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Abstract
Comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled to mass spectrometry (MS, GC×GC-MS), which
enhances selectivity compared to GC-MS analysis, can be used for non-directed analysis (non-target screening) of environmental
samples. Additional tools that aid in identifying unknown compounds are needed to handle the large amount of data generated.
These tools include retention indices for characterizing relative retention of compounds and prediction of such. In this study, two
quantitative structure–retention relationship (QSRR) approaches for prediction of retention times (1tR and

2tR) and indices (linear
retention indices (LRIs) and a new polyethylene glycol–based retention index (PEG-2I)) in GC ×GC were explored, and their
predictive power compared. In the first method, molecular descriptors combined with partial least squares (PLS) analysis were
used to predict times and indices. In the secondmethod, the commercial software package ChromGenius (ACD/Labs), based on a
Bfederation of local models,^ was employed. Overall, the PLS approach exhibited better accuracy than the ChromGenius
approach. Although average errors for the LRI prediction via ChromGenius were slightly lower, PLS was superior in all other
cases. The average deviations between the predicted and the experimental value were 5% and 3% for the 1tR and LRI, and 5% and
12% for the 2tR and PEG-

2I, respectively. These results are comparable to or better than those reported in previous studies. Finally,
the developed model was successfully applied to an independent dataset and led to the discovery of 12 wrongly assigned
compounds. The results of the present work represent the first-ever prediction of the PEG-2I.

Keywords GC×GC .Retention-timeprediction . Partial least squares (PLS) . Federationof localmodels .Quantitative structure–
retention relationship (QSRR) . Non-target analysis

Introduction

Nowadays, an ever-increasing number of chemicals is being
produced and used. More than 100,000 chemicals are used
daily [1] and, hence, the need to identify compounds through
a non-directed analysis (non-target screening) is great. In ad-
dition, an ever-increasing number of compounds are being
produced to either aid in developing better manufactured
goods or replace pre-existing compounds that have undesir-
able side effects (e.g., toxicity or persistence). Unknown

compounds may be identified via different techniques. Gas
chromatography (GC) or liquid chromatography (LC)
coupled to mass spectrometry (MS) [2] is typically used to
identify these compounds. In addition, comprehensive two-
dimensional gas chromatography (GC ×GC) has been used
to increase the selectivity and separation power, thereby fur-
ther improving the possibilities of non-target screening.
Retention indices (RI) are widely used for the characterization
of compounds. Originally, RIs were determined by comparing
the relative retention of analytes to nearby eluting n-alkanes
during an isothermal run [3]. Since then, several improve-
ments and modifications have been realized, including the
use of temperature-programmed runs for the calculation of
linear retention indices (LRIs) [4, 5].Moreover, different ways
of calculating RIs for GC×GC have been developed [6–11].
Recently, we introduced a new retention index system for
GC×GC that was validated for several different column con-
figurations and GC settings [12]. The system uses three short
steps to calculate the retention index based on the elution of a
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series of polyethylene glycols (PEGs). In the present study, we
tested different methods and developed different models for
the prediction of (i) first-dimension LRIs, (ii) retention index
values associated with second-dimension retention (PEG-2I),
and (iii) first- and second-dimension retention times.

The prediction of retention times is useful for the character-
ization and identification of compounds. Different types of
models can be used to determine and predict the retention be-
havior of compounds and characterize their elution pattern. The
prediction of GC ×GC separations (for example, by using ex-
perimental LRIs from single-column temperature-programmed
separations [10, 13]) has been extensively investigated. The
first-dimension separation in GC×GC depends primarily on
the analyte’s vapor pressure, which correlates to its boiling
point. However, the second-dimension retention in
temperature-programmed GC×GC depends on both the
analyte’s polarity and polarizability, and the elution temperature
from the first column, which correlates to the first-dimension
retention index [10]. Hence, the retention prediction for the
second dimension is more complex than the corresponding pre-
diction for the first dimension. Retention-time predictions have
been used in several fields of study including proteomics [14,
15], metabolomics [16], or the analysis of organic pollutants
using GC-MS or LC-MS techniques [16, 17]. These predictions
are applicable to various compounds with different molar
masses, polarities, and boiling points [17]. In addition, such
predictions can be performed in various ways. These include
using thermodynamic properties in mobile and stationary
phases in GC [17], a federation of local models approach in
combination with physico-chemical properties [18], neural net-
works [18], and quantitative structure–retention relationships
(QSRR) with partial least squares (PLS) [19] to derive an
analyte’s retention time or index, respectively, from its structure.

