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Abstract
This work reports on further development of an inhibition electrochemical sensor array based on immobilized bacteria for the
preliminary detection of a wide range of organic and inorganic pollutants, such as heavy metal salts (HgCl2, PbCl2, CdCl2),
pesticides (atrazine, simazine, DDVP), and petrochemicals (hexane, octane, pentane, toluene, pyrene, and ethanol) in water. A
series of DC and AC electrochemical measurements, e.g., cyclic voltammograms and impedance spectroscopy, were carried out
on screen-printed gold electrodes with three types of bacteria, namely Escherichia coli, Shewanella oneidensis, and
Methylococcus capsulatus, immobilized via poly L-lysine. The results obtained showed a possibility of pattern recognition of
the above pollutants by their inhibition effect on the three bacteria used. The analysis of a large amount of experimental data was
carried out using an artificial neural network (ANN) programme for more accurate identification of pollutants as well as the
estimation of their concentration. The results are encouraging for the development of a simple and cost-effective biosensing
technology for preliminary in-field analysis (screening) of water samples for the presence of environmental pollutants.
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Introduction

Nowadays, water pollution caused by the presence of any
chemicals in fresh- and seawater which reduce the water
quality and affect living organisms in the aquatic environ-
ment has become a major problem associated with areas
of intensive industry and agriculture. A significant part of

water contamination comes from transport, heavy indus-
try, petrochemical industry, and agricultural activities
which release large numbers of toxic chemicals, particu-
larly heavy metals, pesticides, and petrochemicals, in the
atmosphere and aquatic environment. Typical petrochem-
ical contaminants are hydrocarbons, alcohols, ketones,
benzene derivatives (or BTEX), etc. Considering the ad-
verse effects of the above pollutants on humans, animals,
and wildlife, the environmental agencies and World
Health Organization set quite low limits (from 0.1 to
0.5 mg/l) for heavy metals (Hg, Pb, and Cd), pesticides
(DDT, DDE, TDE, etc.), and some petrochemical (i.e.,
methyl alcohol and BTEX) pollutants in drinking water,
food, and feed [1]. Worldwide environmental legislation
clearly indicates the need for reliable environmental mon-
itoring methods, which are also fast, portable, and cost-
effective [2]. Therefore, the determination of industrial
and agricultural pollutants such as heavy metal ions, hy-
drocarbons, and pesticides at very low concentration
levels is one of the main goals for environmental science
nowadays [3].

Conventional analytical techniques such as gas chromatog-
raphy, inductively coupled plasma mass spectroscopy (ICP-
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MS), and high-performance liquid chromatography (HPLC)
are very sensitive and reliable [4]. However, they suffer from
the disadvantages of high cost, time consuming, the need for
highly trained technicians, and the fact that they are mostly
laboratory bound.

An alternative approach lies in the use of biosensors
which present distinct advantages of high specificity, fast
response times, portability, ease of use, and low cost [5, 6].
Since the invention of the electrochemical biosensor for
glucose detection in 1962, biosensors have been intensive-
ly studied and extensively utilized in various applications,
ranging from public health and environmental monitoring
to homeland security and food safety [7]. Electrochemical
methods can be successfully used for simple and rapid
detection of the abovementioned pollutants in the aquatic
environment [8].

There are two approaches of using biosensors for envi-
ronmental control: (i) immuno-sensing where pollutants
can be bound to highly specific receptors, i.e., antibodies
or aptamers, and (ii) inhibition sensors mostly based on
enzymes which are inhibited by pollutants [9]. The
immuno-sensors, despite their high selectivity and sensi-
tivity of detection, require the production (or synthesis) of
a large number of bio-receptors for every pollutant which
may come at a cost. The inhibition sensor approach of
using a small number of bio-receptors is much simpler
and less expensive although it may not be highly sensitive
and not particularly selective because the receptors could
be affected by different types of pollutants. Therefore, in
order to identify the pollutants, several sensors having dif-
ferent bio-receptors have to be used simultaneously which
brings the concept of a sensor array and the associated data
processing, for example, artificial neural network (ANN)
[10].

