Skip to main content
Log in

Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that catalyzes removal of post-translational modifications, such as succinyl and malonyl moieties, on lysine residues. In light of SIRT5’s roles in regulating metabolism, and its reported oncogenic functions, SIRT5 modulators would be valuable tools for basic biological research and perhaps clinically. Several fluorescence assays for sirtuin modulators have been developed; however, the use of fluorogenic substrates has the potential to cause false positive results due to interactions of engineered substrates with enzyme or test compounds. Therefore, development of high-throughput screening (HTS) assays based on other methods is valuable. In this study, we report the development of a SIRT5 assay using microchip electrophoresis (MCE) for identification of SIRT5 modulators. A novel SIRT5 substrate based on succinate dehydrogenase (SDH) was developed to allow rapid and efficient separation of substrate and product peptide. To achieve high throughput, samples were injected onto the microchip using a droplet-based scheme. By coupling this approach to existing HTS sample preparation workflows, 1408 samples were analyzed at 0.5 Hz in 46 min. Using a 250 ms separation time, eight MCE injections could be made from each sample generating >11,000 electropherograms during analysis. Of the 1280 chemicals tested, eight were identified as inhibiting SIRT5 activity by at least 70 % and verified by dose-response analysis.

Overview of high-throughput screening using droplet samples and microchip electrophoresis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S-i I, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    Article  Google Scholar 

  2. Imai S-i, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31(5):212–220

    Article  CAS  Google Scholar 

  3. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (2013) SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443):110–113

    Article  CAS  Google Scholar 

  4. Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288(43):31350–31356

    Article  CAS  Google Scholar 

  5. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809

    Article  CAS  Google Scholar 

  6. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63

    Article  CAS  Google Scholar 

  7. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He T-C, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10 (12):M111.012658

  8. Rardin Matthew J, He W, Nishida Y, Newman John C, Carrico C, Danielson Steven R, Guo A, Gut P, Sahu Alexandria K, Li B, Uppala R, Fitch M, Riiff T, Zhu L, Zhou J, Mulhern D, Stevens Robert D, Ilkayeva Olga R, Newgard Christopher B, Jacobson Matthew P, Hellerstein M, Goetzman Eric S, Gibson Bradford W, Verdin E (2013) SIRT5 Regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18(6):920–933

    Article  CAS  Google Scholar 

  9. Tan M, Peng C, Anderson Kristin A, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner Gregory R, Green Michelle F, Madsen Andreas S, Schmiesing J, Peterson Brett S, Xu G, Ilkayeva Olga R, Muehlbauer Michael J, Braulke T, Mühlhausen C, Backos Donald S, Olsen Christian A, McGuire Peter J, Pletcher Scott D, Lombard David B, Hirschey Matthew D, Zhao Y (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19(4):605–617

    Article  CAS  Google Scholar 

  10. Nishida Y, Rardin Matthew J, Carrico C, He W, Sahu Alexandria K, Gut P, Najjar R, Fitch M, Hellerstein M, Gibson Bradford W, Verdin E (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59(2):321–332

    Article  CAS  Google Scholar 

  11. Bao X, Wang Y, Li X, Li X-M, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD (2014) Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3:e02999

  12. Park J, Chen Y, Tishkoff Daniel X, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans Bernadette MM, Skinner Mary E, Lombard David B, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930

    Article  CAS  Google Scholar 

  13. Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3):560–570

    Article  CAS  Google Scholar 

  14. Ogura M, Nakamura Y, Tanaka D, Zhuang X, Fujita Y, Obara A, Hamasaki A, Hosokawa M, Inagaki N (2010) Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 393(1):73–78

    Article  CAS  Google Scholar 

  15. Lin Z-F, Xu H-B, Wang J-Y, Lin Q, Ruan Z, Liu F-B, Jin W, Huang H-H, Chen X (2013) SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun 441(1):191–195

    Article  CAS  Google Scholar 

  16. Yu J, Sadhukhan S, Noriega LG, Moullan N, He B, Weiss RS, Lin H, Schoonjans K, Auwerx J (2013) Metabolic characterization of a Sirt5 deficient mouse model. Sci Rep 3:2806

    Google Scholar 

  17. Kumar S, Lombard DB (2014) Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 22(12):1060–1077

    Article  Google Scholar 

  18. Sebastián C, Mostoslavsky R (2015) The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2015.07.008

    Google Scholar 

  19. Lu W, Zuo Y, Feng Y, Zhang M (2014) SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumor Biol 35(11):10699–10705

    Article  CAS  Google Scholar 

  20. Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195

    Article  CAS  Google Scholar 

  21. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  Google Scholar 

  22. Kokkonen P, Rahnasto-Rilla M, Mellini P, Jarho E, Lahtela-Kakkonen M, Kokkola T (2014) Studying SIRT6 regulation using H3K56 based substrate and small molecules. Eur J Pharm Sci 63:71–76

    Article  CAS  Google Scholar 

  23. Madsen AS, Olsen CA (2012) Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme. J Med Chem 55(11):5582–5590

    Article  CAS  Google Scholar 

  24. Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Rio AD, Nencioni A (2014) Discovery of novel and selective SIRT6 inhibitors. J Med Chem 57(11):4796–4804

