Skip to main content
Log in

Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics.

An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hermanson GT. Introduction to bioconjugation. In: Bioconjugate techniques. 3rd ed. Boston: Academic. 2013; 1–125. doi:10.1016/B978-0-12-382239-0.00001-7.

  2. Kalia J, Raines RT. Advances in bioconjugation. Curr Org Chem. 2010;14(2):138–47.

    Article  CAS  Google Scholar 

  3. Wong M, Jameson SS. Overview of protein conjugation. In: Chemistry of protein and nucleic acid cross-linking and conjugation. 2nd ed. Boca Raton: CRC. 2011; 18. doi:10.1201/b11175-2.

  4. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 2012;16(3):400–5. doi:10.4103/0973-029X.102496.

    Article  Google Scholar 

  5. Sewell BT, Bouloukos C, von Holt C. Formaldehyde and glutaraldehyde in the fixation of chromatin for electron microscopy. J Microsc. 1984;136(Pt 1):103–12.

    Article  CAS  Google Scholar 

  6. Kiernan J. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today. 2000;1:8–12.

    Google Scholar 

  7. Khorana HG. The chemistry of carbodiimides. Chem Rev. 1953;53(2):145–66. doi:10.1021/cr60165a001.

    Article  CAS  Google Scholar 

  8. Kurzer F, Douraghi-Zadeh K. Advances in the chemistry of carbodiimides. Chem Rev. 1967;67(2):107–52. doi:10.1021/cr60246a001.

    Article  CAS  Google Scholar 

  9. Williams A, Ibrahim IT. Carbodiimide chemistry: recent advances. Chem Rev. 1981;81(6):589–636. doi:10.1021/cr00046a004.

    Article  CAS  Google Scholar 

  10. Hunter MJ, Ludwig ML. The reaction of imidoesters with proteins and related small molecules. J Am Chem Soc. 1962;84(18):3491–504. doi:10.1021/ja00877a016.

    Article  CAS  Google Scholar 

  11. Heterobifunctional Cross-Linkers. In: Chemistry of Protein and Nucleic Acid Cross-Linking and Conjugation, Second Edition. CRC Press. 2011; 191–238. doi:10.1201/b11175-7.

  12. Monofunctional and Zero -Length Cross -Linking Reagents. In: Chemistry of Protein and Nucleic Acid Cross-Linking and Conjugation, Second Edition. CRC Press. 2011; 265–296. doi:10.1201/b11175-9.

  13. Hermanson GT. Chapter 5 - Homobifunctional Crosslinkers. In: Bioconjugate Techniques (Third edition). Academic Press, Boston. 2013; 275–298. doi:10.1016/B978-0-12-382239-0.00005-4.

  14. Patil US, Qu H, Caruntu D, O’Connor CJ, Sharma A, Cai Y, Tarr MA. Labeling Primary Amine Groups in Peptides and Proteins with N-Hydroxysuccinimidyl Ester Modified Fe(3)O(4)@SiO(2) Nanoparticles Containing Cleavable Disulfide-bond Linkers. Bioconjugate Chem. 2013; 24 (9). doi:10.1021/bc400165r.

  15. Klykov O, Weller MG. Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC). Anal Methods. 2015;7(15):6443–8. doi:10.1039/C5AY00042D.

    Article  CAS  Google Scholar 

  16. Fleet G, Porter R, Knowles J. Affinity labelling of antibodies with aryl nitrene as reactive group. Nature. 1969;224(5218):511–2.

    Article  CAS  Google Scholar 

  17. Bayley H, Knowles JR. [8] Photoaffinity labeling. In: Methods in Enzymology, vol Volume 46. Academic Press. 1977; 69–114. doi:10.1016/S0076-6879(77)46012-9.

  18. Brunner J. New photolabeling and crosslinking methods. Annu Rev Biochem. 1993;62:483–514. doi:10.1146/annurev.bi.62.070193.002411.

    Article  CAS  Google Scholar 

  19. Bayley H. Photogenerated reagents in biochemistry and molecular biology. In Laboratory Techniques in Biochemistry and Molecular Biology, vol 12. Elsevier, New York, Work TS, Burdon RH. Eds. 1983.

  20. Liu L, Engelhard MH, Yan M. Surface and interface control on photochemically initiated immobilization. J Am Chem Soc. 2006;128(43):14067–72. doi:10.1021/ja062802l.

