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Abstract
Due to the global need for energy and resources, manyworkers are involved in underground and surface mining operations where
they can be exposed to potentially hazardous crystalline dust particles. Besides commonly known alpha quartz, a variety of other
materials may be inhaled when a worker is exposed to airborne dust. To date, the challenge of rapid in-field monitoring,
identification, differentiation, and quantification of those particles has not been solved satisfactorily, in part because conventional
analytical techniques require laboratory environments, complex method handling, and tedious sample preparation procedures
and are in part limited by the effects of particle size. Using a set of the three most abundant minerals in limestone mine dust (i.e.,
calcite, dolomite, and quartz) and real-world dust samples, we demonstrate that Fourier transform infrared (FTIR) spectroscopy
in combination with appropriate multivariate data analysis strategies provides a versatile tool for the identification and quanti-
fication of the mineral composition in relative complex matrices. An innovative analytical method with the potential of in-field
application for quantifying the relative mass of crystalline particles in mine dust has been developed using transmission and
diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) within a unified multivariate model. This proof-of-principle
study shows how direct on-site quantification of crystalline particles in ambient air may be accomplished based on a direct-on-
filter measurement, after mine dust particles are collected directly onto PVC filters by the worker using body-mounted devices.
Without any further sample preparation, these loaded filters may be analyzed via transmission infrared (IR) spectroscopy and/or
DRIFTS, and the mineral content is immediately quantified via a partial least squares regression (PLSR) algorithm that enables
the combining of the spectral data of both methods into a single robust model. Furthermore, it was also demonstrated that the size
regime of dust particles may be classified into groups of hazardous and less hazardous size regimes. Thus, this technique may
provide additional essential information for controlling air quality in surface and underground mining operations.
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Introduction

The exposure of mine workers to crystalline particles in the
respirable size regime is a global problem in occupational
health and safety at surface and underground mining opera-
tions [1–5]. For inhaled particles, from which 50% can pene-
trate the larynx (i.e., thoracic particles, 10 μm) and especially
those size regimes from which 50% of the mass fraction may
enter unciliated airways (i.e., respirable particles, 4 μm), in-
field online monitoring of the composition and concentration
is needed for the assessment of hazards and intervention [2, 6].
The focus of recent studies is especially targeted to respirable
crystalline silica (alpha quartz), which is known to cause a
variety of lung diseases including chronic obstructive
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pulmonary disease (COPD) and silicosis. Alpha quartz was
even associated with higher risks of lung cancer and is
suspected to be a lung carcinogen [7–9]. For occupational
safety and health, the hazardous effects during the exposure
of mine workers to dust containing respirable crystalline silica
particles was unambiguously proven during past studies [4,
10–12]. A permissible exposure limit (PEL) of 100 μg/m3

respirable dust present in metal/non-metal mines was pre-
scribed by the U.S. Mine Safety and Health Administration
(MSHA). The National Institute for Occupational Safety and
Health (NIOSH) introduced a recommended exposure limit
(REL) of 50 μg/m3 as a time-weighted average for up to
10 h per day during a week of 40 work hours [2, 13].

Besides the respirable crystalline silica particles, other par-
ticles in the respirable size regime are also suspected of caus-
ing pulmonary diseases (e.g., dolomite, calcite, or aluminosil-
icates) [14–16]. Thus, concerning occupational safety and
health of exposed workers, there is a demand for selective,
or more precisely, comprehensive particle monitoring, which
includes dust particle identification, differentiation of the min-
eral composition, quantification, and size of the particles.

To date, the challenge for rapid in-field monitoring of re-
spirable particles has not been solved satisfactorily, in part
because conventional analytical methods, including for exam-
ple X-ray diffraction (XRD), require laboratory environments,
complex method handling, and tedious sample preparation
procedures. Additionally, the quantification is in part limited
by particle size effects as a confounding factor [17, 18].

A commonly adopted standard method for the quantifica-
tion of crystalline silica is the NIOSH 7500 XRD analysis [2].
At least in part, real-time methods based on light scattering
can be used but are restricted to the presence of particles and
cannot differentiate the type of dust particles and their com-
position for quantifying their hazardous potential [19].

Our research teams have demonstrated that Fourier trans-
form infrared (FTIR) spectroscopy provides a versatile—and
nowadays portable—tool for the identification and quantifica-
tion of various minerals in complex matrices. Due to the in-
herent molecular selectivity for organic as well as inorganic
matrix components, IR techniques allow for precisely deter-
mining the mineral composition even in most complex sample
matrix scenarios [18, 20].

