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Near-infrared (NIR) hyperspectral imaging and multivariate
image analysis to study growth characteristics and differences
between species and strains of members of the genus
Fusarium
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Abstract Near-infrared (NIR) hyperspectral imaging was
used to study three strains of each of three Fusarium spp.
(Fusarium subglutinans, Fusarium proliferatum and Fusa-
rium verticillioides) inoculated on potato dextrose agar in
Petri dishes after either 72 or 96 h of incubation. Multivar-
iate image analysis was used for cleaning the images and for
making principal component analysis (PCA) score plots and
score images and local partial least squares discriminant
analysis (PLS-DA) models. The score images, including
all strains, showed how different the strains were from each
other. Using classification gradients, it was possible to show
the change in mycelium growth over time. Loading line
plots for principal component (PC) 1 and PC2 explained
variation between the different Fusarium spp. as scattering
and chemical differences (protein production), respectively.
PLS-DA prediction results (including only the most impor-
tant strain of each species) showed that it was possible to
discriminate between species with F. verticillioides the least
correctly predicted (between 16 and 47 % pixels correctly
predicted). For F. subglutinans, 78–100 % pixels were cor-
rectly predicted depending on the training and test sets used.
Similarly, the percentage correctly predicted values of F.
proliferatum were 60–80 %. Visualisation of the mycelium
radial growth in the PCA score images was made possible

due to the use of NIR hyperspectral imaging. This is not
possible with bulk spectroscopy in the visible or NIR
regions.
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Introduction

Fungi are ubiquitous in nature and grow on most substrates
under optimal conditions [1]. They are common in tropical
and temperate regions and are also found in desert, alpine
and arctic areas where harsh climatic conditions prevail.
Fusarium spp. are mostly regarded as soil-borne fungi
where they are abundant and associated with plants as either
parasites or saprophytes [1, 2].

Mycotoxin production by Fusarium spp. is of primary
concern to the food industry. They are known to produce
fumonisins, trichothecenes and zearalenones, as well as
other minor mycotoxins. Of these, the fumonisins are of
particular importance and concern. These toxins are natural
contaminants of cereal grains worldwide and are mostly
found in maize and products derived from maize. Fumoni-
sins have cancer-promoting activity [3]. Furthermore, Fusa-
rium verticillioides strain MRC 0826, isolated from mouldy
maize, was shown to cause ELEM in horses, porcine pul-
monary edema syndrome in pigs and liver cancer in rats
[3–7].

The taxonomy of Fusarium spp. has always been a
disputable issue [1, 8] and is known as a genus in which it
is difficult to distinguish species [9]. The taxonomy has
been inundated by varying species concepts, with as few
as 9 or well over 1,000 species being recognised [8].
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Because of its abundance and the inordinate economic im-
portance of the members of this genus, it is essential to be
able to easily and accurately identify the various species.

Conventional identification methods at species level in-
volve plating out on appropriate media, description of colo-
nies (texture, colour and pigment) and microscopic
description of conidiogenous cells and conidia [10]. Because
variation of important characteristics such as pigmentation
and growth rate is often seen within a given species, only
well-trainedmycologists are able to perform the identification.
Other more complex techniques involve molecular techniques
such as polymerase chain reaction assays [11, 12], DNA
sequencing [10, 13] and mass spectrometry [14, 15]. These
techniques are time-consuming, as well as expensive, require
specialised technicians, specialised instrumentation and te-
dious sample preparation. Rapid techniques are thus re-
quired for identification and differentiation of fungal
species.

Near-infrared (NIR) hyperspectral imaging is an imaging
technique in which spectral and spatial information are
combined to obtain NIR hyperspectral images [16–19].
NIR hyperspectral images are three-dimensional arrays of
the form, X (m×n×λ), where m and n are the spatial axes
information and the λ axis represents the spectral informa-
tion. The three-dimensional structure of the hypercube
requires reorganisation to a two-dimensional matrix to adapt
the image for further pre-treatments.

Statistical treatments such as principal component analy-
sis (PCA), an unsupervised classification or dimensionality
reduction technique [20], can be applied to the data. It
reduces the data to a much smaller number of principal
components (PCs) and can be used as an exploratory tech-
nique. PC score images and score plots are used interactive-
ly to investigate sample images for special features or
irregularities in samples. If anomalies are observed during
interpretation of cleaned images (irrelevant pixels have been
removed), they will most likely be due to relevant variation
between samples which could be either chemical or physi-
cal. This observed variation can be explained by studying
the accompanying PC loading line plots.