In this study, we focus on two of the aforementioned ap-
proaches, QSRR with PLS and the federation of local models.
In the PLS approach molecular descriptors, which describe the
structure and properties of a molecule via a vector of numbers,
are used as variables. The dimensionality in PLS is then re-
duced by introducing new latent variables (components) that
account for maximum variability while at the same time
adjusting the latent variables for the response (here, retention
time or index). Subsequently, a linear relation between these
variables and the response is generated [20]. The federation of
local models approach uses a knowledge base, i.e., a large
number of compounds (in the case of retention-time predic-
tions) with a known retention time and calculated physico-
chemical properties [21]. A new input (compound structure)
is then compared to the knowledge base and a limited number
of similar entries are selected. These structures are selected
using a similarity coefficient, which is calculated using a vector
of properties and a distance metric (e.g., the Euclidean dis-
tance). These subsets of structures are then used to predict the
retention time for the new compound [18].

Materials and methods

Overview

In total, four different responses were predicted: the first-
dimension retention time (1tR), the first-dimension linear re-
tention index (LRI), the second-dimension retention time
(2tR), and the recently established second-dimension retention
index that is based on the elution of polyethylene glycols
(PEG-2I). Each of these responses was predicted using a sep-
arate model.

Data acquisition

In total, 859 compounds (see Electronic Supplementary
Material (ESM), ESM_2) of different chemical classes (e.g.,
n-alkanes, PEGs, pesticides, organophosphates (OPs), fatty
acid methyl esters (FAMEs), polycyclic aromatic hydrocar-
bons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzo-
furans, bisphenols, polybrominated diphenyl ethers (PBDEs),
and all 209 polychlorinated biphenyl (PCB) congeners) were
analyzed by GC×GC. This analysis was performed on an
Agilent Technologies 6890 gas chromatograph (Palo Alto,
CA, USA) coupled to a Pegasus 4D time-of-flight mass spec-
trometer (TOF MS; Leco Corp., St. Joseph, MI, USA). For
GC×GC analysis, a secondary oven and a quad-jet dual stage
modulator were located in the main GC oven. A 30-m non-
polar Rtx-5sil ms column (Restek, Bellefonte, PA, USA) was
used for the first-dimension separation and a 1.6-m semi-polar
BPX50 column (SGE, Trajan Scientific Europe Ltd.,
Crownhill, Milton Keynes, UK) was used for the second-
dimension separation. This coupling corresponded to the most
commonly used combination of stationary phases [22, 23] in
environmental analysis and for both columns the internal di-
ameter (i.d.) and film thickness were 0.25 mm and 0.25 μm,
respectively. A deactivated capillary (0.25 mm i.d.) was used
in the transfer line, which was held at a temperature of 350 °C.
The split/split-less injector was operated in split mode (tem-
perature 280 °C, split ratio 1:10) to reduce the influence of the
injection solvent on the retention times. The temperature pro-
gram for the first oven consisted of heating at 35 °C for
0.2 min, increasing the temperature at a rate of 5 °C/min to
310 °C, and holding for 12 min. The secondary oven had an
offset of +30 °C relative to the first oven and the modulator
had an offset of + 20 °C relative to the secondary oven. A
modulation period, hot jet duration, and cold jet duration of
5 s, 0.61 s, and 1.89 s, respectively, were employed. Helium
(flow rate 1 mL/min) was used as the carrier gas. Electron
ionization (EI) was performed at an electron energy and an
ion source temperature of 70 eVand 280 °C, respectively. An
MS acquisition rate of 100 spectra/s was used for all runs and
data were collected form/z ranging from 29 to 750. Data were
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acquired and processed using the ChromaTOF software (ver-
sion 4.50; Leco Corp.).

Molecular descriptors

Molecular descriptors (ESM_1, Table S1) were calculated for
all compounds using the Molecular Operating Environment
(MOE, version 2016.08, Chemical Computing Group Inc.,
Montreal, QC, Canada) software (104 2D physico-chemical
descriptors) and the Percepta software (29 2D physico-
chemical descriptors) with the Absolv add-on module (to cal-
culate Abraham solvation parameters) from ACD/Labs
(Advanced Chemistry Development UK Ltd., Bracknell,
England). In addition, to compensate for the size dependency
of some properties (e.g., lipophilicity, logKOW) additional de-
scriptors were introduced, in which the properties were nor-
malized to the weight of the compound. Finally, for each de-
scriptor, a manual transformation (see ESM_1 Tables S2-S5
for types of transformations) of the data was performed to
determine whether this would create a more linear relationship
between the descriptor and the response. This yielded 20 and
three additional transformed descriptors for the first-
dimension and second-dimension models, respectively.