The first successful results on the in-field quantification via
the NIOSH direct-on-filter (DoF) method combined with por-
table FTIR spectrometers have proven to be of comparable
quality to the NIOSH 7500 method [21]. In that study, mine
dust particles were directly collected onto PVC filters by the
respirable samplers [2, 22]. The DoF method combined with
the FTIR technique is included in ISO 19087:2018 by the
International Organization for Standardization [23].
However, analytical confounders such as variable background
and effects of mixed mineral components in the analyzed dust
sample matrix have been shown to negatively influence the

reliability of the data analysis [1, 22, 24]. Those effects are
most effectively addressed by single variable data evaluation
strategies, as shown via a direct calibration approach for coal
and non-coal mine dust using partial least squares regression
(PLSR) [1, 22]. Most recent studies by Cauda et al. [2]
confronted the problem of confounding variables with a
sector-specific and a mine-specific approach.

In the present study, an alternative analytical method with
the potential of in-field application for the quantification of the
relative mass of a variety of crystalline particles in the respi-
rable regime has been developed, combining transmission and
diffuse reflection infrared Fourier transform spectroscopy
(DRIFTS) within a unified multivariate model.

Transmission IR and DRIFTS have individually been test-
ed as a viable method for the quantification of respirable crys-
talline silica [25]. However, the performance of DRIFTS is
highly susceptible to particle size [26, 27]. In the present
study, this potential weakness was, in fact, turned into an
advantage by utilizing that dependence for deriving particle
size as an additional variable besides the total particle mass
and mineral composition within a unified multivariate model.

For establishing a proof-of-principle study, a laboratory
calibration was established using a set of mixed relevant min-
erals in limestone mines, i.e., calcite, dolomite, and quartz
embedded into a KBr matrix in accordance with XRD and
energy-dispersive X-ray spectroscopy (EDX) mapping data
of various real-world limestone mine dust samples.

Thereby, the calibration/classification strategy was tailored
to the matrix and composition of dust samples occurring in
real-world underground mining scenarios, which effectively
addresses the issue of matrix-based analytical confounders
along with the identification and quantification of other min-
erals besides alpha quartz. Using experimental design rou-
tines, the size of the required calibration dataset was reduced
to a minimum number of calibration samples for providing
effective calibration strategies. Thereby, the method may be
readily adapted via rapid site-specific calibration routines
(e.g., for a specific mining scenario) for the present respirable
mineral constituents and matrices with minimum efforts [28].

The predictive performance of the calibration model was
demonstrated for two different particle size regimes (i.e.,
inhalable vs. respirable) and compositions using synthetic lab-
oratory mixtures as well as real-word limestone mine dust
samples collected from three different mines within the USA
and from one deposit in Berlin, Germany.

This approach has the potential for systematic implemen-
tation for on-site quantification of the relative mass of differ-
ent crystalline particles in ambient air when collected directly
onto PVC filters by the worker using body-mounted sampling
devices. Without further sample preparation, these loaded fil-
ters may be directly analyzed via transmission spectroscopy
and/or DRIFTS, and the mineral amount is immediately quan-
tified via a PLSR algorithm enabling the combining of the
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spectral data of both methods into a single robust model.
Compared to previous studies, this approach, for the first time,
enables integrating matrix effects into the calibration/
classification model, classifying the size regime of the parti-
cles (i.e., inhalable vs. respirable), and quantifying and iden-
tifying the relative mass of a variety of different particles with
the benefit of rapidly tailoring the calibration to a specific
mining scenario (e.g., the mineral composition of a specific
mining site or type). In the future, one may, thus, even envis-
age using this method for site fingerprinting, characterizing
individual mining locations via their dust composition.

Materials and methods

Instrumentation

FTIR measurements were conducted using a portable Bruker
Alpha FTIR spectrometer (Bruker Optik, Ettlingen, Germany)
equipped with either DRIFTS or a transmission assembly
(Bruker Optik, Ettlingen, Germany). For EDX and SEMmea-
surements, a Quanta 3D FEG FIB-SEM dual-column system
(FEI, Eindhoven, Netherlands) was used.