Instead of extremely fragi le and sensi t ive- to-
environment enzymes, whole cells and bacteria can be
used as much more robust bio-receptors in inhibition sen-
sors and sensor arrays. Several successful inhibition sensor
array developments utilizing whole cells [11, 12] and bac-
teria [13] were reported recently. Our recent research
proved the concept of pattern recognition of water pollut-
ants using optical and electrochemical measurements of
both liquid bacterial samples and immobilized bacteria
[14–16] and a limited number of pollutants of different
types, e.g., heavy metals, pesticides, and petro-chemicals,
in rather high concentrations.

In this work, we continue the development of a bacteria-
based electrochemical sensor array for detection of a wide
range of pollutants including several heavy metals, pesticides,
and petrochemicals in low concentrations down to 0.1 μM.
The analysis of a large number of data, e.g., the sensor re-
sponses of each channel to every pollutant, is carried out using
the MatLab ANN programme.

Experimental methodology

Preparation of bacterial samples

Three types of bacteria were selected for this work: (i)
Escherichia coli (E. coli, K12 strain), a gram-negative bacte-
rial type generally sensitive to different types of pollutants
including heavy metals, pesticides, and hydrocarbons [17];
(ii) Shewanella oneidensis (S. oneidensis MR-1 strain),
gram-negative bacteria known to be tolerant of heavy metals
[18]; and (iii) methanotrophic bacteria (Methylococcus
capsulatus Bath strain), gram-negative bacteria which con-
sume some petrochemicals as nutrients [19, 20]. Luria-
Bertani (LB) broth was used as a growth medium for both
E. coli and S. oneidensis bacterial cell cultures [21], while
M. capsulatus (Bath) were grown in nitrate mineral salts
(NMS) medium [22]. The bacterial growth media and phos-
phate buffer saline (PBS) were acquired from Sigma-Aldrich
Co. Other chemicals, i.e., HgCl2, PbCl2, and CdCl2 salts; at-
razine, simazine, and DDVP; hexane, octane, pentane, tolu-
ene, pyrene, and ethanol; and poly L-lysine (PLl), were also
purchased from Sigma-Aldrich Co.

Bacterial culture growth

All bacterial strains used in this study were provided by the
Biomolecular Research Centre, Sheffield Hallam University.
All strains were stored at − 70 °C in 15% glycerol to be used
as a bacterial source in future. Cultivation of bacteria was
carried out in several stages. The first step was to cultivate a
specific strain of bacteria in a Petri dish containing solid agar.
In the second stage, one colony of bacteria was added into a
sterile flask containing 50 ml of liquid LB broth (for E. coli
and S. oneidensis) or NMS medium (for M. capsulatus).
Finally, the flask containing the bacterial culture was placed
inside the incubator operating at 150 rpm shaking speed. The
incubation temperature was 30 °C for Shewanella oneidensis
and M. capsulatus (Bath), while 37 °C was used for E. coli.
Bacterial growth time was 16 h for E. coli, 24 h for
Shewanella oneidensis, and 72 h for M. capsulatus (Bath).

Bacterial sensor array construction

A bacterial biosensor array (or multi-sensor) consisted of three
screen-printed electrodes having different sensing characteris-
tics towards investigated analytes. The sensor array was fab-
ricated by immobilizing the three types of bacterial cells, on
the surface of screen-printed gold electrodes via poly L-lysine
(PLl) [23] (see Fig. 1). In order to achieve the highest surface
coverage, the maximal concentration of bacterial cells from 10
to 30 109 cm−3 corresponding to the end of the bacterial ex-
ponential growth phase, e.g., 16 h for E. coli, 24 h for
S. oneidensis, and 72 h for M. capsulatus, was used for
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immobilization. For this reason, the surface of gold was treat-
ed in a 1:1000mixture of PLl (0.1mg/ml) and deionized water
for 1 h at 37 °C. Then, bacteria were immobilized by dropping
stock solutions of E. coli, or M. capsulatus (Bath), or
S. oneidensis on the modified electrodes, incubating for 1 h,
and then washing out non-bound bacteria with PBS [15].