    Article  CAS  Google Scholar 

  21. Brase S, Gil C, Knepper K, Zimmermann V. Organic azides: an exploding diversity of a unique class of compounds. Angew Chem (Int ed Engl). 2005;44(33):5188–240. doi:10.1002/anie.200400657.

    Article  CAS  Google Scholar 

  22. Meijer EW, Nijhuis S, Van Vroonhoven FCBM. Poly-1,2-azepines by the photopolymerization of phenyl azides. Precursors for conducting polymer films. J Am Chem Soc. 1988;110(21):7209–10. doi:10.1021/ja00229a043.

    Article  CAS  Google Scholar 

  23. Gomez N, Schmidt CE. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res Part A. 2007;81(1):135–49. doi:10.1002/jbm.a.31047.

    Article  Google Scholar 

  24. Jagur-Grodzinski J. Biomedical applications of electrically conductive polymeric systems. e-Polymers. 2012;12. doi:10.1515/epoly.2012.12.1.722

  25. Liu LH, Yan M. Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc Chem Res. 2010;43(11):1434–43. doi:10.1021/ar100066t.

    Article  CAS  Google Scholar 

  26. Liu LH, Lerner MM, Yan M. Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 2010;10(9):3754–6. doi:10.1021/nl1024744.

    Article  CAS  Google Scholar 

  27. Liu L-H, Yan M. Functionalization of pristine graphene with perfluorophenyl azides. J Mater Chem. 2011;21(10):3273–6. doi:10.1039/C0JM02765K.

    Article  CAS  Google Scholar 

  28. Al-Bataineh SA, Luginbuehl R, Textor M, Yan M. Covalent immobilization of antibacterial furanones via photochemical activation of perfluorophenylazide. Langmuir. 2009;25(13):7432–7. doi:10.1021/la900334w.

    Article  CAS  Google Scholar 

  29. Yakai FENGHZ, Li ZHANG, Jintang GUO. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Front Chem Sci Eng. 2010;4(3):372–81. doi:10.1007/s11705-010-0005-z.

    Article  Google Scholar 

  30. Harmer MA. Photomodification of surfaces using heterocyclic azides. Langmuir. 1991;7(10):2010–2. doi:10.1021/la00058a007.

    Article  CAS  Google Scholar 

  31. Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. Soft Matter. 2005;1(3):178–205. doi:10.1039/B501989C.

    Article  CAS  Google Scholar 

  32. Dubinsky L, Krom BP, Meijler MM. Diazirine based photoaffinity labeling. Bioorg Med Chem. 2012;20(2):554–70. doi:10.1016/j.bmc.2011.06.066.

    Article  CAS  Google Scholar 

  33. Dorman G, Prestwich GD. Benzophenone photophores in biochemistry. Biochemistry. 1994;33(19):5661–73.

    Article  CAS  Google Scholar 

  34. Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods. 2005;2(3):201–6. doi:10.1038/nmeth739.

    Article  CAS  Google Scholar 

  35. Borden WT, Gritsan NP, Hadad CM, Karney WL, Kemnitz CR, Platz MS. The interplay of theory and experiment in the study of phenylnitrene. Acc Chem Res. 2000;33(11):765–71.

    Article  CAS  Google Scholar 

  36. Gritsan NP, Platz MS. Kinetics, spectroscopy, and computational chemistry of arylnitrenes. Chem Rev. 2006;106(9):3844–67. doi:10.1021/cr040055+.

    Article  CAS  Google Scholar 

  37. Gritsan N, Platz M. Photochemistry of azides: the azide/nitrene interface. Chichester: Wiley; 2010.

    Google Scholar 

  38. Platz MS. Comparison of phenylcarbene and phenylnitrene. Acc Chem Res. 1995;28(12):487–92.

    Article  CAS  Google Scholar 

  39. Dunkin IR, Thomson PC. Pentafluorophenyl nitrene: a matrix isolated aryl nitrene thet does not undergo ring expansion. J Chem Soc Chem Commun. 1982;20:1192–3.

    Article  Google Scholar 

  40. Schrock AK, Schuster GB. Photochemistry of phenyl azide: chemical properties of the transient intermediates. J Am Chem Soc. 1984;106(18):5228–34.