Particle generation

Powders of pure quartz and dolomite (Wards National, CA,
USA) were ground in an agate mortar for about 5 min to
obtain large (> 5 μm) particles that approximate the inhalable
size convention. The inhalable size convention includes parti-
cles that can remain airborne and can be breathed into the nose
or mouth. The same particles were further ground for more
than 130 min to obtain small (≤ 4 μm) particles that approxi-
mate the respirable size convention. The respirable size con-
vention includes particles that penetrate beyond the ciliated
region of the respiratory tract [6]. Hereafter, these samples
are referred to as inhalable and respirable particles. For calcite,
optical grade crystals were crushed and ground for approxi-
mately 10 min to obtain a powder; then, the calcite powders
were treated like the dolomite and quartz samples.

The powders were analyzed via IR attenuated total reflec-
tion (ATR) spectroscopy and transmission IR during the
grinding process for characterizing size effects (i.e., signal
attenuation) and to ensure a minimum size after the procedure.
With decreasing particle size, the IR signal approximates a
maximum if the particle sizes approach the respirable regime
[17]. In addition, the dimensions of the quartz particles after
5 min and > 130 min of grinding, respectively, were spot-
checked via scanning electron microscopy (SEM) to verify
the abundance of either respirable or non-respirable particles
after mixing the minerals according to an experimental design
routine (see below). The mixtures were ground for another
5 min to obtain homogeneous samples.

Likewise, limestone mine dust samples from three different
mines located in the USA and a sandstone sample from
Germany (Berlin) were used as real-world examples for deter-
mining the predictive quality of the established classification
model. The limestone mine dust samples for the experiments
herein were provided by NIOSH under subcontract no. 200-
2017-M-94234 with permission of scientific usage (locations
blinded).

These samples were treated (through the grinding process)
similar to the calibration sample ensuring the presence of re-
spirable samples free from agglomerates.

Creation of the sample set

For the creation of a synthetic sample set, the particles were
weighed and mixed. For homogenization, the mixtures were
shortly ground in an agate mortar. All mixtures contained
calcite, dolomite, and quartz at concentrations according to
an experimental design (see section “Experimental design
and multivariate data analysis”).

ATR, transmission, and DRIFTS measurements

For ATR measurements, non-diluted samples were pressed
directly onto a single-bounce diamond ATR element without
further sample preparation. The pressure was kept steady and
reproducible using the pressure indicator of the ATR cell after
preliminary tests via pressure-indicating paper foil (Fujifilm
Prescale®). DRIFTS and transmission measurements were
performed using diluted samples containing 2 mg of sample
mixture (i.e., 1%wt. sample in dry KBr). For both, pellets and
DRIFTS powders for the respective amount of sample were
weighed and mixed with KBr in an agate mortar via grinding
for approximately 5 min to obtain homogeneous mixtures. For
transmission studies, from each mixture, 3–4 pellets using
200 mg of powder each were pressed using a Specac KBr
press for 3 min at 10 tons pressure. The derived pellets were
analyzed against air as background. For DRIFTS, the raw
powder was split into portions of 200 mg for direct measure-
ments in an aluminum cup against a gold cup as background.
All spectra were recorded at a spectral resolution of 2 cm−1

averaging 128 spectral scans. Each mineral mixture was ana-
lyzed five times with each technique for statistical significance
and to obtain independent results. The data collection was
done using the Opus 6.5 software package (Bruker Optik,
Ettlingen, Germany).

Experimental design and multivariate data analysis

For multivariate data analysis, the Eigenvector Toolbox soft-
ware package (Eigenvector Research, Inc., Manson, WA,
USA) was used. The PLSR method was applied for calibra-
tion, quantification, and identification of minerals in
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calibration mixtures and real-world samples. For calibration, a
dataset of 9 mineral compositions (Table 1) was made accord-
ing to an experimental design strategy. As an experimental
design algorithm, an extreme vertice algorithm was applied
using the R Statistics software package (The R Foundation,
Vienna, Austria) combined with the mincalib add-on package.
The extreme vertice design is based on a simplex centroid
design with constraints. The constraints (Table 1) were set to
match real-world samples with known mineralogy (Table 2).

Validation was performed via three validation mixtures in-
cluding the synthetic sample D10, and in addition four real-
world samples, all were included in the validation dataset.