Preparation of analyte solutions

The inhibition effects on the abovementioned bacteria have
been studied by exposing them to the following chemicals
(pollutants): HgCl2, PbCl2, and ZnCl2 salts; atrazine, simazine,
and DDVP; and hexane, pentane, octane, toluene, ethanol, and
pyrene. Their solutions of different concentrations (0.1, 1, 10,
100, and 1000 μM) were prepared by multiple dilution of
1 mM stock solution of each analyte dissolved in deionized
water. Forty percent ethanol solution in water was used for
dissolving the hydrocarbons, toluene, and pyrene. The samples
of immobilized bacteria were treated by immersing them in the
required solutions of the above chemicals for 2 h.

Electrochemical experimental measurements

All cyclic voltammogram (CV) electrochemical measure-
ments were carried out on a DropSTAT4000P potentiostat
instrument (from DropSens) controlled by Autolab software
using DropSens screen-printed gold electrodes (SPGEs); the
voltage range from − 0.5 to + 0.5 V and the scan rate of
10 mV/s were used. SPGEs have a conventional three-
electrode configuration with gold working and counter elec-
trodes and Ag/AgCl pseudo-reference electrode (see Fig. 1a)
[24]. The CV measurements were carried on SPGEs with all
three types of bacteria immobilized on the surface of gold
electrodes via poly L-lysine (PLl). The CV measurements
were carried out in PBS both before and after treatment with
(Hg2+), (Pb2+), and (Cd2+) salts, pesticides (atrazine, simazine,

and DDVP), and hydrocarbons (hexane, pentane, octane, tol-
uene, pyrene, and ethanol) in different concentrations.

Impedance spectra were measured using an impedance ana-
lyzer (4000A EG & G Instrument) and gold interdigitated elec-
trodes (from DropSens) containing 250 fringes on each side
spaced by 5 μm, the overlapping length 6.76 mm (see Fig. 1b).
The AC voltage amplitude was 5 mV with the frequency varied
from 100mHz to 100 kHz; noDCbiaswas applied [25]. The use
of interdigitated electrodes was recommended by the supplier
(DropSens) for impedance measurements. Similarly to CVs,
the impedance spectra measurements were carried out on elec-
trodes coated with immobilized bacteria, in buffer solutions con-
taining different pollutant concentrations.

Electrochemical measurement results

Cyclic voltammograms

Typical cyclic voltammograms (CVs) in Fig. 2a–c show the
increase in both anodic and cathodic currents upon increasing
the concentration of pollutants in all three cases presented: the
toluene which effects the immobilized E.coli (a), simazine
effect on M. capsulatus (b), and HgCl2 effect on
S. oneidensis (c). Similar results were observed for the effect
of all other pollutants used for the respective bacteria.

It should be noted that CVs of uncoated electrodes in Fig. 2
show the characteristic anodic peaks (at about + 0.3 to + 0.4V) and
cathodic peaks (at about − 0.15 V) which are associated with elec-
trochemical reactions in PBS. The bacteria immobilized on the
electrode surface act as an insulating layer, thus reducing the current
substantially. The observed threefold drop of the DC current after
coating the electrodes with bacteria corresponds approximately to
30%bacterial surface coverage.However, the bacteria are damaged
by exposure to pollutants and their insulating properties are re-
duced.This clearly explains the observedbehavior. The correlations
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Fig. 1 DropSens three-electrode assembly (a), DropSens interdigitated electrodes (b), schematic diagram of the bacterial immobilization procedure (c)
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between the values of the anodic current and pollutant concentra-
tions were therefore established which constitutes the main princi-
ple of electrochemical detection of pollutants using bacteria.