    Article  CAS  Google Scholar 

  41. Leyva E, Platz MS, Persy G, Wirz J. Photochemistry of phenyl azide: the role of singlet and triplet phenylnitrene as transient intermediates. J Am Chem Soc. 1986;108(13):3783–90.

    Article  CAS  Google Scholar 

  42. Wentrup C, Winter HW. Isolation of diazacycloheptatetraenes from thermal nitrene-nitrene rearrangements. J Am Chem Soc. 1980;102(19):6159–61.

    Article  CAS  Google Scholar 

  43. Schnapp KA, Poe R, Leyva E, Soundararajan N, Platz MS. Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents. Bioconjug Chem. 1993;4(2):172–7.

    Article  CAS  Google Scholar 

  44. Tate JJ, Persinger J, Bartholomew B. Survey of four different photoreactive moieties for DNA photoaffinity labeling of yeast RNA polymerase III transcription complexes. Nucleic Acids Res. 1998;26(6):1421–6.

    Article  CAS  Google Scholar 

  45. Smith BA, Cramer CJ. How Do different fluorine substitution patterns affect the electronic state energies of phenylnitrene? J Am Chem Soc. 1996;118(23):5490–1.

    Article  CAS  Google Scholar 

  46. Leyva E, Sagredo R. Photochemistry of fluorophenyl azides in diethylamine. Nitrene reaction versus ring expansion. Tetrahedron. 1998;54(26):7367–74.

    Article  CAS  Google Scholar 

  47. Leyva E, Sagredo R, Moctezuma E. Photochemistry of fluorophenyl azides in aniline: asymmetric fluoroazobenzenes by N• H singlet nitrene insertion. J Fluor Chem. 2004;125(5):741–7.

    Article  CAS  Google Scholar 

  48. Albini A, Bettinetti G, Minoli G. The effect of the p-nitro group on the chemistry of phenylnitrene. A study via intramolecular trapping. J Chem Soc Perkin Trans. 1999;2(12):2803–7.

    Article  Google Scholar 

  49. Liang TY, Schuster GB. Photochemistry of 3-and 4-nitrophenyl azide: detection and characterization of reactive intermediates. J Am Chem Soc. 1987;109(25):7803–10.

    Article  CAS  Google Scholar 

  50. Nina PG, Elena AP. The mechanism of photolysis of aromatic azides. Russ Chem Rev. 1992;61(5):500.

    Article  Google Scholar 

  51. Mikhail FB, Kantor MM, Mikhail VA. The photochemistry of phenyl azide. Russ Chem Rev. 1992;61(1):25.

    Article  Google Scholar 

  52. Bora U, Kannan K, Nahar P. A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules. J Membr Sci. 2005;250(1):215–22.

    Article  CAS  Google Scholar 

  53. Bora U, Sharma P, Kumar S, Kannan K, Nahar P. Photochemical activation of a polycarbonate surface for covalent immobilization of a protein ligand. Talanta. 2006;70(3):624–9.

    Article  CAS  Google Scholar 

  54. Chong L-W, Chou Y-N, Lee Y-L, Wen T-C, Guo T-F. Hole-injection enhancement of top-emissive polymer light-emitting diodes by P3HT/FNAB modification of Ag anode. Org Electron. 2009;10(6):1141–5.

    Article  CAS  Google Scholar 

  55. Deepa M, Bhandari S, Kant R. A comparison of charge transport behavior in functionalized and non-functionalized poly 3, 4-(ethylenedioxythiophene) films. Electrochim Acta. 2009;54(4):1292–303.

    Article  CAS  Google Scholar 

  56. Bhandari S, Deepa M, Srivastava AK, Kant R. Post-polymerization functionalization of poly (3, 4-ethylenedioxythiophene) films by 1-fluoro-2-nitro-4-azidobenzene: electrochromism and redox behavior. J Mater Chem. 2009;19(16):2336–48.

    Article  CAS  Google Scholar 

  57. Chen R, Cole N, Willcox MD, Park J, Rasul R, Carter E, et al. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling. 2009;25(6):517–24. doi:10.1080/08927010902954207.

    Article  CAS  Google Scholar 

  58. Fleet GW, Knowles JR, Porter RR. The antibody binding site. Labelling of a specific antibody against the photo-precursor of an aryl nitrene. Biochem J. 1972;128(3):499–508.