EDX verification of sample purity

To verify the XRD reference values, all minerals (i.e., calibra-
tion samples and natural mine dust) were crosschecked via
EDX mapping. Especially for the calibration samples, it is
essential to check minerals for impurities, as the minerals are
derived from natural deposits. Spot measurements were made
on powders immobilized at adhesive carbon pads (Plano
GmbH, Wetzlar, Germany) with a resolution of 1024 × 800
pixels. Mainly K-α lines of Al, Si, Ca, and Fe were investi-
gated at every pixel of the image to assign elemental compo-
sitions to the respective particles. Thus, obtained mapping
data were evaluated using the FIJI software package (LOCI,
University of Wisconsin-Madison, USA). Due to the abun-
dance of primarily aluminosilicates or iron within the natural
dust samples and not listed by XRD, the data was corrected by
derived elemental composition using EDXmapping (Table 3).

Results and discussion

Using multivariate data analysis strategies, a model that
avoids collinearity is essential. For multicomponent calibra-
tion samples, this prerequisite leads to a dramatic increase in
required calibration mixtures if a fully factorized approach is
anticipated. The experimental design algorithm applied in the
present study decreases the number of required calibration
samples based on a geometric triangular function while
avoiding co-linear composition variations. The applied ex-
treme vertice design is based on a simplex centroid with con-
straints added to the calibration dataset to limit the calibration
range of the respective material [28–32]. This application of
constraints allows the tailoring of the required calibration mix-
tures to the specific composition of the real-world samples
shown in Table 2. A scheme of the applied ternary design is
shown in Fig. 1.

As the most abundant minerals (see Table 2), calcite, dolo-
mite, and quartz were selected as primary target analytes for
this proof-of-principle study. The constraints for the experi-
mental design are shown by maxima and minima in Table 1.

The transmission and DRIFTS spectra (Fig. 1) of limestone
samples emphasize the need for multivariate analyses in such
complex sample matrices. The obtained IR spectra show sub-
stantial overlaps of bands (e.g., for silicates and carbonates),
and even in these rather simple examples, they exemplify that
a simple direct quantification for multiple minerals via peak
area integration in such mineral mixtures is limited.
Additionally, analytical confounders (i.e., particle size and
impurities) add distortions to the already complex IR finger-
print structure. In brief and as commonly known, the PLSR

Table 1 Target weight percentages for calibrationmixtures according to
experimental design. Maximum and minimum values are constraints for
the experimental design. Artif. D10 is a laboratory-prepared synthetic
mixture following the XRD data of the real-world sample (D10)

Mixture Calcite (% wt.) Dolomite (% wt.) Quartz (% wt.)

I 1 90 9

II 9 90 1

III 5 90 5.01

IV 1 59 40

V 1 74.5 24.5

VI 53.5 45.5 1

VII 59 1 40

VIII 98 1 1

IX 75.5 1 20.5

Valid 1 30 40 40

Valid 2 33.6 48.2 18,2

Artif. D10 45.8 15.5 30.6

Table 2 XRD reference data for mineralogical samples provided by
NIOSH and Free University (FU) Berlin

Component Component weight percentage (% wt.)

D4 D9 D10 Sandstone Berlin (SSB)

Calcite 20 12 42 33

Dolomite 55 74 15 34

Quartz 20 4 37 24

Others 5 0 0 9

Table 3 EDX reference data for mineralogical samples

Component Component weight percentage (% wt.)

D4 D9 D10 Sandstone Berlin (SSB)

Calcite 22.4 16.6 43 31.1

Dolomite 53.4 68.4 15 37.7

Quartz 9.3 5.8 37 25.6

Others 15.0 8.1 5 5.7
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approach applied in the present study reduces the data to the
main directions of variance across the entire spectrum by
transformation into the space spanned by the partial least
squares (PLS) loadings, also called latent variables (LVs)
[28–30].

Quantification of synthetic and real-world mineral
particle samples

As transmission IR is the most user-friendly and only method
for analyzing DoF filters [21], the prepared calibration sam-
ples were measured in KBr along with natural samples from
four real-world limestone deposits. The data was preprocessed
using baseline correction, normalization, and autoscaling prior
to executing PLSR. The concentrations in real-word samples
were corrected according to the EDX (Table 3) and
crosschecked for confounders to ensure exact masses of the
respective minerals and tominimize the effect of impurities on
the PLSR predictions.

As shown in Fig. 2, the scores plot (A) resembles the geo-
metric arrangement of the applied experimental design and
can clearly discriminate between all calibration mixtures and
the real-word samples indicated by 95% confidence ellipses.
This even holds true for mixtures with onlyminute differences
in composition. For the regression, four LVs were selected
evaluating the root mean square error of calibration
(RMSEC)/root mean square error of cross-validation
(RMSECV) versus latent variable number plot. In total, a
cumulative variance of 97.45% was covered.