Partial least squares (PLS) regression is a powerful re-
gression technique that uses the latent variable approach to
find the fundamental relations between two matrices (X and
Y) [21–23]. PLS uses the y-data structure to decompose X
so that the outcome constitutes an optimal regression vector.
Partial least squares discriminant analysis (PLS-DA) oper-
ates similarly; however, instead of measured y-data, dummy
variables are used which are indicators of groups [24]. This
allows for prediction of group membership and thus classi-
fication of pixels.

Recently, NIR hyperspectral imaging has been used more
frequently in food applications with particular reference to
food safety aspects such as detection of fungi on maize

kernels [25, 26], early detection of fungal infection on
maize [27], detection of chicken heart disease [28], the
detection of faecal matter and ingesta on chicken carcasses
[29–31], the detection of faecal contamination on apples
[32–34] and for the detection of foreign objects in semolina
[35] and chicken fillets [36]. Thus far, not much work has
been done applying NIR hyperspectral imaging in microbio-
logical studies.

An earlier study investigated NIR hyperspectral imaging
as a tool for high-throughput analysis of self-contained
microbial identification of test cards for microorganisms of
concern in food [37]. In this preliminary work, a NIR
chemical imaging system operating in the spectral range
1,000–2,350 nm was used to acquire NIR chemical images
of bacterial cells deposited on a ‘card’, containing both the
calibration and test samples. Results showed that some
bacteria could be identified from differences observed at
unique wavelengths and that a standard operating procedure
could be developed for a particular ‘card’ to differentiate
and hence identify the various organisms it contains using
discrete wavelengths. In another study, the detection of
Campylobacter was investigated with detection accuracies
between 97 and 99 % [38]. In this study, an instrument
operating in the 400–900-nm wavelength range was used,
employing the visible and NIR regions. The disadvantage of
this range is that it includes the visible wavelength region,
and these models rely on colour as a discriminating tool. A
study on the differentiation of toxigenic fungi used a similar
wavelength range of 400–1,000 nm and achieved classifi-
cation accuracy of 97.7 % [39]. Five fungal species were
selected, i.e. Penicillium chrysogenum, F. verticillioides,
Aspergillus parasiticus, Trichoderma viride and Aspergillus
flavus, and all could be classified using three narrow bands
(bandwidth02.43 nm) centred at 743, 458 and 541 nm. The
last two wavelengths are associated with blue and green,
respectively, and resulted in the high accuracy of the classi-
fication since four of the five organisms appeared blue/green
when cultured on the appropriate medium.

The purpose of the current study was to investigate the
use of NIR hyperspectral imaging and multivariate image
analysis techniques to differentiate between species and
strains of the genus Fusarium associated with maize.

Experimental

Sample preparation

Three strains of each of three Fusarium spp. as shown in
Table 1 were kindly supplied by the Department of Plant
Pathology, Stellenbosch University, South Africa. The
strains were streaked out from a frozen stock solution onto
potato dextrose agar (PDA; Merck (Pty) Ltd, Cape Town,
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South Africa) and incubated at 28 °C in Petri dishes for a
total of 96 h.

NIR hyperspectral imaging system and image collection

Hyperspectral images were acquired with the SisuCHEMA
short wave infrared camera (Specim, Spectral Imaging Ltd,
Oulu, Finland). The camera comprised an imaging spectro-
graph coupled to a 2-D array mercury–cadmium–telluride
detector. Individual images were acquired within a spectral
range of 1,000–2,498 nm at 10 nm resolution, 6.3 nm wave-
length intervals and a field-of-view of 100×100 mm.
Images of the entire Petri dish, without removing the lid,
were collected at 3 and 5 days after inoculation. In a few
cases where isolates were streaked out in polystyrene Petri
dishes, the lid was removed before image collection. Inter-
nal dark and white reference standards were imaged prior to
each sample.

Hyperspectral image analysis

Images were analysed using the Evince v.2.5.5 hyperspec-
tral image analysis software package (UmBio AB, Umeå,
Sweden) and MATLAB v 7.10 (The MathWorks, MA,
USA). The image calibration and correction to absorbance
was done automatically in the Evince software package as
described in Williams et al. [26].