    Article  CAS  Google Scholar 

  59. Guire P. [21] Photochemical immobilization of enzymes and other biochemicals. In: Methods in Enzymology, vol Volume 44. Academic Press. 1976;280–288. doi:10.1016/S0076-6879(76)44023-5.

  60. Jacobs S, Hazum E, Shechter Y, Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci U S A. 1979;76(10):4918–21.

    Article  CAS  Google Scholar 

  61. Gorman JJ, Folk JE. Transglutaminase amine substrates for photochemical labeling and cleavable cross-linking of proteins. J Biol Chem. 1980;255(3):1175–80.

    CAS  Google Scholar 

  62. Naqvi A, Nahar P. Photochemical immobilization of proteins on microwave-synthesized photoreactive polymers. Anal Biochem. 2004;327(1):68–73. doi:10.1016/j.ab.2003.11.026.

    Article  CAS  Google Scholar 

  63. Nahar P, Wali NM, Gandhi RP. Light-induced activation of an inert surface for covalent immobilization of a protein ligand. Anal Biochem. 2001;294(2):148–53. doi:10.1006/abio.2001.5168.

    Article  CAS  Google Scholar 

  64. Nahar P, Naqvi A, Basir SF. Sunlight-mediated activation of an inert polymer surface for covalent immobilization of a protein. Anal Biochem. 2004;327(2):162–4. doi:10.1016/j.ab.2003.11.030.

    Article  CAS  Google Scholar 

  65. Kumar S, Nahar P. Sunlight-induced covalent immobilization of proteins. Talanta. 2007;71(3):1438–40. doi:10.1016/j.talanta.2006.06.029.

    Article  CAS  Google Scholar 

  66. Kannoujia DK, Ali S, Nahar P. Pressure-induced covalent immobilization of enzymes onto solid surface. Biochem Eng J. 2009;48(1):136–40. doi:10.1016/j.bej.2009.09.005.

    Article  CAS  Google Scholar 

  67. Sharma P, Kannoujia DK, Basir SF, Nahar P. Rapid immobilization of enzymes onto solid supports by ultrasound waves. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(5):289–92. doi:10.3109/10731199.2011.563361.

    Article  CAS  Google Scholar 

  68. Nahar P, Bora U. Microwave-mediated rapid immobilization of enzymes onto an activated surface through covalent bonding. Anal Biochem. 2004;328(1):81–3. doi:10.1016/j.ab.2003.12.031.

    Article  CAS  Google Scholar 

  69. Bora U, Sharma P, Kannan K, Nahar P. Photoreactive cellulose membrane—A novel matrix for covalent immobilization of biomolecules. J Biotechnol. 2006;126(2):220–9.

    Article  CAS  Google Scholar 

  70. Chen S, Jean Chen S, Xu Q-P. 4-Fluoro-3-nitrophenyl azide, a selective photoaffinity label for type B monoamine oxidase. Biochem Pharmacol. 1985;34(6):781–8. doi:10.1016/0006-2952(85)90758-0.

    Article  CAS  Google Scholar 

  71. Chen SA, Shih JC, Hsu MC, Xu QP. Photoaffinity labeling of beef liver monoamine oxidase-B by 4-fluoro-3-nitrophenyl azide. Biochem Pharmacol. 1987;36(6):937–43.

    Article  CAS  Google Scholar 

  72. Hsu MC, Shih JC. Photoaffinity labeling of human placental monoamine oxidase-A by 4-fluoro-3-nitrophenyl azide. Mol Pharmacol. 1988;33(2):237–41.

    CAS  Google Scholar 

  73. Naqvi A, Nahar P, Gandhi RP. Introduction of functional groups onto polypropylene and polyethylene surfaces for immobilization of enzymes. Anal Biochem. 2002;306(1):74–8. doi:10.1006/abio.2002.5675.

    Article  CAS  Google Scholar 

  74. Kumar S, Chauhan VS, Nahar P. Preparation of biomolecule-ligated polystyrene cuvets and their applications in diagnostics. Microchem J. 2008;89(2):148–52. doi:10.1016/j.microc.2008.01.009.

    Article  CAS  Google Scholar 

  75. Kumar S, Chauhan VS, Nahar P. Invertase embedded-PVC tubing as a flow-through reactor aimed at conversion of sucrose into inverted sugar. Enzym Microb Technol. 2008;43(7):517–22. doi:10.1016/j.enzmictec.2008.08.002.