The regression of all three components (Fig. 2B–D) result-
ed in excellent coefficients of determination of 0.984 and
0.988 for calcite and dolomite, respectively, and 0.99 for
quartz. The RMSECV was 0.01 mg to 0.04 mg with the low-
est error for quartz. This indicates that each component was
calibrated with a pronouncedly low deviation from the

reference values, providing excellent correlation. The main
error for the predictive quality of the calibration is expressed
as the root mean square error of prediction (RMSEP) [29]. All
minerals were quantified with satisfactorily small RMSEPs,
i.e., 0.1 mg for calcite and dolomite, respectively, and
0.036 mg for alpha quartz. Especially with regard to the fact
that some samples only contained small amounts (i.e., <
80 μg) of crystalline silica, the presented predictivity values
are excellent. Additionally, the relative error of prediction
(REP, %) was calculated as an additional statistic indicator
for the quality of the prediction derived from the ratio of
RMSEP and the mean calibration value of each component
in the validation set (in %). With 15.69% for calcite, 13.68%
for dolomite, and 6.90% for quartz, these values are reason-
ably low considering that 4 out of 7 validation samples are
natural mine dust samples. Especially regarding the hazardous
alpha quartz, which is much less abundant and thus lower in
relative mass compared to the other minerals, the REP% was
excellent. However, it has to be noted that the REP% value
only indicates the deviation from the mean value of the cali-
bration and does not qualify individual values.

As XRD is the standard method for mineral identification,
for completion, the obtained results for the natural samples
were compared to XRD measurements performed by
NIOSH using DoF filter–sampled respirable particles.
Table 4 shows the deviations of results obtained via PLSR
versus XRD measurements without EDX correction and
crosscheck for confounders.

The XRD data follows the same trends as the results shown
in Fig. 2; however, some show more pronounced deviations.
These most evident deviations are found in samples SSB and
D4. Overall, the dolomite deviations were most pronounced,
while quartz was quantified well except for samples D4 and
D9. The latter was anticipated, as only traces of quartz are
contained within those samples. However, since XRD is

Fig. 1 DRIFTS and transmission
IR spectra of limestone mixtures
and the resulting scheme of the
experimental design for quartz,
dolomite, and calcite with peak
assignments [33]
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known for a reduced reliability in the investigated small size
regime due to intensity loss and line broadening and the fact
that XRD measurements of respirable dust are done on DoF
filters, this aggravates the quantification due to small sample
volumes and filter backgrounds. Hence, the reference values
may indeed deviate from the real values in this particle size
domain [17, 34, 35]. Additionally, in samples D9 and D10,
significant impurities by aluminosilicates were determined,
which are not considered via the XRD standard method.
Analyzing a lab-made replicate of the XRD quantification of
sample D10 prepared by mixing pure minerals (calcite, dolo-
mite, and quartz) shows excellent results with the smallest
deviations, which, in turn, substantiates the hypothesis that
analytical confounders, filter background, small particle quan-
tities, and impurities severely affected the XRDmeasurements
next to the particle dimensions, which will be investigated in
more detail during future studies.

The degree of correlation and predictivity of the presented
PLS model already demonstrates that the combination of ex-
perimental design and multivariate regression is capable of

both rapid identification and reliable prediction of a variety
of analytes in multimineral mixtures with minimum simple
sample preparation at < 30 s per measurement, which are es-
sential features for in situ assessment of hazards and potential
real-time intervention. Once a model is established, any natu-
ral sample with matching composition is readily predicted,
which is a significant advancement versus current approaches
focusing on the quantification of alpha quartz only [2, 21, 25].

DRIFTS taking particle size into account

For the assessment of hazards and intervention, not only the
total mass/number of particles but also the particle size is
relevant. However, similar to XRD, IR-based methods show
dependencies of the signal strength on the particle dimensions.
Contrary to XRD, IR spectroscopy shows an increase in signal
strength with decreasing particle size, while XRD conversely
is associated with a decreasing signal and broadened lines [17,
35].