Electrochemical impedance spectroscopy

The electrical properties of bacteria immobilized on metal elec-
trodes were studied with electrochemical impedance

spectroscopy. Typical results of this study are presented as
Nyquist plots in Fig. 3. As one can see, for all three graphs
selected which correspond to three bacteria, the exposure to pol-
lutants caused both the reduction in size of semi-circles and their
shift to low resistance values which is an indication of the de-
crease in the double-layer resistance.
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Fig. 3 Examples of Nyquist plots (− Zim vs Zre) for interdigitated
electrodes with immobilized bacteria exposed to different pollutants of
different concentrations: E. coli treated with pyrene (a), M. capsulatus
treated with DDVP (b), and S. oneidensis treated with PbCl2 (c); the
equivalent circuit is shown as an inset in a; the arrows indicate the
direction of frequency increase
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Fig. 2 CVs recorded on electrodes with immobilized E. coli treated with
toluene (a), M. capsulatus treated with atrazine (b), and S. oneidensis
treated with HgCl2 (c) in different concentrations
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More detailed analysis of the impedance spectra could be
done using a simplified equivalent circuit diagram (shown as
an inset in Fig. 3a) which consists of a connected-in-parallel
resistor Rdb and capacitor Cdb of an electrical double layer on
the electrode surface and the resistor of the electrolyte Rel

connected in series. The negative sign of the imaginary part
of the impedance indicated its capacitive character.

According to the theory [26], at high frequencies (ω→∞),
the real part of impedance Zre = Rel, while at low frequencies
(ω→ 0), Zre = Rel + Rdb ≈ Rdb because Rel is usually quite
small Rel << Rdb. The reduction on the values ofRdb as a result
of bacterial exposure to pollutants is apparent from the imped-
ance spectroscopy data presented in Fig. 3. This confirms the
previously observed facts that bacteria are losing their insulat-
ing properties upon exposure to pollutants.

More detailed analysis of the effect of pollutants was carried
out by presenting the data of CV measurements as the depen-
dence of the anodic current at + 0.5 Vagainst the pollutant con-
centration; such dependences are shown in Fig. 4. The compar-
ison of the effect of different pollutants on the three types of
bacteria used has to be performed using the relative changes of
anodic current (ΔIA) normalized by the reference current IA0
corresponding to the CVs recorded on electrodes with
immobilized bacteria in PBS without addition of pollutants:

ΔIA=IA0 ¼ IA−IA0ð Þ=IA0

As was concluded from the impedance spectra data, the
effect of the pollutants (evenmetal salts) on the total resistance
(and thus the current) is negligibly small.

As one can see from Fig. 4a, the effects of CdCl2 on
S. oneidensis, M. capsulatus, and E. coli are completely dif-
ferent: ΔIA/IA0 goes up with the increase in CdCl2 concentra-
tion for E. coli and M. capsulatus which means that both
E. coli and M. capsulatus bacteria are inhibited by Cd2+ ions
and becoming less electrically resisting, while ΔIA/IA0 is al-
most flat at low concentrations of CdCl2 and slightly increases
at a high concentration of 1 mM. This means that S. oneidensis
are practically not affected by CdCl2 in low concentrations but
inhibited at high concentrations. Similarly, in Fig. 4b, atrazine
inhibits E. coli and M. capsulatus, while its effect on
S. oneidensis is more or less independent on atrazine concen-
tration (excluding the high concentration of 1 mM).
According to data in Fig. 4c, octane inhibits E. coli and
S. oneidensis, but has a much smaller inhibition effect on
M. capsulatus. The above results are very promising and dem-
onstrate a possibility of pattern recognition of pollutants using
a bacterial sensor array.