    Article  CAS  Google Scholar 

  76. Bukhari A, Idris A, Atta M, Loong TC. Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification. Chin J Catal. 2014;35(9):1555–64. doi:10.1016/S1872-2067(14)60111-X.

    Article  CAS  Google Scholar 

  77. Pundir S, Gera A, Pundir CS. Photochemical immobilization of cucurbita fruit ascorbate oxidase onto polyethylene disc for determination of ascorbate in serum and foodstuffs. Artif Cells, Blood Substit Biotechnol. 2011;39(5):324–9. doi:10.3109/10731199.2011.573481.

    Article  CAS  Google Scholar 

  78. Kumar AK, Shamsher S. An efficient immobilization of Streptomyces sp. STL-D8 lipase onto photo-chemically modified cellulose-based natural fibers and its application in ethyl ferulate synthesis. Trends Carbohydr Res. 2012;4(4):13–23.

    CAS  Google Scholar 

  79. Ahirwar R, Vellarikkal SK, Sett A, Sivasubbu S, Scaria V, Bora U, et al. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLoS ONE. 2016;11(4), e0153001. doi:10.1371/journal.pone.0153001.

    Article  Google Scholar 

  80. Ahirwar R, Nahar P. Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis. J Agric Food Chem. 2015;63(16):4104–11. doi:10.1021/acs.jafc.5b00784.

    Article  CAS  Google Scholar 

  81. Parween S, Nahar P. Image-based ELISA on an activated polypropylene microtest plate--a spectrophotometer-free low cost assay technique. Biosens Bioelectron. 2013;48:287–92. doi:10.1016/j.bios.2013.04.020.

    Article  CAS  Google Scholar 

  82. Bora U, Chugh L, Nahar P. Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures. J Immunol Methods. 2002;268(2):171–7. doi:10.1016/S0022-1759(02)00212-0.

    Article  CAS  Google Scholar 

  83. Bora U, Kannan K, Nahar P. Heat-mediated enzyme-linked immunosorbent assay procedure on a photoactivated surface. J Immunol Methods. 2004;293(1-2):43–50. doi:10.1016/j.jim.2004.06.023.

    Article  CAS  Google Scholar 

  84. Kumar S, Ghosh L, Kumar S, Ghosh B, Nahar P. A rapid method for detection of cell adhesion molecules (CAMs) on human umbilical vein endothelial cells (HUVECs). Talanta. 2007;73(3):466–70. doi:10.1016/j.talanta.2007.04.016.

    Article  CAS  Google Scholar 

  85. Sharma P, Gupta B, Farhat Basir S, Rani Das H, Nahar P. Rapid and sensitive detection of autoantibody in rheumatoid arthritis patients by heat-mediated ELISA. Clin Biochem. 2008;41(1-2):97–102. doi:10.1016/j.clinbiochem.2007.09.016.

    Article  CAS  Google Scholar 

  86. Kannoujia DK, Nahar P. Pressure: a novel tool for enzyme-linked immunosorbent assay procedure. BioTech. 2009;46(6):468–72. doi:10.2144/000113118.

    Article  CAS  Google Scholar 

  87. Sharma P, Nahar P. Ultrasound wave-mediated enzyme-linked immunosorbent assay technique. Anal Chim Acta. 2009;650(2):241–6. doi:10.1016/j.aca.2009.07.047.

    Article  CAS  Google Scholar 

  88. Nahar P, Bora U, Sharma GL, Kannoujia DK. Microwave-mediated enzyme-linked immunosorbent assay procedure. Anal Biochem. 2012;421(2):764–6. doi:10.1016/j.ab.2011.09.029.

    Article  CAS  Google Scholar 

  89. Ahirwar R, Tanwar S, Bora U, Nahar P. Microwave non-thermal effect reduces ELISA timing to less than 5 minutes. RSC Adv. 2016;6(25):20850–7. doi:10.1039/C5RA27261K.

    Article  CAS  Google Scholar 

  90. Ahirwar R, Nahar S, Aggarwal S, Ramachandran S, Maiti S, Nahar P. In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci Rep. 2016;6:21285. doi:10.1038/srep21285. http://www.nature.com/articles/srep21285#supplementary-information.