Hence, IR-based methods advantageously provide more
pronounced analytical signals when approaching smaller,
and thus more hazardous, particle diameters. However, the
dependence of the spectral features on particle size may lead
to higher standard deviations during quantification, especially
with increasing inhomogeneity of the particle size distribu-
tion. Consequently, an ideal monitoring method for respirable
particles should either provide size-independent yet sensitive
analytical signals or should be capable of additionally en-
abling particle size classification. In the present study, we take
advantage of the fact that, in general, DRIFTS is more

Fig. 2 Scores plot (A) and PLS
regression (B–D) of respirable
calcite, dolomite, and quartz in
KBr, including natural limestone
samples in the validation set.
Black circles represent calibration
mixtures. Red rues represent
validation mixtures. Green
squares represent prediction
natural respirable limestone dust
samples

Table 4 Deviation (Δ) results obtained via PLSR versus XRD for the
composition of natural samples and lab-made replicates (D10)

Sample Δ calcite (%) Δ dolomite (%) Δ quartz (%)

SSB 36.00 ± 2 − 13.9 ± 2.2 8.8 ± 0.6

D4 27.56 ± 3.6 18.6 ± 2.2 − 37.9 ± 1.7

D9 4.53 ± 5.2 16.1 ± 1.0 61.2 ± 3.5

D10 4.89 ± 3.4 47.5 ± 18.2 − 5.2 ± 1.4

D10 (synthetic) − 0.82 ± 1.9 12.2 ± 5.8 − 1.4 ± 1.0
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susceptible to the particle size in comparison to transmission
IR spectroscopy [36].

In a first step, a multivariate calibration/classification mod-
el similar to the IR transmission experiments was established
via DRIFTS (Fig. 3).

After baseline correction, normalization, and autoscaling,
PLSR was performed, and five LVs were selected covering
80.6% of the total variance. Overall, the DRIFTS model per-
formed well, yet less accurate compared to the transmission
IR-based model. The coefficients of determination were 0.986
for calcite, 0.908 for dolomite, and 0.960 for quartz, which are
still considered an acceptable correlation. With an RMSEP of
0.12 mg for calcite, 0.35 mg for dolomite, and 0.099 mg for
quartz, the three analytes of interest were readily quantified
(Fig. 3). While advantageously DRIFTS requires even less
sample preparation, the predictive performance of the classi-
fication model based on DRIFTS spectra was inferior versus
the transmission IR. This is particularly evident in the predict-
ed composition of the natural samples in the validation set,
which show higher deviations from the reference values, es-
pecially for dolomite. As the natural samples are less uniform
in terms of particle size, it is hypothesized that the inferior
performance results from particle size effects. Indeed, this is
also evident in the latent variable selection, as only 80.6% of
the variance is captured despite using five LVs.

Combining transmission and DRIFTS into a universal
particle size–independent model

While it appears that the particle size dependence of DRIFTS
is at first glance a negative effect, one may ask the question
whether this dependence may, in fact, be utilized for improv-
ing the predictive quality of the established calibration/
classification models. Ideally, a combined calibration/

classification model takes advantage of the accuracy of IR
transmission spectroscopy when determining the mineral
composition, while at the same time, it utilizes the size-
dependent DRIFTS signal for classifying the particle size, as
these particle size effects must project into the variances dom-
inating the DRIFTS spectra. Hence, a particle size–dependent
parameter was included into the calibration dataset for
extracting information on spectral variances in the DRIFTS
data caused predominantly by particle size effects. This was
enabled by preparing a second sample set using a shorter
grinding time, thus achieving an increased average particle
size (see also experimental section, i.e., particle generation)
to include the spectral behavior of differently sized particles
within the calibration dataset.

For improving the performance of the overall model, the
transmission IR data was included in the PLSRmodel as well,
anticipating superior performance of the resulting universal
calibration/classification model. It was expected that the
resulting PLSR-based model is capable of characterizing both
physical (i.e., particle size) and chemical (i.e., mineral com-
position and concentration) properties of a sample. The PLSR
model based on these combined datasets is shown in Fig. 4.