    Article  CAS  Google Scholar 

  25. Wegener D, Hildmann C, Riester D, Schwienhorst A (2003) Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal Biochem 321(2):202–208

    Article  CAS  Google Scholar 

  26. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang Y, Becker KG, Khraiwesh H, González-Reyes JA, Villalba JM, Baur JA, Elliott P, Westphal C, Vlasuk GP, Ellis JL, Sinclair DA, Bernier M, de Cabo R (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13(5):787–796

    Article  CAS  Google Scholar 

  27. Mitchell Sarah J, Martin-Montalvo A, Mercken Evi M, Palacios Hector H, Ward Theresa M, Abulwerdi G, Minor Robin K, Vlasuk George P, Ellis James L, Sinclair David A, Dawson J, Allison David B, Zhang Y, Becker Kevin G, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6(5):836–843

    Article  CAS  Google Scholar 

  28. Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624

    Article  CAS  Google Scholar 

  29. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and Resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    Article  CAS  Google Scholar 

  30. Smith BC, Hallows WC, Denu JM (2009) A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal Biochem 394(1):101–109

    Article  CAS  Google Scholar 

  31. Roessler C, Tüting C, Meleshin M, Steegborn C, Schutkowski M (2015) A novel continuous assay for the deacylase sirtuin 5 and other deacetylases. J Med Chem 58(18):7217–7223

    Article  CAS  Google Scholar 

  32. Fischer F, Gertz M, Suenkel B, Lakshminarasimhan M, Schutkowski M, Steegborn C (2012) Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS ONE 7(9), e45098

    Article  CAS  Google Scholar 

  33. Roessler C, Nowak T, Pannek M, Gertz M, Nguyen GTT, Scharfe M, Born I, Sippl W, Steegborn C, Schutkowski M (2014) Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew Chem Int Ed 53(40):10728–10732

    Article  CAS  Google Scholar 

  34. Li Y, Huang W, You L, Xie T, He B (2015) A FRET-based assay for screening SIRT5 specific modulators. Bioorg Med Chem Lett 25(8):1671–1674

    Article  CAS  Google Scholar 

  35. Fan Y, Ludewig R, Imhof D, Scriba GKE (2008) Development of a capillary electrophoresis-based assay of sirtuin enzymes. Electrophoresis 29(18):3717–3723

    Article  CAS  Google Scholar 

  36. Fan Y, Ludewig R, Scriba GKE (2009) 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes. Anal Biochem 387(2):243–248

    Article  CAS  Google Scholar 

  37. Liu Y, Gerber R, Wu J, Tsuruda T, McCarter JD (2008) High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay. Anal Biochem 378(1):53–59

    Article  CAS  Google Scholar 

  38. Ohla S, Beyreiss R, Scriba GKE, Fan Y, Belder D (2010) An integrated on-chip sirtuin assay. Electrophoresis 31(19):3263–3267

    Article  CAS  Google Scholar 

  39. Abromeit H, Kannan S, Sippl W, Scriba GKE (2012) A new nonpeptide substrate of human sirtuin in a capillary electrophoresis-based assay. Investigation of the binding mode by docking experiments. Electrophoresis 33(11):1652–1659

    Article  CAS  Google Scholar 

  40. Fan Y, Hense M, Ludewig R, Weisgerber C, Scriba GKE (2011) Capillary electrophoresis-based sirtuin assay using non-peptide substrates. J Pharm Biomed Anal 54(4):772–778

    Article  CAS  Google Scholar 

  41. Pei J, Nie J, Kennedy RT (2010) Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities. Anal Chem 82(22):9261–9267

    Article  CAS  Google Scholar 

  42. Perrin D, Frémaux C, Shutes A (2009) Capillary microfluidic electrophoretic mobility shift assays: application to enzymatic assays in drug discovery. Expert Opin Drug Discovery 5(1):51–63

    Article  Google Scholar 

  43. Shanmuganathan M, Britz-McKibbin P (2013) High quality drug screening by capillary electrophoresis: a review. Anal Chim Acta 773:24–36

    Article  CAS  Google Scholar 

  44. Guetschow ED, Steyer DJ, Kennedy RT (2014) Subsecond electrophoretic separations from droplet samples for screening of enzyme modulators. Anal Chem 86(20):10373–10379

    Article  CAS  Google Scholar 

  45. DeLaMarre MF, Shippy SA (2014) Development of a simplified microfluidic injector for analysis of droplet content via capillary electrophoresis. Anal Chem 86(20):10193–10200

    Article  CAS  Google Scholar 

  46. Niu X, Pereira F, Edel JB, de Mello AJ (2013) Droplet-interfaced microchip and capillary electrophoretic separations. Anal Chem 85(18):8654–8660

    Article  CAS  Google Scholar 

  47. Niu XZ, Zhang B, Marszalek RT, Ces O, Edel JB, Klug DR, deMello AJ (2009) Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chem Commun 41:6159–6161

    Article  Google Scholar 

  48. Roman GT, Wang M, Shultz KN, Jennings C, Kennedy RT (2008) Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device. Anal Chem 80(21):8231–8238