The reproducibility of CV and EIS measurements is rea-
sonably good, e.g., within 10% of current and impedance
values. Stability of the samples with immobilized bacteria
was studied, and it was found that the storage of samples with

immobilized bacteria for 24 h in the fridge at 4 °C has no
effect on sensor responses. The activity of bacteria is,

0

1

2

3

4

5

6

0.1 1 10 100 1000

R
el

at
iv

e 
ch

an
g

es
 in

 I A
R

el
at

iv
e 

ch
an

g
es

 in
 I A

R
el

at
iv

e 
ch

an
g

es
 in

 I A

CdCl2 concentration (µM)

E.coli

M.capsulatus

S.oneidensis

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10 100 1000
Atrazine concentration (µM)

E.coli

M.capsulatus

S.oneidensis

0

0.5

1

1.5

2

2.5

3

3.5

0.1 1 10 100 1000

Octane concentration (µM)

E. coli

M.capsultaus

S.oneidensis

a

b

c

Fig. 4 The dependence of relative changes of the anode at + 0.5 V for
immobilized E. coli, M. capsulatus, and S. oneidensis on the
concentration of CdCl2 (a), atrazine (b), and octane (c)
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Fig. 5 3D graphs of responses of
three sensing channels (having
different bacteria) to different
pollutants: toluene, simazine, and
HgCl2 (a); pyrene, DDVP, and
PbCl2 (b); and octane, atrazine,
and CdCl2 (c) in different
concentrations from 0.1 to
100 μM. Arrows indicate the
directions of concentration
increase
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however, reduced by 10–15% after 48 h storage and further
down to 50% after 72 h storage.

Sensor array data analysis

Identification of water pollutants using pseudo-3D
graphs of sensor responses

All the results obtained from the sensor array containing three
electrodes functionalized by three different types of bacteria,
namelyE. coli, S. oneidensis, andM. capsulatus, treated by 12
different pollutants, e.g., heavy metal ions (Hg2+, Pb2+, and
Cd2+), pesticides (atrazine, simazine, and DDVP), and petro-
chemicals (hexane, octane and pentane, toluene, pyrene, and
ethanol) of different concentrations of 0.1, 1, 10, 100, and
1000μM,were analyzed first using pseudo-3D plots of sensor
responses in Fig. 5.

Figure 5a is a simple 3D graph of relative changes of the
anodic current (ΔIA/IA0) of three channels corresponding to three
bacterial types (Escherichia coli, Methylococcus capsulatus
(Bath), and Shewanella oneidensis) in response to exposure to
toluene, simazine, and HgCl2 in different concentrations (the data
points for the largest concentrations (1 μM) of pollutants were
excluded because of their adverse effect on all three bacteria).
Similar 3D graphs are presented in Fig. 5b for pyrene, DDVP,
and PbCl2 and in Fig. 5c for octane, atrazine, and CdCl2. The data
in Fig. 5 demonstrate a clear separation of responses for heavy
metal ions (blue dots which appear on the left side of the graphs),

pesticides (green dots which appear at the bottom part), and pet-
rochemicals (red dots which appear on the right side). It can be
concluded that a simple pseudo-3D graph of the three sensor
responses allows the classification of pollutants studied into three
groups, e.g., heavy metals, pesticides, and petrochemicals, which
demonstrate clearly the principles of pattern recognition. Further
identification of pollutants within each group, for example,
distinguishing betweenHg, Pb, andCd ions, is difficult to achieve
using such a simple approach because all the data points for heavy
metals appeared in the same section of 3D space in Fig. 5. Precise
identification of pesticides and petrochemicals faces the same
difficulties. It is also difficult to estimate the concentration of
pollutants because of random scattering of data points.

ANN data analysis of water pollutants

Much more accurate recognition of pollutants was achieved
with the use of the artificial neural network (ANN) pro-
gramme written using Neural Network Toolbox, version 4.0,
within MATLAB 6.1 (Mathworks, Natick, MA). The ANN
model, shown in Fig. 6, consists of three layers: (i) the input
layer of the responses of three sensing channels (containing
different bacteria); (ii) the hidden layer containing 12 neurons
corresponding to 12 pollutants studied; and (iii) the output
layer representing a six-digit binary code which identifies
the type of pollutants and their concentration.