The sample classes for the dataset set were divided into
inhalable (≤ 4 μm) and respirable (> 5 μm) particle size re-
gimes, as well as type, i.e., natural respirable (≤ 4 μm) and
laboratory-made (Fig. 4). All data were again baseline-
corrected and autoscaled, as spectral baseline drifts resulting
from changing ambient conditions in real-world scenarios
have to be considered. By evaluating the RMSEC/RMSECV
versus the number of latent variables plot, five LVs were se-
lected for covering 93% of the total variance in the combined
spectral data block of DRIFTS and transmission spectra, and
98.63% in the concentration data block. The calibration set
shows a coefficient of determination of 0.96 for dolomite

Fig. 3 PLS regression of
respirable calcite, dolomite, and
quartz in KBr analyzed via
DRIFTS. Black circles represent
calibration mixtures. Red rues
represent validation mixtures.
Green squares represent
prediction of natural respirable
samples
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and quartz and 0.97 for calcite. A superior RMSECV of
0.06 mg quartz and 0.07 mg for for calcite and dolomite was
achieved, providing excellent correlation between the experi-
mentally determined and the predicted values.

Each analyte could be predicted with satisfactorily low
RMSEPs, i.e., 0.13 mg for calcite, 0.2 mg for dolomite, and
0.07 mg for quartz. Hence, the predictive quality of the model
was in between the models using only transmission IR or
DRIFT data, however, avoiding detrimental spectral impact of
the particle size as an analytical confounder. In particular, the
natural samples could be quantified with adequate precision for
fast in-field monitoring approaches. The REP% values show
the same behavior with 18.2% for calcite, 16.7% for dolomite,
and 14.4% for quartz, which are excellent given the deviation
from the mean value of the validation samples and the large
number of natural samples in the validation block.

In contrast to the PLSR quantifications shown previously
based on either IR transmission or DRIFTS data, utilizing

both datasets in a combined model enabled the right balance
between a sufficiently reduced impact of particle size for ac-
curately determining the composition and capitalizing on the
remaining influence of the particle size, especially on the
DRIFTS spectra for an inherent particle size discrimination.
The scores plot in Fig. 5 illustrates that the two datasets ob-
tained for different particle sizes are clearly discriminated by
95% confidence ellipses based on two latent variables. Most
importantly, real-world (natural) samples from limestone
mines were unambiguously classified as respirable particles.
Hence, the combination of two types of IR spectral data into a
universal multivariate model was proven to be capable of
quantifying alpha quartz along with other potentially hazard-
ous particles within a limestone matrix, while simultaneously
providing a particle size classification into the two relevant
two size regimes (i.e., inhalable vs. respirable) to estimate
the severity of the exposure scenario.

Conclusions

In this study, it was demonstrated that direct transmission IR
and diffuse reflectance IR spectroscopy combined with a mul-
tivariate PLSR calibration/classification model provides a re-
liable, portable, and field-deployable monitoring platform for
determining the relative mass of different mine dust particles
and simultaneously give information on the dust composition.
Additionally, relevant size regimes may be classified (i.e.,
inhalable vs. respirable) to rapidly provide information on
the hazardousness of an exposure. If samples are collected
via PVC filters directly by the worker using body-mounted
devices, a minimum of sample preparation is required. Using
experimental design algorithms, a strategy for minimizing the
number of calibration samples ensuring rapid adaptation to
any kind of measurement scenario (e.g., coal mines and

Fig. 4 PLSR regression of
calcite, dolomite and quartz via a
universal calibration model
combining DRIFTS and
transmission IR data into a single
model considering particle size.
Green squares represent
calibration the dataset based on
inhalable-sized particles (< 5 μm)
from lab-made mixtures. Red rues
represent the calibration dataset
based on respirable-sized particles
(≤ 4 μm) from lab-mademixtures.
Blue triangles represent real-
world (natural) respirable samples
from Table 3. Black dots
represent the validation set

Fig. 5 Scores plot based of the combined PLSR model from Fig. 4.
Ninety-five percent confidence ellipses illustrate an unambiguous
separation between respirable lab-made (red) and respirable real-world
(natural) limestone samples (blue) and inhalable-sized (green) particles
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quarries), three potentially hazardous analytes—calcite, dolo-
mite, and alpha quartz—within complex synthetic and real-
world matrices were quantified with high precision, which
expands upon current state-of-the-art techniques determining
only alpha quartz.

The combination of data provided by transmission IR and
DRIFTS into a universal calibration/calibration model has
demonstrated that negative effects on the predictive quality
by analytical confounders such as particle size effects may
not only be mitigated but may indeed be used to additionally
classify particle size without requiring any additional mea-
surements. It is anticipated that a streamlined combination of
this strategy with the DoF technique may render this approach
the currently most suitable method for rapid on-site assess-
ment of exposure scenarios, justifying potential intervention
in underground and surface mining scenarios.
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