Calculations and data pre-treatment

First-dimension LRIs and second-dimension PEG-2I values
were calculated as described in references [4, 12], respective-
ly. The compounds were divided into three sets of data: a
training set, a test set, and an external validation set. Of the
209 PCBs, all except two per chlorination level were added to
the external validation set to avoid Bover-training^ the models
for PCB predictions. Afterward, the remaining compounds
were systematically divided into the three sets. The data were
divided by performing a principle component analysis (PCA)
[24, 25] with five components on all the compounds using the
MOE molecular descriptors. As a result, the first, second, and
third components explain 43%, 20%, and 10% of the varia-
tion, respectively. The last two components explain less than
10% each (6% and 3%). The compounds were sorted in as-
cending order of the first component scores. Every fifth value
was assigned to the training set, every eighth to the test set,
and every ninth to the external validation set. The remaining
data were then sorted in ascending order of the second com-
ponent scores and the procedure was repeated. These steps
were repeated for the first four components. The remaining
compounds were sorted into the three datasets randomly. After
the division was completed, PCA and PLS score plots were
generated and the training and test sets were compared to
ensure that they cover the same space.

The training set was used to create the models. Each model
was then optimized with regard to different parameters (de-
scribed in subsequent sections) using the test set. The

predictive power of the model was compared after each step.
The final model was validated using the external validation
set. For each of the two approaches described below, four
models were created, optimized, and validated, namely the
(i) 1tR, (ii) LRI, (iii)

2tR, and (iv) PEG-2I models.
The models were evaluated and compared via the root-

mean-square error of prediction (RMSEP), which was deter-
mined from:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N−1
∑ yobs− ypred
� �2

r

where N: number of data points and yobs and ypred: experimen-
tal (observed) and predicted values (here retention times and
indices), respectively. The ypred for the RMSEP was obtained
by predicting compounds from the test set or external valida-
tion set during model optimization and validation,
respectively.

Partial least squares

The SIMCA software (version 14, Umetrics AB, Umeå,
Sweden) was used to create the PLS models. The molecular
descriptors along with the responses (1tR, LRI,

2tR, and
PEG-2I) were imported (ESM_2) and the data were then cen-
tered and scaled to unit variance. Separate models were creat-
ed for each response using the training set. The number of PLS
components was determined using cross-validation (seven
groups) and the models were optimized using the test set.
Various factors were assessed including the stepwise increase
in the number of descriptors, automatic transformation of var-
iables through SIMCA, removal of all molecular descriptors
with uncertainties larger than their contribution, removal of all
molecular descriptors of low importance (< 1), stepwise (10 at
a time) removal of descriptors characterized by high uncer-
tainty and low importance, and creation of local models. The
stepwise removal of descriptors was performed until all de-
scriptors that remained had a low uncertainty and high impor-
tance. For each new model, the number of latent variables
(components) was determined by optimizing the predictive
power and errors.

BFederation of local models^

The federation of local models approach was performed in the
ChromGenius software package (version 2017.1.3, ACD/
Labs). The structures of all compounds and the respective
responses (1tR, LRI,

2tR, and PEG-2I) were imported using
an .sdf file (ESM_3). As previously mentioned, separate
models were created for each response. The 1tR values were
imported as minutes while keeping 2tR in seconds and choos-
ing retention time in minutes in ChromGenius. Otherwise,
there would have been an unacceptable loss of time-

Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of... 7933



resolution (ChromGenius handles a limited number of deci-
mals). This does not change the variability in the data and
should, thus, not affect the accuracy of the predictions. The
effect of the following factors on the RMSEP was evaluated:
using the dice coefficient and Euclidian distance for the sim-
ilarity search, changing the number of similar compounds (20
and 25) used for the prediction, excluding Abraham parame-
ters, excluding all parameters except for the Abraham param-
eters, and changing the number of compounds per parameter
(three or four) included in the equation for the retention-time
calculation.

Validation

The retention times and indices for compounds from the ex-
ternal validation set were predicted using optimized versions
of both the PLS and ChromGenius models. The RMSEP was
calculated for each model response and the results from the
prediction of the test set and external validation set were com-
pared. In addition, the two methods, PLS and ChromGenius,
were compared.

Benchmarking

To evaluate the quality of the models two approaches were
performed according to reference [26]. Simple linear models
using only one basic descriptor (boiling point for the first-
dimension and logKOW and the logKOW normalized to the
weight of the compound for the second-dimension models)
were generated for all four responses. The predictive power
of these reference models was compared with those of the
previously developed models to see if advanced models im-
prove the prediction. If a comparable predictive capability was
revealed, the PLS and ChromGenius would be considered
overly complicated, and a simple one-parameter model could
be used instead. In addition, for each compound in the external
validation set the measured value was compared to the aver-
age value and the RMSEP was calculated using the difference
of those two. The RMSEP values of these approaches are
expected to be considerably higher than those of the devel-
oped models if good models were achieved.

