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It is evident that nanotechnology has created a new era of
transformative science [1–3]. Nanomaterials have unique
properties that are dramatically different from those of bulk
materials, and also require more stringent experimental con-
ditions in preparation, characterization, and applications.
Analytical science is pivotal to advance our understanding
of the complex behavior observed with engineered
nanomaterials. For example, analytical technologies must
shed light on the elemental composition and the size distribu-
tion of the sample with unprecedented accuracy. The imple-
mentation and design of experiments involving nanoscale
phenomena have stretched the limits of the tools currently
available to evaluate nanoscale systems. This has led to the
pursuit of new analytical approaches and enabling technolo-
gies to sustain continued innovation through nanotechnology.
Many of these exciting analytical advances have recently been
described in this Journal [4–10].

Responsible implementation of nanotechnology prompts a
newandmultifacetedperspectiveonsafety.Safety innanotech-
nology encompasses more than practices in the laboratory and
in manufacturing. The integrity of a commodity made with
nanomaterials must be sustained beyond the lifetime of the
product, which requires an understanding of the molecular in-
teractions of nanoparticles. As so much has yet to be clarified
within the field of nanotechnology, the impacts that engineered
nanomaterials have on environmental and human health are

unclear. Elucidating these impacts challenges existing research
paradigms [11] because following production nanomaterials
can go through diverse pathways. Different mechanisms of
nanoparticle transformation are known and therefore must be
considered. For example, nanoparticles may collect contami-
nants from the surroundings. Theymay slowly dissolve; there-
by, changing the concentration of materials in a local environ-
ment. Nanoparticles may convert harmless chemicals into dif-
ferent chemical specieswith unknown toxic effects through the
photocatalytic production of reactive oxygen species.
Nanoparticles may become airborne, which allows them to be
inhaled and potentially lead to toxicity effects as observedwith
asbestos. Any potential for media-induced differences in parti-
cle aggregationmust be taken into account. Likewise, proteins,
lipids, and other biomolecules in solution may lead to the for-
mation of a biofilm, which will dramatically influence the
chemical and physical properties of the nanomaterials.

National and international regulatory and researchorganiza-
tions have offered advice regarding the handling, disposal, and
delivery of nanomaterials under different circumstances
[12–16]. One such ongoing national effort is the research sup-
ported by National Institute of Environmental Health Sciences
on gaining fundamental understanding of engineered
nanomaterial interaction at the cellular and organ systems level
through Nanotechnology Health Implications Research
(NHIR) consortium. As the field progresses, more information
about nanomaterials, interactionswithin the biological systems
and their transformation, aswell as interactionwith the cellular
organelles will guide the responsible use of this technology
which holds promise to advance society in so many positive
ways.Articleswithin this topical collectionaddress these topics
through proposed strategies to test nanomaterial safety [17, 18]
aswell as nanomaterial stability [19] and sample handling [20].
Newmodels to evaluate toxicity includingheart-on-a-chip [21]
and system-wide proteomics [22] approaches to evaluate bio-
logical response are presented as well as an in-depth study of
how nanoparticles impact wastewater treatment [23]. New ap-
proaches to evaluate nanoparticles are addressed in this topical
collection as well, including a report on evaluation of the inter-
action of nanoparticles with lipids [24] and a review of
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emerging analytical technologies for the detection of reactive
oxygenspecies [25].Finally, the roleofanalytical technologyin
nanotechnologyeducation and educational strategies to sustain
a vibrant workforce through academic research experiences is
discussed [26]. Nanotechnology has captured the attention of
researchers in all areas of science dedicated to identifying safe
nanomaterials that will continue to advance manufacturing,
commercialization,andscientific research indiverse fieldssuch
as biotechnology, energy production, wastewater treatment,
and chemical synthesis. We thank the contributors and editors
for the opportunity present this topical collection.
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