Construction of mosaics and image cleaning

Selected individual images within the wavelength range
1,103–2,483 nm were merged to form mosaics. The first
mosaic comprised three strains of each of the Fusarium spp.
The second mosaic contained only the most important
strains (MRC 0115, MRC 2301 and MRC 0826) of each
species imaged. This included colonies of the same strains
in the same Petri dishes, but imaged after 72 and 96 h of
incubation, respectively. These strains were selected based
on frequency of isolation from contaminated maize [40].
The third mosaic comprised of images of the same strains
cultured. The training set was cultured and imaged
18 months prior to the test set. The test set was the same
image used as training set in the second mosaic. The fourth
mosaic comprised the same training set as the third mosaic
(three main strains inoculated on three separate Petri dishes)
and the same three strains inoculated in a single Petri dish as
the test set.

A PCA model with six components was calculated, on
mean centred data, for each of the mosaics (1–4). Using the
brushing technique [41, 42], all irrelevant pixels (back-
ground, agar, reflection from Petri dish and bad pixels) were
removed using score plots and score images of all six
principal components (PCs). To ensure efficient cleaning
of the images, this cleaning process was repeated five to
ten times, and PCAwas recalculated after each repetition on
the cleaned images.

Multivariate image analysis

PCA and PLS-DA with species as dummy variables were
used as provided in the Evince v.2.5.5 software package. To
enable PLS-DA classification with three classes, the

Table 1 Details on the Fusarium spp. and respective strains
investigated

Species and strains Isolation locality Reference

Fusarium subglutinans

MRC 0115 Transkei, Zazulwana,
Butterworth

[59]

MRC 2293 USA [59]

MRC 6194 (KSU E-00990;
ATCC 201270;
FRC M-3696)

St. Elmo, IL, USA [60]

Fusarium proliferatum

MRC 2301 California, USA [59]

MRC 6908 Ghana na

MRC 7140 Pietermaritzburg, RSA na

Fusarium verticillioides

MRC 0826 Transkei [59]

MRC 8267 North Benin na

MRC 8559 (KSU A-00149;
FRC M-3125)

California, USA [60]

MRC Medical Research Council, Tygerberg, South Africa; ATCC
American Type Culture Collection; KSU Kansas State University culture
collection, Department of Plant Pathology, Kansas State University,
Manhattan, KS, USA; FRC Fusarium Research Center, Pennsylvania
State University, USA

Fig. 1 Digital images of
mycelium colonies of F.
subglutinans, F. proliferatum
and F. verticillioides after
72 h incubation at 28 °C
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samples (pixels) for class one were represented by the row
vector (1, 0, 0). Similarly, the samples of class two were
represented by (0, 1, 0) and those of class three by (0, 0, 1).
The PLS-DA model would thus result in three separate
regression coefficients, one for each class for all pixels.
These were then used to predict a new set of data which
were refolded to form the prediction image, showing the
location of the classes.

Different preprocessing methods, i.e. standard normal
variate (SNV), multiplicative scatter correction (MSC) and
Savitzky–Golay derivatives, were tested to improve models,
and the number of components to be used was determined
using test sets. Confusion matrices constructed from the test
set prediction results were used to evaluate the respective
models in terms of percentage pixels not classified, percentage
pixels correctly classified and percentage false negatives. The
percentage pixels correctly classified were calculated based on
total number of pixels in the test set as well as with number of
pixels not classified in the test set removed. For the PLS-DA
models, prediction images are shown for the training set to
illustrate how well the respective models performed.

Fig. 2 Principal component 1 score image of Mosaic 1 illustrating
differences between and within the colonies. Similarities between some
of the colonies are also noticeable. Species are shown in rows and
strains of the same species within each row. The left column comprises
the most important strain within each species. F. subglutinans (MRC
0115) are top left followed by F. proliferatum (MRC 2301) and F.
verticillioides (MRC 0826)

Fig. 3 a PC1 vs. PC2 scatter plot for Mosaic 1 showing a number of
clusters in the PC1 direction, b six selected classification gradients in
the PC1 direction based on observed clusters and c the classification
gradients projected onto the score image. Some colonies have a num-
ber of clear mycelium growth rings shown as gradient classes (colonies
1, 5, 6 and 7), while others belong mainly to a single gradient class
(colony 2) with no apparent difference in mycelium growth over time

�
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Prediction images for the test sets show the accuracy of the
PLS-DA models. PLS-DA models use R2 and root mean
square error of prediction (RMSEP) per response variable as
diagnostics. The optimum number of PLS-DA components
was selected based on the number of components that resulted
in the highest R2, lowest RMSEP and prediction image with
best classification of the samples (highest percentage correctly
classified pixels).