Results and discussion

PLS modeling

The effect of each optimization step on the RMSEP of all four
responses is shown in Table 1. Use of all the MOE, Percepta,
and manually transformed descriptors yielded the best result
for the first-dimension models (both 1tR and LRI). However,
the best results for the second-dimension prediction models
were realized by using these three sets and all descriptors

normalized to the molecular weight. The second-dimension
separation is based on the polarity and polarizability of a com-
pound. The polarizability may be size dependent, and hence,
the inclusion of descriptors normalized to the weight improved
the model. Additional optimization attempts yielded no further
improvement. Therefore, the addition of further descriptors im-
proves, in general, the predictive power of the models.

Further improvement was attempted by developing local
models as an alternative to a single model for all compounds
(global model). The compounds were grouped based on a
PCA score plot. The hypothesis was that compounds
exhibiting similar behavior would cluster in these plots and
therefore be well-suited for consideration by a local model.
Three groups were defined, based on the PCA. An additional
group was developed for fluorinated compounds, which were
associated with the largest errors in the predictions of each
model. Hence, the resulting four groups are (as indicated in
ESM_2): fluorinated compounds (group 1), chlorinated and
brominated compounds (group 2), non-polar compounds with
(long) carbon-based chains (including, for example, alkanes,
PEGs, glymes, and FAMEs; group 3), and all remaining com-
pounds (group 4). Compared with the best global model (i.e.,
lowest RMSEP from Table 1), the locally generated models
provided significantly better predictions only in the case of
group 3 (i.e., compounds with long carbon-based chains).
The RMSEP values for the

1tR and LRI models improved from
64 to 14 s and 49 to 5, respectively. Similarly, the 2tR and
PEG-2I models improved from 0.21 to 0.02 s and 7.6 to 0.9,
respectively. The improvement realized for the second dimen-
sion was considerably larger than that realized for the first
dimension. Furthermore, the uncertainty associated with pre-
diction of the second-dimension retention times and indices is,
in general, higher than that of the corresponding first-
dimension values, and hence, the improvement through local
models is a great advantage here. However, low or no im-
provement was realized for the remaining models, and hence,
further consideration was deemed unnecessary.

ChromGenius models

Varying results were obtained for the ChromGenius models,
where a clear trend for the first- or second-dimension models
was lacking. For example, similarity calculations based on the
dice coefficient and the Euclidean distance yielded the best
results for the first- and second-dimension models, respective-
ly (Table 2). For the LRI model, the best results were obtained
when the number of compounds for the local model was lim-
ited to 20. However, the best results for the other three models
were obtained when 25 compounds were considered.

The possibility of further model improvement was investi-
gated by excluding (i) the Abraham parameters and (ii) all
other parameters and using the Abraham parameters only.
The results revealed that omitting these parameters had no
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effect on improving the models. However, using only
Abraham parameters (and omitting all other physico-
chemical properties) resulted in an improved model for the
1tR.Moreover, the 2tRmodel improvedwhen three (rather than
four) compounds per parameter were used in the calculation of
the final predicted value.

The results of the best model corresponding to each vari-
able (1tR and 2tR as well as LRI and PEG-2I) are written in
italic in Table 2. Some models exhibit similar RMSEP values
(e.g., 158 s vs. 159 s and 160 s for the 1tR model). Using the
given data collected, it is not possible to assess whether this

difference is significant since no replicate models were per-
formed using different datasets. Hence, it must be considered
that those values could be equal. In this case, the final models
could be chosen in a way that the 1tR model and LRI model
and the 2tR model and PEG-2I model, respectively, are calcu-
lated using the same parameters. For example, both first-
dimension models would be obtained using the dice coeffi-
cient model with 20 compounds and the second-dimension
models would be created using the Euclidian distance model
with 25 compounds (Table 2), including four parameters in the
calculation of the responses in both cases. In this case,

Table 1 Root-mean-square error
of prediction (RMSEP) for PLS
models of varying complexities
using the test set and the lowest
and highest measured values of
each response

Descriptors used in model RMSEP*

1tR (s) LRI 2tR (s) PEG-2I

MOE only 142 (6) 116 (8) 0.37 (8) 15.3 (8)

MOE and Percepta 118 (7) 104 (6) 0.33 (6) 13.2 (7)

MOE, Percepta, and manually transformed descriptors 112 (6) 101 (7) 0.33 (6) 13.3 (7)

MOE, Percepta, manually transformed, and
normalized-to-weight descriptors

119 (7) 106 (7) 0.30 (7) 12.5 (8)

All, auto-transformed 114 (9) 107 (8) 0.32 (7) 20.2 (8)

All, except those with high uncertainty 123 (6) 114 (6) 0.32 (7) 14.4 (7)

All, except those of low importance 132 (6) 108 (8) 0.30 (7) 14.2 (8)

All, except those with high uncertainty and low
importance (stepwise removal)

145 (4) – 0.41 (2) –

Lowest measured value 270 808 1.68 0

Highest measured value 3325 3413 6.62 215.1

* The number of PLS components is shown in parentheses. The italicized values indicate the model with the
lowest RMSEP for each response, respectively.

