lange FT. Contribution of selected perfluoroalkyl and polyfluoroalkyl substances to the adsorbable organically bound fluorine in German rivers and in a highly contaminated groundwater. Chemosphere. 2016;145:342–50. https://doi.org/10.1016/j.chemosphere.2015.11.113.

    Article  CAS  PubMed  Google Scholar 

  25. Köke N, Zahn D, Knepper TP, Frömel T. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices. Anal Bioanal Chem. 2018;410(9):2403–11. https://doi.org/10.1007/s00216-018-0921-1.

    Article  CAS  PubMed  Google Scholar 

  26. Neumann M, Schliebner I. UBA Texte 127/2019: Protecting the sources of our drinking water - the criteria for identifying persistent, mobile, and toxic (PMT) substances and very persistent, and very mobile (vPvM) substances under EU REACH Regulation (EC) No 1907/2006. Dessau-Roßlau: German Environmental Agency (UBA); 2019.

    Google Scholar 

  27. Reemtsma T, Berger U, Arp HP, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and mobile organic compounds-water contaminants that slip through. Environ Sci Technol. 2016;50(19):10308–15. https://doi.org/10.1021/acs.est.6b03338.

    Article  CAS  PubMed  Google Scholar 

  28. Sun M, Arevalo E, Strynar M, Lindstrom A, Richardson M, Kearns B, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the cape fear river watershed of North Carolina. Environ Sci Technol Lett. 2016;3(12):415–9. https://doi.org/10.1021/acs.estlett.6b00398.

    Article  CAS  Google Scholar 

  29. Bayerisches Landesamt für Umwelt; PFC-Belastung in Oberflächengewässern. https://www.lfu.bayern.de/analytik_stoffe/per_polyfluorierte_chemikalien/pfc_belastung_oberflaechengewaesser/index.htm. Accessed 13.02.2020.

  30. Zahn D, Frömel T, Knepper TP. Halogenated methanesulfonic acids: a new class of organic micropollutants in the water cycle. Water Res. 2016;101:292–9. https://doi.org/10.1016/j.watres.2016.05.082.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao F, Golovko SA, Golovko MY. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC-TOF-MS(E) high-resolution parent ion search. Anal Chim Acta. 2017;988:41–9. https://doi.org/10.1016/j.aca.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  32. Newton S, McMahen R, Stoeckel JA, Chislock M, Lindstrom A, Strynar M. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environ Sci Technol. 2017;51(3):1544–52. https://doi.org/10.1021/acs.est.6b05330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zabaleta I, Negreira N, Bizkarguenaga E, Prieto A, Covaci A, Zuloaga O. Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags. Food Chem. 2017;230:497–506. https://doi.org/10.1016/j.foodchem.2017.03.074.

    Article  CAS  PubMed  Google Scholar 

  34. D’Agostino LA, Mabury SA. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 2014;48(1):121–9. https://doi.org/10.1021/es403729e.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Pereira Ados S, Martin JW. Discovery of C5-C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging. Anal Chem. 2015;87(8):4260–8. https://doi.org/10.1021/acs.analchem.5b00039.

    Article  CAS  PubMed  Google Scholar 

  36. Lin Y, Ruan T, Liu A, Jiang G. Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities. Environ Sci Technol. 2017;51(20):11588–96. https://doi.org/10.1021/acs.est.7b02961.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Yu N, Zhu X, Guo H, Jiang J, Wang X, et al. Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park. Environ Sci Technol. 2018;52(19):11007–16. https://doi.org/10.1021/acs.est.8b03030.

    Article  CAS  PubMed  Google Scholar 

  38. Gebbink WA, van Asseldonk L, van Leeuwen SPJ. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ Sci Technol. 2017;51(19):11057–65. https://doi.org/10.1021/acs.est.7b02488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strynar M, Dagnino S, McMahen R, Liang S, Lindstrom A, Andersen E, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environ Sci Technol. 2015;49(19):11622–30. https://doi.org/10.1021/acs.est.5b01215.

    Article  CAS  PubMed  Google Scholar 

  40. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 2017;51(4):2047–57. https://doi.org/10.1021/acs.est.6b05843.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Richardson ES, Derocher AE, Lunn NJ, Lehmler H-J, Li X, et al. Hundreds of unrecognized halogenated contaminants discovered in polar bear serum. Angew Chem Int Ed. 2018;57:16401–6.

    Article  CAS  Google Scholar 

  42. Liu Y, D’Agostino LA, Qu G, Jiang G, Martin JW. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC-Trend Anal Chem. 2019;121:115420. https://doi.org/10.1016/j.trac.2019.02.021.

    Article  CAS  Google Scholar 

  43. Ruan T, Jiang G. Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. TrAC-Trend Anal Chem. 2017;95:122–31. https://doi.org/10.1016/j.trac.2017.07.024.

    Article  CAS  Google Scholar 

  44. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8. https://doi.org/10.1021/es5002105.

