Skip to main content

Advertisement

Log in

Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples using UHPLC-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bisphenol analogues, amphenicol antibiotics, and phthalate have widely aroused public concerns due to their adverse effects on human health. In this study, a rapid and sensitive method for determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in the urine based on ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated. The sample pretreatment condition on the base of mixed-mode anion-exchange (Oasis MAX) SPE was optimized to separate bisphenol analogues and amphenicol antibiotics from phthalate metabolites: the former were detected with a mobile phase of 0.1% ammonium water solution/methanol containing 0.1% ammonium water solution in negative mode, whereas the latter were determined with a mobile phase of 0.1% acetic acid solution/acetonitrile containing 0.1% acetic acid in negative mode. The limits of detection were less than 0.26 ng/mL for bisphenol analogues, 0.12 ng/mL for amphenicol antibiotics, and 0.14 ng/mL for phathalate metabolites. The recoveries of all target analytes in three fortification levels ranged from 72.02 to 117.64% with the relative standard deviations of no larger than 14.51%. The matrix effect was adjusted by isotopically labeled internal standards. This proposed method was successfully applied to analyze 40 actual urines and 13 out of 18 studied compounds were detected.

Simultaneous determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muhamad MS, Salim MR, Lau WJ, Yusop Z. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ Sci Pollut Res Int. 2016;23(12):11549–67.

    Article  CAS  PubMed  Google Scholar 

  2. Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, et al. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol. 2011;45(7):3138–44.

    Article  CAS  PubMed  Google Scholar 

  3. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127(1–2):27–34.

    Article  CAS  PubMed  Google Scholar 

  4. Swan SH. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res. 2008;108(2):177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135–62.

    Article  CAS  PubMed  Google Scholar 

  7. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol. 2016;50(11):5438–53.

    Article  CAS  PubMed  Google Scholar 

  8. Caballero-Casero N, Lunar L, Rubio S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review. Anal Chim Acta. 2016;908:22–53.

    Article  CAS  PubMed  Google Scholar 

  9. Liu HY, Lin SL, Fuh MR. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta. 2016;150:233–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hanekamp JC, Bast A. Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol. 2015;39(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Tao L, Collins EM, Austin C, Lu C. Simultaneous determination of multiple phthalate metabolites and bisphenol-A in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;904:73–80.

    Article  CAS  Google Scholar 

  12. Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875(2):399–404.

    Article  CAS  Google Scholar 

  13. Rocha BA, da Costa BR, de Albuquerque NC, de Oliveira AR, Souza JM, Al-Tameemi M, et al. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta. 2016;154:511–9.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Kramer JP, Calafat AM, Ye X. Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B Anal Technol Biomed Life Sci. 2014;944:152–6.

    Article  CAS  Google Scholar 

  15. Wang HX, Wang B, Zhou Y, Jiang QW. Rapid and sensitive analysis of phthalate metabolites, bisphenol A, and endogenous steroid hormones in human urine by mixed-mode solid-phase extraction, dansylation, and ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Anal Bioanal Chem. 2013;405(12):4313–9.

    Article  CAS  PubMed  Google Scholar 

  16. Heffernan AL, Thompson K, Eaglesham G, Vijayasarathy S, Mueller JF, Sly PD, et al. Rapid, automated online SPE-LC-QTRAP-MS/MS method for the simultaneous analysis of 14 phthalate metabolites and 5 bisphenol analogues in human urine. Talanta. 2016;151:224–33.

    Article  CAS  PubMed  Google Scholar 

  17. Wang HX, Wang B, Zhou Y, Jiang QW. Rapid and sensitive screening and selective quantification of antibiotics in human urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem. 2014;406(30):8049–58.

    Article  CAS  PubMed  Google Scholar 

  18. Kim M, Song NR, Choi JH, Lee J, Pyo H. Simultaneous analysis of urinary phthalate metabolites of residents in Korea using isotope dilution gas chromatography-mass spectrometry. Sci Total Environ. 2014;470-471:1408–13.

    Article  CAS  PubMed  Google Scholar 

  19. Cunha SC, Fernandes JO. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS). Talanta. 2010;83(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  20. Gustafsson JBC, Uzqueda BHR. The influence of citrate and phosphate on the mancini single radial immunodiffusion technique and suggested improvements for the determination of urinary albumin. Clin Chim Acta. 1978;90(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Wang H, Zhou W, Chen Y, Zhou Y, Jiang Q. Urinary excretion of phthalate metabolites in school children of China: implication for cumulative risk assessment of phthalate exposure. Environ Sci Technol. 2015;49(2):1120–9.

    Article  CAS  PubMed  Google Scholar 

  22. Regueiro J, Breidbach A, Wenzl T. Derivatization of bisphenol A and its analogues with pyridine-3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(16):1473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Commission Decision (2002/657/EC) of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L221:8–36.

  24. Benijts T, Dams R, Lambert W, De Leenheer A. Countering matrix effects in environmental liquid chromatography–electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A. 2004;1029(1–2):153–9.

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Wang Q, Zhu J, Li N, Zou X. A simple analytical method of determining 1-hydroxypyrene glucuronide in human urine by isotope dilution with ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409(6):1513–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Lu L, Zhang J, Yang Y, Wu Y, Shao B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A. 2014;1328:26–34. https://doi.org/10.1016/j.chroma.2013.12.074.

    Article  CAS  PubMed  Google Scholar 

  27. Vela-Soria F, Ballesteros O, Zafra-Gomez A, Ballesteros L, Navalon A. UHPLC-MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal Bioanal Chem. 2014;406(15):3773–85.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Marino I, Quintana JB, Rodriguez I, Gonzalez-Diez M, Cela R. Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography-mass spectrometry. Anal Chem. 2012;84(3):1708–17.

    Article  CAS  PubMed  Google Scholar 

  29. Salas D, Borrull F, Marce RM, Fontanals N. Study of the retention of benzotriazoles, benzothiazoles and benzenesulfonamides in mixed-mode solid-phase extraction in environmental samples. J Chromatogr A. 2016;1444:21–31.

    Article  CAS  PubMed  Google Scholar 

  30. Laven M, Alsberg T, Yu Y, Adolfsson-Erici M, Sun H. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2009;1216(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Guan J, Yin J, Shao B, Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in South China. Chemosphere. 2014;112:481–6.

    Article  CAS  PubMed  Google Scholar 

  32. Lewis RC, Meeker JD, Peterson KE, Lee JM, Pace GG, Cantoral A, et al. Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children. Chemosphere. 2013;93(10):2390–8.

    Article  CAS  PubMed  Google Scholar 

  33. Myridakis A, Balaska E, Gkaitatzi C, Kouvarakis A, Stephanou EG. Determination and separation of bisphenol A, phthalate metabolites and structural isomers of parabens in human urine with conventional high-pressure liquid chromatography combined with electrospray ionisation tandem mass spectrometry. Anal Bioanal Chem. 2015;407(9):2509–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81373089), Scientific Research Foundation of Shanghai Municipal Commission of Health and Family Planning (No. 201540053), the National Science Fund for Distinguished Young Scholars of China (No. 81325017), and the Key Program of the National Natural Science Foundation of China (No. 81630088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Ethics declarations

The study was approved by the Institutional Review Board (IRB) of the School of Public Health, Fudan University (ref: IRB#2013-03-0437). Written informed consent was obtained from all participants and the parents/LAR of the participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Shao, Y., Zhan, M. et al. Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples using UHPLC-MS/MS. Anal Bioanal Chem 410, 3871–3883 (2018). https://doi.org/10.1007/s00216-018-1062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1062-2

Keywords

Navigation