1 tR, LRI,
2 tR, and PEG-

2 I are the first-dimension retention time,
linear retention index, second-dimension retention time, and polyethylene glycol–based second-dimension reten-
tion index, respectively

Table 2 Root-mean-square error
of prediction (RMSEP) for each
model optimization step with
ChromGenius using the test set
and lowest and highest measured
values of each response

Model settings RMSEP*

1tR (s) LRI 2tR (s) PEG-2I

Dice coefficient (25 compounds) 159 93 0.28 14.6

Dice coefficient (20 compounds) 160 84 0.32 17.2

Euclidian distance (25 compounds) 196 105 0.28 14.5

Euclidian distance (20 compounds) 204 98 0.29 15.5

Best model setting, no Abraham parameters 176 155 0.34 17.5

Best model setting, only Abraham parameters 158 153 0.34 22.6

Three instead of four molecules used per parameter 160 135 0.26 18.1

Lowest measured value 270 808 1.68 0

Highest measured value 3325 3413 6.62 215.1

* The italic and the bold values indicate the results of the final model and the best model from the first step,
respectively. 1 tR, LRI,

2 tR, and PEG-2 I are the first-dimension retention time, linear retention index, second-
dimension retention time and polyethylene glycol–based second-dimension retention index, respectively
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however, we chose the models that revealed the lowest pre-
diction error value.

Validation and comparison

The final models were validated by predicting the external
validation set using the aforementioned best models. A table
conta ining al l values can be found in the ESM
(ESM_1, Table S6). In general, the first-dimension models
performed better than the second-dimension models, indepen-
dent of the technique used for the prediction, as shown in
Figs. 1 and 2. As previously explained in the BIntroduction^
section, the first-dimension separation occurs independently
of the second-dimension separation, while the second-
dimension separation is affected by the first-dimension reten-
tion (the 1tR determines the temperature at which an analyte
enters the secondary column). However, the second-
dimension separation depends primarily on selective interac-
tions with the stationary phase that depend on the type of
functional groups or moieties comprising the analytes. The
analyte may have structural domains that contribute to many
physico-chemical properties and structural descriptors but
contribute nothing to the second-dimension retention. For ex-
ample, all n-alkanols will have similar 2tR, but very different
log KOW values, which will be strongly correlated with the
alkane-chain length. Therefore, prediction of the second-
dimension separation is more complex than prediction of the

first-dimension separation, and hence, the corresponding er-
rors are higher.

The predictions performed using the external validation set
were in all cases similar to or more accurate than the predic-
tions performed using the test set (see Table 3). Hence, the
developed models are valid. The relative deviations of the
predicted values from the experimental values for the first-
dimension PLS and ChromGenius models (Table 3) are com-
parable (average: 5% vs. 6% and 4% vs. 3% for 1tR and LRI,
respectively). However, the calculated errors (i.e., RMSEP)
associated with the 1tR are higher for the ChromGenius model
than for the PLS model. For the LRI model, ChromGenius
produced slightly better RMSEP values than the PLS model.
However, LRI prediction accuracies suggest that the PLS
model is superior to the ChromGenius model (85–114% and
86–123% for the PLSmodel and ChromGenius, respectively).
Using ChromGenius, Dossin et al. [18] realized accuracies of
86–126%, which are similar to the ChromGenius results ob-
tained here. However, the PLS model developed here yields
better results than those reported by Dossin and coworkers.
Furthermore, the group contribution model (GCM) developed
by the National Institute of Standards and Technology (NIST)
[27] resulted in an average deviation of 4.4% for the predic-
tion of LRI values. As previously mentioned, the PLS- and
ChromGenius-based models developed in the present work
resulted in errors of 4% and 3%, respectively. Therefore, these
models are equally good or slightly better than the model

Fig. 1 Predicted vs. experimental
values for the external validation
set using PLS. 1tR, LRI,

2tR, and
PEG-2I are the first-dimension
retention time, linear retention in-
dex, second-dimension retention
time, and polyethylene glycol-
based second-dimension retention
index, respectively
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developed at NIST [27]. In general, the average deviation of
the GCM is relatively low for compounds with few or no
functional groups, e.g., 39 RI units for alkanes [27, 28]. Low
errors were also observed for our local models corresponding
to long-carbon chain compounds (average deviation of 11 RI
units). However, the performance of the GCM for compound
groups with more and diverse functional groups (than these
compounds) is less good. The average deviation for all
modeled compounds (almost 23,000) is 70; and for multifunc-
tional compounds it is 88, which is similar to the values in
Table 3.