    Article  CAS  PubMed  Google Scholar 

  45. Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90. https://doi.org/10.1016/j.watres.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  46. Montes R, Rodil R, Cela R, Quintana JB. Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography-tandem mass spectrometry. Anal Chem. 2019;91(8):5176–83. https://doi.org/10.1021/acs.analchem.8b05792.

    Article  CAS  PubMed  Google Scholar 

  47. Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H. New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J Fluor Chem. 2005;126(8):1150–9. https://doi.org/10.1016/j.jfluchem.2005.04.017.

    Article  CAS  Google Scholar 

  48. Ignat’ev NV, Welz-Biermann U. New hydrophobic ionic liquids (molten salts) with highly fluorinated anions: synthesis and properties. Proc Electrochem Soc. 2004;2004-24:353–8. https://doi.org/10.1149/200424.0353pv.

    Article  Google Scholar 

  49. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37(1):123–50. https://doi.org/10.1039/b006677j.

    Article  CAS  PubMed  Google Scholar 

  50. Pandey GP, Hashmi SA. Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes. Electrochim Acta. 2013;105:333–41. https://doi.org/10.1016/j.electacta.2013.05.018.

    Article  CAS  Google Scholar 

  51. Yao C, Pitner WR, Anderson JL. Ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate anion: a new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction. Anal Chem. 2009;81:5054–63.

    Article  CAS  Google Scholar 

  52. Weyhing-Zerrer N, Kalb R, Ossmer R, Rossmanith P, Mester P. Evidence of a reverse side-chain effect of tris(pentafluoroethyl)trifluorophosphate [FAP]-based ionic liquids against pathogenic bacteria. Ecotoxicol Environ Saf. 2018;148:467–72. https://doi.org/10.1016/j.ecoenv.2017.10.059.

    Article  CAS  PubMed  Google Scholar 

  53. Stepniak I, Andrzejewska E, Dembna A, Galinski M. Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochim Acta. 2014;121:27–33. https://doi.org/10.1016/j.electacta.2013.12.121.

    Article  CAS  Google Scholar 

  54. Wölfert A, Knösche C, Pallasch H-J, Sesing M, Stroefer E, Polka H-M et al. Verfahren zur Trennung von Chlorwasserstoff und Phosgen DE102004044592, 2004

  55. Pereiro AB, Araújo JMM, Martinho S, Alves F, Nunes S, Matias A, et al. Fluorinated ionic liquids: properties and applications. ACS Sustain Chem Eng. 2013;1(4):427–39. https://doi.org/10.1021/sc300163n.

    Article  CAS  Google Scholar 

  56. Jalili AH, Shokouhi M, Maurer G, Hosseini-Jenab M. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate. J Chem Thermodyn. 2013;67:55–62. https://doi.org/10.1016/j.jct.2013.07.022.

    Article  CAS  Google Scholar 

  57. Blanco D, González R, Hernández Battez A, Viesca JL, Fernández-González A. Use of ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate as base oil additive in the lubrication of TiN PVD coating. Tribol Int. 2011;44(5):645–50. https://doi.org/10.1016/j.triboint.2011.01.004.

    Article  CAS  Google Scholar 

  58. Amde M, Liu JF, Pang L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol. 2015;49(21):12611–27. https://doi.org/10.1021/acs.est.5b03123.

    Article  CAS  PubMed  Google Scholar 

  59. Cvjetko Bubalo M, Hanousek K, Radosevic K, Gaurina Srcek V, Jakovljevic T, Radojcic Redovnikovic I. Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol Environ Saf. 2014;101:116–23. https://doi.org/10.1016/j.ecoenv.2013.12.022.

    Article  CAS  PubMed  Google Scholar 

  60. Ventura SP, Marques CS, Rosatella AA, Afonso CA, Goncalves F, Coutinho JA. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf. 2012;76(2):162–8. https://doi.org/10.1016/j.ecoenv.2011.10.006.

    Article  CAS  PubMed  Google Scholar 

  61. Mrozik W, Kotlowska A, Kamysz W, Stepnowski P. Sorption of ionic liquids onto soils: experimental and chemometric studies. Chemosphere. 2012;88(10):1202–7. https://doi.org/10.1016/j.chemosphere.2012.03.070.

    Article  CAS  PubMed  Google Scholar 

  62. Pham TP, Cho CW, Yun YS. Environmental fate and toxicity of ionic liquids: a review. Water Res. 2010;44(2):352–72. https://doi.org/10.1016/j.watres.2009.09.030.

    Article  CAS  PubMed  Google Scholar 

  63. Richardson SD, Ternes TA. Water analysis: emerging contaminants and current issues. Anal Chem. 2011;83(12):4614–48. https://doi.org/10.1021/ac200915r.