The designed ANN programme is therefore capable of
identification of pollutants as well as the rough estimation of
their concentration by rounding the output to the nearest

Fig. 6 ANN architecture for
classification of pollutants and
estimation of their concentration
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quantized concentration value, e.g., 0.1 μM, 1 μM, 10 μM,
100 μM, and 1 mM.

The ANNwas trained bymultiple feeding the experimental
results, e.g., the responses of all three sensing channels to all
12 pollutants (Hg2+, Pb2+, Cd2+, atrazine, simazine, DDVP,
hexane, pentane, pyrene, toluene, octane, and ethanol) in five
concentrations (0.1 μM, 1 μM, 10 μM, 100 μM, and 1 mM).
The training data are presented in Table S1 in the Electronic

Supplementary Material (ESM). This table also contains the
identification digital codes. The ANN training procedure
exploited the Levenberg-Marquardt algorithm to optimize
the weights of neurons in a hidden layer. This algorithm ap-
peared to be the fastest method for the network training using
the limited experimental data of this study. A hyperbolic tan-
gent was used as the activation function for the hidden neu-
rons, and a log-sigmoid function was used for the output

Table 1 The results of ANN identification of pollutants and estimation of their concentration

Input values Output values

E. coli M. capsulatus S. oneidensis Binary code Pollutant Concentration (μM)

Obtained Actual

0.09417 0.58032 0.06211 0 0 0 0 1 0 Hg2+ 1 0.66

0.46138 1.48214 1.08641 0 0 0 0 1 1 10 1.3

1.19823 1.37532 1.65302 0 0 0 1 0 0 100 66

0.09023 0.45121 0.67656 0 0 0 1 1 1 Pb2+ 1 1.25

0.48352 1.56176 0.87403 0 0 1 0 0 0 10 22

1.21501 1.71608 2.47263 0 0 1 0 0 1 100 83

0.54321 0.59745 1.31435 0 0 1 1 0 0 Cd2+ 1 1.37

0.76232 1.13421 1.54623 0 0 1 1 0 1 10 26

1.55412 1.66534 1.82152 0 0 1 1 1 0 100 76

0.55657 1.01232 0.01566 0 1 0 0 0 1 Atrazine 1 1.45

0.30508 2.09684 0.08508 0 1 0 0 1 0 10 24

1.06593 2.95676 0.97593 0 1 0 0 1 1 100 71

0.76231 1.20342 0.18784 0 1 0 1 1 0 Simazine 1 1.61

1.54231 2.47652 0.36941 0 1 0 1 1 1 10 12.5

2.14325 2.89732 0.89876 0 1 1 0 0 0 100 87

0.50453 1.13423 0.05566 0 1 1 0 1 1 DDVP 1 1.1

1.65483 2.08563 0.02508 0 1 1 1 0 0 10 13.8

2.26314 2.87342 0.09593 0 1 1 1 0 1 100 99

0.03290 1.24231 0.49265 1 0 0 0 0 0 Hexane 1 1.2

1.04398 2.72134 0.56021 1 0 0 0 0 1 10 32

2.89296 2.36532 0.75134 1 0 0 0 1 0 100 83

0.02965 1.299123 0.27365 1 0 0 1 0 1 Octane 1 1.22

0.95120 2.61860 0.41931 1 0 0 1 1 0 10 17

2.00623 2.92861 0.65108 1 0 0 1 1 1 100 77

0.71525 1.47123 0.51132 1 0 1 0 1 0 Pentane 1 1.6

1.29723 2.68243 0.74167 1 0 1 0 1 1 10 18

2.26211 2.85412 0.97133 1 0 1 1 1 0 100 89

0.90123 2.51252 0.46326 1 0 1 1 1 1 Toluene 1 1.2

2.03251 2.85421 0.59131 1 1 0 0 0 0 10 11

1.98589 2.85862 2.87109 1 1 0 0 0 1 100 93

0.80173 1.01099 0.38134 1 1 0 1 0 0 Pyrene 1 1.4

2.01351 1.13209 0.53965 1 1 0 1 0 1 10 11.6

2.90598 1.07213 1.43312 1 1 0 1 1 0 100 83

0.15432 0.51974 0.63144 1 1 1 0 0 1 Ethanol 1 1.5

0.48453 1.53342 0.54762 1 1 1 0 1 0 10 12.1

1.31541 1.81653 2.65021 1 1 1 0 1 1 100 97
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neurons. The training was performed for 250,000 epochs (e.g.,
250,000 repetitions of data feeding) with the mean square
error (MSE) goal set to 10−10. Figure S1 in ESM shows the
saturation of MSE at about 250,000 epochs.

After the training, the ANN programme was tested by feed-
ing the data obtained from the bacterial sensor array for PBS