    Article  CAS  Google Scholar 

  91. Ito Y. Photoimmobilization for microarrays. Biotechnol Prog. 2006;22(4):924–32. doi:10.1021/bp060143a.

    Article  CAS  Google Scholar 

  92. Pei Z, Yu H, Theurer M, Walden A, Nilsson P, Yan M, et al. Photogenerated carbohydrate microarrays. Chembiochem: Eur J Chem Biol. 2007;8(2):166–8. doi:10.1002/cbic.200600447.

    Article  CAS  Google Scholar 

  93. Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8(6):1775–89. doi:10.1021/bm061197b.

    Article  CAS  Google Scholar 

  94. Ohyama K, Omura K, Ito Y. A photo-immobilized allergen microarray for screening of allergen-specific IgE. Allergol Int. 2005;54(4):627–31. doi:10.2332/allergolint.54.627.

    Article  CAS  Google Scholar 

  95. Hook AL, Thissen H, Voelcker NH. Advanced substrate fabrication for cell microarrays. Biomacromolecules. 2009;10(3):573–9. doi:10.1021/bm801217n.

    Article  CAS  Google Scholar 

  96. Kakiyama T, Usui K, K-y T, Mie M, Kobatake E, Mihara H. A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polym J. 2013;45(5):535–9. doi:10.1038/pj.2013.20.

    Article  CAS  Google Scholar 

  97. Kannoujia DK, Ali S, Nahar P. Single-step covalent immobilization of oligonucleotides onto solid surface. Anal Methods. 2010;2(3):212–6.

    Article  CAS  Google Scholar 

  98. Ahirwar R, Tanwar S, Parween S, Kumar A, Nahar P. Image-based detection of oligonucleotides--a low cost alternative to spectrophotometric or fluorometric methods. Analyst. 2014;139(9):2186–92. doi:10.1039/c3an02402d.

    Article  CAS  Google Scholar 

  99. Sharma P, Basir SF, Nahar P. Photoimmobilization of unmodified carbohydrates on activated surface. J Colloid Interface Sci. 2010;342(1):202–4.

    Article  CAS  Google Scholar 

  100. Jenkins ATA. Tutorial Review: Modern Biological Sensors. In: Surface Design: Applications in Bioscience and Nanotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, 2009; 81–101. doi:10.1002/9783527628599.ch4.

  101. Park C, Lee C, Kwon O. Conducting Polym Based Nanobiosensors Polym. 2016;8(7):249.

    Google Scholar 

  102. Arya SK, Solanki PR, Singh RP, Pandey MK, Datta M, Malhotra BD. Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. Talanta. 2006;69(4):918–26.

    Article  CAS  Google Scholar 

  103. Arya SK, Solanki PR, Singh SP, Kaneto K, Pandey MK, Datta M, et al. Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron. 2007;22(11):2516–24. doi:10.1016/j.bios.2006.10.011.

    Article  CAS  Google Scholar 

  104. Pandey CM, Singh R, Sumana G, Pandey MK, Malhotra BD. Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors Actuators B Chem. 2011;151(2):333–40. doi:10.1016/j.snb.2010.07.046.

    Article  CAS  Google Scholar 

  105. Bora U, Kannoujia DK, Kumar S, Sharma P, Nahar P. Photochemical activation of polyethylene glycol and its application in PEGylation of protein. Process Biochem. 2011;46(6):1380–3. doi:10.1016/j.procbio.2011.03.004.

    Article  CAS  Google Scholar 

  106. Kumar S, Kannoujia DK, Naqvi A, Nahar P. A novel proteinaceous photolinker for simultaneous binding to an inert surface and a biomolecule. Biochem Eng J. 2009;47(1–3):132–5. doi:10.1016/j.bej.2009.07.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CARDIOMED (BSC0122) project of the Council of Scientific and Industrial Research, New Delhi, India. S.K. thanks the SERB-Department of Science and Technology, Government of India, for the award of Fast Track Young Scientist Fellowship. R. A. thanks the Council of Scientific and Industrial Research, New Delhi, India for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Nahar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Saroj Kumar, Dileep Kumar and Rajesh Ahirwar contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, D., Ahirwar, R. et al. Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation. Anal Bioanal Chem 408, 6945–6956 (2016). https://doi.org/10.1007/s00216-016-9803-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9803-6

Keywords

Navigation