Results and discussion

Hyperspectral image analysis

Typical mycelia growth on PDA of Fusarium subglutinans
(MRC 0115), Fusarium proliferatum (MRC 2301) and
F. verticillioides (MRC 0826) after incubation for 72 h at
28 °C is shown in Fig. 1. A first observation is that the growth
is not homogeneous. There is a visible difference between the
centre and edges of each colony, but the colonies could
otherwise not be visually distinguished based on shape and
colour. Visible distinction, between F. subglutinans and F.
proliferatum, is not clear. The non-homogeneous nature of
the colonies makes studying the distinction between Fusarium
spp. an ideal application for NIR hyperspectral imaging and
multivariate image analysis.

Mosaic 1

By doing a PCA, on mean-centred data, most information
on differences between the colonies was found in PC1
[98.7 % sum of squares (SS)] and partly in PC2 (0.79 %
SS). PC3 and lower variance PCs showed no relevant infor-
mation. Figure 2 shows the PC1 score image of Mosaic 1.
The mosaic was set up as a nested analysis of variance with
the species in rows and the three strains of the same species
within each row. The left column comprises the most im-
portant strain within each species (most often observed in
maize), while the other columns are made up of the more
rare strains. Inclusion of the strains less “commonly" asso-
ciated with maize environments in the mosaic makes dis-
tinction between the different species impossible.
Preprocessing of the data did not improve these results.
Distinction between the three species for the more "com-
mon" strains was already clear in the PC1 score image (left
column in Fig. 2). Mycelium growth of colonies starts in the
centre of the colony with youngest growth toward the edges
of the colonies. This phenomenon, referred to as radial
growth [43], could clearly be seen within the images of
the respective colonies (Fig. 2). This is clearer for some
colonies and less clear for others. Temperature plays an
important role in the growth, growth rate and the ability of
these fungal species to produce mycotoxins [44]. For that

Fig. 4 a Principal component analysis score plot (PC1 vs. PC2), b
PC1 score image, c PC2 score image and d loading line plots of PC1
and PC2 for the most important strain of each of the three Fusarium
species. Left to right: F. subglutanins, F. proliferatum and F.
verticillioides
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reason, all plates were incubated at the same temperature to
minimise the variation. In spite of this precaution, it was
observed in the score image that all colonies differed mark-
edly. The temperature in this study, i.e. 28 °C, was chosen
based on the optimal growth rate for the species involved,
reported to be in the range 25–30 °C [44–49]. Selecting an
optimum temperature is important when fungi are cultured
for a specific purpose such as maximal mycotoxin produc-
tion. The present study did not have such a purpose, and
28 °C was selected as similar, controlled growth rates were
observed at this temperature for all three species. Figure 3a
shows obvious density clusters in the score plot, direction of
PC1. In the direction of PC2 less clear clustering is seen.
Classification gradients [50, 51] were constructed to visual-
ise and understand the meaning and relevance of these
clusters (Fig. 3b). Classification gradients were defined in
the direction of PC1 by dividing the score value range into
six successive groups based on the observed clusters. For
interpretation of the groups, the classification plot (Fig 3b),
obtained after the groups were selected in the score plot,
were projected onto the score image to produce a classifi-
cation image (Fig. 3c). Figure 3c clearly shows the myceli-
um radial growth with the older growth of the colonies at the
centre of the colony, where the original inoculation was
done, and the newer growth toward the edge of the colony
showing latest growth after 72 h. These clear differences
between the mycelium growth rings further complicated the
data classification between species with all the strains in-
cluded. Because of the different results for the species/strain
combinations, growth rings should be studied in more detail
by doing a PCA for each colony separately.

PCA analysis of Fusarium spp.

PCA calculated for the most important strain of each of the
three Fusarium spp., imaged 18 months prior, is shown in
the PC1 (98.7 %SS) vs. PC2 (0.846 %SS) score plot
(Fig. 4a) and two score images for PC1 (Fig. 4b) and PC2
(Fig 4c), respectively. The score plot showed two clusters in
the direction of PC2, and the corresponding score image
showed that this was a contrast between F. subglutinans and
the combination of F. proliferatum and F. verticillioides. The
loading line plot of PC2 explained this contrast due to
variation in the N–H stretch first overtone (1,430 nm) and
the CONH stretch second overtone (1,918 nm) [52]. These
peaks were both positively loaded corresponding with F.
proliferatum and F. verticillioides, both having positive
scores in the score plot (Fig. 4d). This means that both these
latter species produced more protein during mycelium
growth which allowed differentiation from F. subglutinans.