For the second-dimension models, the relative deviations
of the PLS and ChromGenius models are similar, as in the
case of the first-dimension models. The corresponding
RMSEP values for the

2tR and PEG-2I are slightly better using
ChromGenius and PLS, respectively. For both types of
second-dimension models, the variations associated with the
index model were larger than those of the retention-time mod-
el as can be seen in the respective figures as well as calculated
relative deviations (Table 3, Figs. 1 and 2). This increased
error resulted most likely from the additional variation associ-
ated with the PEG-2I calculations. D’Archivio et al. [19]

Fig. 2 Predicted vs. experimental
values for the external validation
set using ChromGenius. 1tR, LRI,
2tR, and PEG-2I are the first-
dimension retention time, linear
retention index, second-
dimension retention time, and
polyethylene glycol-based sec-
ond-dimension retention index,
respectively

Table 3 Prediction errors
(RMSEP) and average relative
deviation of the predicted value
from the experimental value for
all four models using PLS and
ChromGenius and the test set and
external validation set,
respectively

External validation set prediction * Test set prediction *

1tR LRI 2tR PEG-2I 1tR LRI 2tR PEG-2I

PLS

Average relative deviation 5% 4% 5% 12% 7% 5% 6% 16%

Average deviation 80 s 74 0.19 s 7.8 85 s 74 0.20 s 8.2

RMSEP 109 s 95 0.27 s 11.3 121 s 105 0.29 s 12.2

ChromGenius

Average relative deviation 6% 3% 4% 12% 9% 3% 5% 17%

Average deviation 115 s 60 0.16 s 7.8 124 s 57 0.17 s 9.2

RMSEP 143 s 85 0.23 s 11.8 158 s 84 0.26 s 14.5

* 1 tR, LRI,
2 tR, and PEG-2 I are the first-dimension retention time, linear retention index, second-dimension

retention time, and polyethylene glycol–based second-dimension retention index, respectively. The results for the
PEG-2 I models include compounds that were extrapolated due to a narrow PEG range
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performed a GC×GC retention-time prediction study where
PCBs were considered. In that work, relative deviations of
1.6–2.9% were realized when different modeling approaches
(multi-linear regression, artificial neural networks, and PLS)
were used to predict the 2tR. These relative deviations are
slightly better than the values obtained in this study (5% and
4%). The relative deviation decreased to 3%, however, when
only PCBs were predicted and was, therefore, comparable to
the value obtained by D’Archivio et al. However, the models
used in this study were built using a considerably larger selec-
tion of compounds withmore diverse chemical properties than
the set of compounds considered in that work. Therefore, im-
proved accuracy of the PLS and ChromGenius models
employed in the present study is expected when only PCBs
are considered during the model building. To reduce the error
associated with the PEG-2I calculation other compounds
could be chosen as indexing references. Preliminary results
have shown that selected PAHs (i.e., 1-methylnaphthalene,
acenaphthylene, anthracene, fluoranthene, benz(a)anthracene,
benzo(e)pyrene, and benzo(g,h,i)perylene) form a straight line
in the GC×GC chromatogram, similar to the PEGs. Their
polarizabilities and retention increases according to the num-
ber of fused aromatic and non-aromatic rings (2 aromatic
rings, 2 aromatic and 1 non-aromatic rings, 3 aromatic rings,
3 aromatic and 1 non-aromatic rings, 4 aromatic rings, 5 aro-
matic rings and 6 aromatic rings, respectively). Since these
compounds are less polar, they are easier to analyze than the
highly polar PEGs due to reduced binding to active sites in the
GC system and, hence, reduced peak tailing.

Quality assurance

The linear regression models, i.e., reference models for
benchmarking, using boiling points and lipophilicity
(logKOW and logKOW / molecular weight), resulted in
RMSEP values that were almost double and more than double
those of the PLS and ChromGenius models for the first and
second dimensions, respectively. Hence, the PLS and the
ChromGenius models are better than a simple model based
on a single descriptor. Furthermore, all models can give a
better prediction than the average. The RMSEP values were
four to five times higher when using the average for the first-
dimension models and more than double when using the av-
erage for the second-dimension models compared to the final
developed models.

Detailed evaluation of the PLS models

Evaluations of the loading scatter plot, coefficients plot, and
variable importance plot within the SIMCA software for PLS
modeling show that the boiling point accounts for one of the
largest contributions in the first-dimension models. This is
unsurprising as the separation on a non-polar column in the

first dimension is, in principle, based on the volatility of the
compound being considered. In connection with this, the sep-
aration in both dimensions is largely dependent on the
partitioning coefficient between gas phase and hexadecane
(L), one of the Abraham solvation parameters. Considering
that the separation technique used was gas chromatography
a larger contribution of this specific partition coefficient was
expected. Other parameters, such as the surface tension and
index of refraction, account for large contributions in the
second-dimension models. The index of refraction is linked
to the polarizability of a compound [29] which is one of the
factors that influence the separation on the second column in
GC×GC. Therefore, when using a semi-polar secondary col-
umn, the larger contribution of this factor to the second-
dimension models (compared with other descriptors) is under-
standable. Accordingly, the polarity/polarizability parameter
(S), another Abraham parameter, shows a large contribution
to the second-dimension models. The variable importance for
all descriptors in the final models is given in the ESM
(ESM_1, Tables S2-S5).