    Article  CAS  PubMed  Google Scholar 

  64. Peric B, Sierra J, Marti E, Cruanas R, Garau MA. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids. Chemosphere. 2014;108:418–25. https://doi.org/10.1016/j.chemosphere.2014.02.043.

    Article  CAS  PubMed  Google Scholar 

  65. Li XY, Miao XQ, Zhang LF, Wang JJ. Immunotoxicity of 1-methyl-3-octylimidazolium bromide on brocarded carp (Cyprinus carpio L.). Ecotoxicol Environ Saf. 2012;75(1):180–6. https://doi.org/10.1016/j.ecoenv.2011.08.027.

    Article  CAS  PubMed  Google Scholar 

  66. Li XY, Jing CQ, Zang XY, Yang S, Wang JJ. Toxic cytological alteration and mitochondrial dysfunction in PC12 cells induced by 1-octyl-3-methylimidazolium chloride. Toxicol in Vitro. 2012;26(7):1087–92. https://doi.org/10.1016/j.tiv.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  67. Liu H, Zhang S, Hu X, Chen C. Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings. Environ Pollut. 2013;181:242–9. https://doi.org/10.1016/j.envpol.2013.06.007.

    Article  CAS  PubMed  Google Scholar 

  68. Costa SP, Pinto PC, Saraiva ML, Rocha FR, Santos JR, Monteiro RT. The aquatic impact of ionic liquids on freshwater organisms. Chemosphere. 2015;139:288–94. https://doi.org/10.1016/j.chemosphere.2015.05.100.

    Article  CAS  PubMed  Google Scholar 

  69. Ventura SP, e Silva FA, Goncalves AM, Pereira JL, Goncalves F, Coutinho JA. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf. 2014;102:48–54. https://doi.org/10.1016/j.ecoenv.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  70. Wang SH, Huang PP, Li XY, Wang CY, Zhang WH, Wang JJ. Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environ Toxicol. 2010;25(3):243–50. https://doi.org/10.1002/tox.20496.

    Article  CAS  PubMed  Google Scholar 

  71. Koutinas M, Vasquez MI, Nicolaou E, Pashali P, Kyriakou E, Loizou E, et al. Biodegradation and toxicity of emerging contaminants: isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation. J Hazard Mater. 2019;365:88–96. https://doi.org/10.1016/j.jhazmat.2018.10.059.

    Article  CAS  PubMed  Google Scholar 

  72. Liwarska-Bizukojc E, Gendaszewska D. Removal of imidazolium ionic liquids by microbial associations: study of the biodegradability and kinetics. J Biosci Bioeng. 2013;115(1):71–5. https://doi.org/10.1016/j.jbiosc.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  73. Qi X, Li L, Wang Y, Liu N, Smith RL. Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material. Chem Eng J. 2014;256:407–14. https://doi.org/10.1016/j.cej.2014.07.020.

    Article  CAS  Google Scholar 

  74. Bäuerlein PS, Ter Laak TL, Hofman-Caris RC, de Voogt P, Droge ST. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes. Water Res. 2012;46(16):5009–18. https://doi.org/10.1016/j.watres.2012.06.048.

    Article  CAS  PubMed  Google Scholar 

  75. Farooq A, Reinert L, Levêque J-M, Papaiconomou N, Irfan N, Duclaux L. Adsorption of ionic liquids onto activated carbons: effect of pH and temperature. Micropor Mesopor Mater. 2012;158:55–63. https://doi.org/10.1016/j.micromeso.2012.03.008.

    Article  CAS  Google Scholar 

  76. Cvjetko Bubalo M, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf. 2014;99:1–12. https://doi.org/10.1016/j.ecoenv.2013.10.019.

    Article  CAS  Google Scholar 

  77. Fatemi MH, Izadiyan P. Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere. 2011;84(5):553–63. https://doi.org/10.1016/j.chemosphere.2011.04.021.

    Article  CAS  PubMed  Google Scholar 

  78. Radosevic K, Cvjetko M, Kopjar N, Novak R, Dumic J, Srcek VG. In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish channel catfish ovary (CCO) cell line. Ecotoxicol Environ Saf. 2013;92:112–8. https://doi.org/10.1016/j.ecoenv.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Federal Ministry of Education and Research (BMBF) for funding the PROTECT project (FKZ: 02WRS1495B) as well as Merck (Darmstadt, Germany) for the supply of solvents and the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) for the provision of water samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Knepper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Persistent and Mobile Organic Compounds – An Environmental Challenge with guest editors Torsten C. Schmidt, Thomas P. Knepper, and Thorsten Reemtsma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuwald, I.J., Zahn, D. & Knepper, T.P. Are (fluorinated) ionic liquids relevant environmental contaminants? High-resolution mass spectrometric screening for per- and polyfluoroalkyl substances in environmental water samples led to the detection of a fluorinated ionic liquid. Anal Bioanal Chem 412, 4881–4892 (2020). https://doi.org/10.1007/s00216-020-02606-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02606-8

Keywords

Navigation