solutions spiked with a particular concentration of pollutants
randomly selected within the 1–100-μM concentration range.
The results of such tests are summarized in Table 1. The ANN
outcome is a six-digit code representing the type of pollutant
and its concentration rounded to the nearest quantized concen-
tration value.

Despite the limited amount of data for ANN training, the
programme managed to identify the pollutants correctly. The
comparison of values in the last two columns representing,
respectively, the obtained and actual concentrations of pollut-
ants showed that the concentration was estimated correctly.
For example, the sample spiked with 1.45 μM of atrazine
was identified by binary code 010001 which corresponds to
atrazine in a concentration of 1 μM; the sample spiked with
0.66μMof HgCl2 was identified by code 000001 correspond-
ing to Hg2+ in a concentration of 1 μM; the sample spiked
with 83 μM of pyrene was identified by code 110110 as
pyrene in a concentration of 100 μM.

The results obtained are very promising since simple elec-
trochemical measurements of the anodic current at + 0.5 V
combined with ANN-based data processing allow both the
identification of the pollutants studied and a rough estimation
of their concentrations.

Conclusions and future work

A series of electrochemical measurements, e.g., cyclic voltammo-
grams and impedance spectra, on screen-printed electrodes with
immobilized bacteria proved the concept of using bacteria as bio-
receptors in the inhibition sensor array. All three bacteria studied,
E. coli, M. capsulatus, and S. oneidensis, immobilized on the
electrodes appeared to act as insulators and reduced the charge
transfer. The inhibition effect of 12 pollutants studied lies in the
reduction of bacterial electrical resistivity. The inhibition effect
depends on the type of bacteria, the type of pollutant, and their
concentration which provides an opportunity for pattern recogni-
tion of pollutants using simple and illustrative pseudo-3D plots of
sensor responses. The use of ANN software for data processing
allowed the more accurate identification of water pollutants, e.g.,
heavy metals, pesticides, and hydrocarbons as well as the estima-
tion of their concentration in the range from 0.1 μM to 1 mM.

The developed electrochemical inhibition sensor array
based on bacteria immobilized on the surface of screen-
printed electrodes proved to be a useful analytical tool for
water pollution analysis. Such a biosensor array may fit the
purpose of preliminary testing (or screening) of water

samples. The samples identified by the sensor array as
Bcontaminated^ by a particular pollutant in a certain concen-
tration range can be passed to specialized laboratories for fur-
ther more detailed and more accurate testing. In this way, both
the time and cost of analysis of water samples could be sub-
stantially reduced.

Future work which is currently underway focuses on ex-
tending the range of pollutants, the improvement of the ANN
data processing, and the testing of real water samples. The
ANN software should be able to identify pollutants in com-
plex samples (including real samples of water from different
sources) containing a mixture of pollutants. The evaluation of
pollutant concentration should be also more precise; for that
purpose, a separate ANN programme employing a polynomial
approximation of concentration dependencies of sensor re-
sponses has to be designed.
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