    Article  CAS  Google Scholar 

  49. Wang M, Roman GT, Perry ML, Kennedy RT (2009) Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal Chem 81(21):9072–9078

    Article  CAS  Google Scholar 

  50. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261(5123):895–897

    Article  CAS  Google Scholar 

  51. Roper MG, Shackman JG, Dahlgren GM, Kennedy RT (2003) Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal Chem 75(18):4711–4717

    Article  CAS  Google Scholar 

  52. Simpson PC, Roach D, Woolley AT, Thorsen T, Johnston R, Sensabaugh GF, Mathies RA (1998) High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci U S A 95(5):2256–2261

    Article  CAS  Google Scholar 

  53. Chabert M, Dorfman KD, de Cremoux P, Roeraade J, Viovy J-L (2006) Automated microdroplet platform for sample manipulation and polymerase chain reaction. Anal Chem 78(22):7722–7728

    Article  CAS  Google Scholar 

  54. Pei J, Li Q, Lee MS, Valaskovic GA, Kennedy RT (2009) Analysis of samples stored as individual plugs in a capillary by electrospray ionization mass spectrometry. Anal Chem 81(15):6558–6561

    Article  CAS  Google Scholar 

  55. Jacobson SC, Hergenroder R, Moore AW Jr, Ramsey JM (1994) Precolumn reactions with electrophoretic analysis integrated on a microchip. Anal Chem 66(23):4127–4132

    Article  CAS  Google Scholar 

  56. Jacobson SC, Koutny LB, Hergenroeder R, Moore AW, Ramsey JM (1994) Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal Chem 66(20):3472–3476

    Article  CAS  Google Scholar 

  57. Shackman JG, Watson CJ, Kennedy RT (2004) High-throughput automated post-processing of separation data. J Chromatogr A 1040(2):273–282

    Article  CAS  Google Scholar 

  58. Cosgrove MS, Bever K, Avalos JL, Muhammad S, Zhang X, Wolberger C (2006) The structural basis of sirtuin substrate affinity. Biochemistry 45(24):7511–7521

    Article  CAS  Google Scholar 

  59. Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3(8):466–479

    Article  CAS  Google Scholar 

  60. von Ahsen O, Bömer U (2005) High-throughput screening for kinase inhibitors. ChemBioChem 6(3):481–490

    Article  Google Scholar 

  61. Schuetz A, Min J, Antoshenko T, Wang C-L, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN (2007) Structural basis of inhibition of the human NAD + -dependent deacetylase SIRT5 by suramin. Structure 15(3):377–389

    Article  CAS  Google Scholar 

  62. Maurer B, Rumpf T, Scharfe M, Stolfa DA, Schmitt ML, He W, Verdin E, Sippl W, Jung M (2012) Inhibitors of the NAD + -dependent protein desuccinylase and demalonylase Sirt5. ACS Med Chem Lett 3(12):1050–1053

    Article  CAS  Google Scholar 

  63. He B, Du J, Lin H (2012) Thiosuccinyl peptides as sirt5-specific inhibitors. J Am Chem Soc 134(4):1922–1925

    Article  CAS  Google Scholar 

  64. Sun S, Kennedy RT (2014) Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors. Anal Chem 86(18):9309–9314

    Article  CAS  Google Scholar 

  65. Suenkel B, Fischer F, Steegborn C (2013) Inhibition of the human deacylase sirtuin 5 by the indole GW5074. Bioorg Med Chem Lett 23(1):143–146

    Article  CAS  Google Scholar 

  66. Su J, Chang C, Xiang Q, Zhou Z-W, Luo R, Yang L, He Z-X, Yang H, Li J, Bei Y, Xu J, Zhang M, Zhang Q, Su Z, Huang Y, Pang J, Zhou S-F (2014) Xyloketal B, a marine compound, acts on a network of molecular proteins and regulates the activity and expression of rat cytochrome P450 3a: a bioinformatic and animal study. Drug Des Devel Ther 8:2555–2602

    CAS  Google Scholar 

  67. Kainkaryam RM, Woolf PJ (2009) Pooling in high-throughput drug screening. Curr Open Drug Discov Dev 12(3):339–350

    CAS  Google Scholar 

Download references

Acknowledgments

R.T.K and E.D.G were supported by National Institutes of Health grant R01GM102236, the National Institutes of Health Microfluidics in Biomedical Sciences Training Program at University of Michigan T32 EB005582, and the American Chemical Society Division of Analytical Chemistry Graduate Fellowship sponsored by Eli Lilly and Company. D.B.L and S.K. were supported by National Institutes of Health grant R01GM101171, the Glenn Foundation for Medical Research, the National Center for Advancing Translational Sciences of the National Institutes of Health under award UL1TR000433, Department of Defense support for Ovarian Cancer grant OC140123, and the John S. and Suzanne C. Munn Cancer Fund of the University of Michigan Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Kennedy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guetschow, E.D., Kumar, S., Lombard, D.B. et al. Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples. Anal Bioanal Chem 408, 721–731 (2016). https://doi.org/10.1007/s00216-015-9206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9206-0

Keywords

Navigation