Evaluation of specific compounds revealed that the early
eluting compounds exhibit larger relative variations than the
late-eluting compounds. This is unsurprising as small differ-
ences have a relatively large impact on the prediction at low
retention times or indices. In addition, early compounds might
be more affected by the injection process and the initial iso-
thermal part, although short, of the temperature program. As
previously mentioned, the error obtained for fluorinated com-
pounds was larger than that obtained for other compounds.
The reason for this larger error is unclear, but may have result-
ed from the fact that these compounds were underrepresented
in the data used here. In addition, fluorine has the highest
electronegativity of all elements and electronegativity plays
a role for gas chromatographic retention [30]. Compounds
with high electronegativity may form charge-transfer com-
plexes with phenyl groups in the stationary phase and thereby
be retained. Consequently, even non-polar halogenated com-
pounds have relatively long second-dimension retention times
and indices. To improve the predictive power for fluorinated
compounds, the number of fluorinated compounds included in
the model-building process (i.e., the training of the model)
could be increased. In addition, 1,4-phenylenediamine exhib-
ited a higher deviation in the second-dimension PLS models,
respectively, most likely due to its high proportion of func-
tional groups (two amino groups in a small molecule) that
strongly interact with the phenyl groups of the stationary
phase.

As a final improvement attempt, especially targeting the
second-dimension predictions, 153 molecular descriptors
representing functional groups were obtained through the
Dragon software (version 6.0; Talete s.r.l., Milano, Italy)
and, subsequently, included in the modeling. Only a small
improvement was obtained for the 1tR model, reducing the
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RMSEP for the test set prediction from 112 to 105 s when
including Dragon descriptors with a variable importance
above 0.5. The importance of the functional group descriptors
was, thus, rather low, possibly because the properties of func-
tional groups were already captured by other descriptors.
Overall, this result shows that including more descriptors
can lead to improved predictions. However, in this case, the
improvement was regarded as too small to be worth the effort.
It would also add unnecessary complexity to the model.

Retention time vs. retention index models

The performance of the retention-time models was compared
with those of the respective retention-index models (1tR vs.
LRI and 2tR vs PEG-2I) using both methods, PLS and
ChromGenius, respectively. For this comparison, the
RMSEP values obtained through the validation of the models
were divided by the overall span of the values. The results
showed that, for the first-dimension model obtained via
ChromGenius, the LRI model yielded better results than the
retention-time model. The same relative errors were obtained
in all other cases. Since RIs are relative values that are com-
parable across different instruments and settings while reten-
tion times are absolute values that are instrument and setting
specific, the use of retention index prediction can be advanta-
geous over retention-time prediction. The ESM includes the
data collected for this study (an Excel table for the PLS data
and SD files for the ChromGenius models) for the retention
times as well as indices which can be used to generate predic-
tion models.

Application of retention-time prediction models

As discussed in the BIntroduction^ section, retention-time and
retention-index predictions can aid in the identification of un-
known compounds in non-target screening studies. Even
using GC high-resolution MS, it is often difficult to
(tentatively) identify compounds in a complex mixture.
Structurally similar compounds generally yield similar mass
spectra. Hence, the here-developed models can be used as a
tool for the identification of unknown compounds by helping
to distinguish among many possible candidate structures or by
identifying wrongly assigned structures. Candidates with non-
matching structure and elution times can be eliminated.
Complementary use of retention index and MS spectral infor-
mation can greatly reduce the risk of reporting false positive
findings and increase the chance to propose correct structures
for unknowns.

A candidate structure is deemed incorrect if the predicted
retention time or index lies outside the given range of error
associated with the experimental value of the unknown com-
pound. In practice, a concrete measure for the range of error
(for example, the 95-percentile) is needed. The 95-percentile

is easy to understand and gives a clear idea of the likelihood of
introducing an error. The 95-percentiles for the prediction er-
rors associated with the here-developed models are listed in
Table 4. In general, the 95%-confidence intervals obtained
from the NIST group contribution model [28] for the predic-
tion of LRIs are relatively low for compounds with few or no
functional groups. Low errors were also observed for the local
models corresponding to long-carbon chain compounds.
However, other compound groups with more and diverse
functional groups (than these compounds) have higher 95%-
confidence intervals than the 95-percentiles obtained here as
error ranges. To decrease the error of predictions, the model
results of the two approaches (PLS and ChromGenius) can be
combined by taking the average of both predictions. The
values for the average of both model types given in Table 4
are, without exception, lower than those of the individual
models.

Applying this retention time or index-prediction procedure
will help to reduce the list of possible candidate structures.
However, one possible risk is that new compounds may lie
outside the model domain. Therefore, the similarity between
the new compound and the compounds used to build the mod-
el must be determined. This similarity can be determined
through a PCA analysis. The location of the compound of
interest (i.e., the new/predicted compound) with respect to
the training set in a score scatter plot can then be assessed.
The model can still be used for compounds lying outside the
model domain, but higher errors, than those associated with
compounds lying inside the domain, should be expected.
Notably, all compounds included in the external validation
set were well within the model domain of the training set.

In theory, when using RIs, the calculated index values
should be comparable across instruments and instrument con-
figurations. Therefore, once a model is created for the reten-
tion index (first-dimension LRIs as well as second-dimension
PEG-2I values) that model can be used to predict RIs for new
compounds. Retention times are, however, absolute values
and will vary when parameters, such as the settings in the
instrument or column lengths, are changed. Hence, new
models must be established when conditions are changed.
Data from a previously analyzed house dust sample, generated
as part of an interlaboratory comparison study, was used to test

Table 4 95-percentiles defining the range of error associated with the
prediction of each final model

1tR (s) LRI 2tR (s) PEG-2I

PLS 214 189 0.53 21.0

ChromGenius 258 160 0.48 23.6

Average 195 140 0.41 19.7

1 tR, LRI,
2 tR, and PEG-2 I are the first-dimension retention time, linear

retention index, second-dimension retention time, and polyethylene gly-
col–based second-dimension retention index, respectively
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the applicability of the retention predictions. The sample was
analyzed more than a year prior to the current study, using the
same stationary phases, but different column dimensions. The
house dust contained a range of PEGs and an alkane standard
had been run in parallel to the sample. Thus, first- and second-
dimension RIs (LRI and PEG-2I) could easily be calculated
for all identified compounds. The PLS models were used to
predict RIs for the identified compounds and the results were
then compared to find compounds that deviated more than
expected (Table 4) from the experimental data. In addition,
plots of the predicted vs. measured indices were used to pro-
vide insight into the (qualitative) structure–retention relation-
ships. After scrutiny of the results, it was concluded that 12 of
the 500 compounds that had been tentatively identified in the
house dust were likely incorrectly assigned. Two of these,
originally wrongly identified as 1,4,7,10,13,16,19-heptaoxa-
2-cyclo-heneicosanone and 3,3-dimethyl-(3H)-indazole,
could be reassigned to hexaethylene glycol (PEG-6) and α-
methylstyrene, respectively. PEG-6 was confirmed to be pres-
ent in the dust by other participants in the interlaboratory study
and the α-methylstyrene peak exhibited a spectrum very sim-
ilar to the NIST reference spectrum (but was not confirmed
with a standard).

Notably, the house dust data had been carefully curated
prior to reporting of the data (incl. comparison to NIST reten-
tion index data). A dataset that would not have been previous-
ly evaluated would, most likely, have contained more
misassignments. The 95-percentiles of the deviation between
the measured and predicted value of all compounds that were
assumed to be correctly identified were 226 and 23.7 for the
LRI and PEG-2I predictions, respectively. Those values are
deviating 20% and 13%, respectively, from the 95-
percentiles of the external validation set (Table 4), which
shows good comparability between the two uncertainty esti-
mates. The application of the prediction method to this dataset
shows that the retention time/index prediction models can
accommodate differences among chromatographic systems
can aid in the discovery of false positives and (sometimes)
can be used to correct misassignments.

Conclusion

The PLS model seemed to produce slightly better results (i.e.,
models with slightly lower prediction errors) in all cases, ex-
cept for the LRI model, compared with the ChromGenius
model. The ChromGenius software suffers from the drawback
that an assessment of the applicability domain, as it was sug-
gested above using a PCA, is impossible. The PLS modeling
approach is therefore preferred to the use of ChromGenius. In
addition, the possibility of improving the PLS predictions by
adding more descriptors (for example 3D descriptors) is giv-
en. Those could, for instance, include semi-empirical

electronic property and charge distribution descriptors.
However, some pre-knowledge about the software and PLS
modeling (in general) is required, whereas the use of the
ChromGenius software is relatively simple. If only first-
dimension retention times or indices need to be predicted,
the use of a simple Abraham parameter model may be consid-
ered. Although less precise, such models would be very easy
to generate. In addition to the here-presented model types,
other model types that can account for larger degrees of non-
linearity as, for example, machine learning algorithms (e.g.,
artificial neural networks (ANNs) or support vector machines
(SVM)), can be tested to improve models.
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