The PC1 direction explained the difference between older
and newer mycelium growth as can also be seen in the PC1
score image. This was confirmed by means of the loading
line plot of PC1, showing a typical shape similar to a mean
spectrum which indicated a difference in scattering properties
between the different growth stages (Fig. 4d). This difference
in scattering properties could also have been caused by the
difference in height of the mycelium growth from the centre to
the edges of the colonies or due to the presence of spores in the
older growth (centre). With NIR hyperspectral imaging, the
shape, height and curvature of the sample play an important
role. It has been shown that the topography of the sample is
explained by the higher variance PCs which accounted for

Fig. 4 (continued)
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most of the variation in the data [51, 53]. The PC that captured
the variation due to chemical differences contributed a low
%SS, but still contributed to effective classification. In the
present study, the required information to discriminate be-
tween the fungal species was explained in PC2 in spite of
the low %SS (0.846 %). It is frequently seen in imaging
applications that the most relevant PC or PCs are those with
a low %SS [54–57]

Mosaic 2

To test the effect of growth period of mycelium colonies on
PLS-DA classification, Mosaic 2 was made of images of the

three Fusarium spp. (MRC 0115, MRC 2301 and MRC
0826) scanned at two different times. The training images
were collected 72 h after inoculation, while the test set
images were collected from the same colonies 96 h after
inoculation. The PLS-DA model was calculated with four
components on raw, mean-centred data. Dummy (0/1) var-
iables were used as reference data to classify class member-
ship. Preprocessing by SNV, MSC or by Savitzky–Golay
derivatives showed no improvement in prediction.

The R2 of 0.48 for the model for the training data was due
to it not being able to clearly distinguish between F. verti-
cillioides and F. subglutinans as can be seen in Fig. 5. For
the same reason, the RMSEP in Table 2 is only acceptable
for F. proliferatum. The prediction images for F. subglu-
tinans (green) and F. proliferatum (blue) showed a reasonable
number of correctly predicted pixels for both the training and
test sets (Fig. 5). For F. verticillioides (yellow), the training
image showed misclassification, while the test image showed
a large number of pixels not classified (red). Most of the
incorrectly predicted pixels in the F. proliferatum image were
in the centre of the colony, where older mycelium growth was
found. F. verticillioides showed a number of pixels as not
classified (red) with only a few correct predictions. The reason
for this high number of not classified pixels could be due to
the radial growth that showed marked clustering inside the
colony (Figs. 1 and 2c).

From the Evince confusion matrix for the test set, it was
calculated that for F. subglutinans 99.9 % of the pixels were
correctly classified with 0.1 % pixels not classified. For F.
proliferatum, 86.7 % of the pixels were correctly classified,
not taking the non-classified pixels (7.2 %) into consider-
ation. For F. verticillioides, the predictions were much
poorer with only 44 % correctly classified (54 % not clas-
sified pixels not included). More detailed prediction statis-
tics results are shown in Table 2.

Table 2 PLS-DA predictions
results for Mosaics 2, 3 and
4, showing qualitative
classification of Fusarium
spp. with NIR hyperspectral
imaging

RMSEP % Not
classified

% Correct predictions
of only classified pixels

% False
negatives

% Correct predictions
of total pixels

Mosaic 2

F. subglutinans 0.39 0.1 99.9 0 99.9

F. proliferatum 0.25 7.2 86.7 13.3 80.4

F. verticillioides 0.45 54.7 44 56 20

Mosaic 3

F. subglutinans 0.58 0.6 98.6 1.4 98.0

F. proliferatum 0.44 1.3 66.6 33.4 57.9

F. verticillioides 0.40 0.2 16.8 83.2 16.7

Mosaic 4

F. subglutinans 0.32 4.9 80.1 19.9 76.2

F. proliferatum 0.45 19.4 86.5 13.5 69.8

F. verticillioides 0.46 16.7 39.1 60.9 32.5

Fig. 5 PLS-DA training and test prediction images for Mosaic 2.
Classification based on the training data is in the upper row for F.
subglutinans, F. proliferatum and F. verticillioides (from left to right;
colonies incubated for 72 h), and the bottom row is the classification
for the test data (the same colonies incubated for 96 h)
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Mosaic 3

Images combined in Mosaic 3 comprised two sets of the
three Fusarium spp., acquired 18 months apart (Fig. 6a).
The images in the top row were used as the training set and
the images in the bottom row as the test set. This test set is
the same that has been used as the training set in Mosaic 2
(as shown in Fig. 5). This means that the model was tested
with an independent test set. The PLS-DA model was cal-
culated with four components on mean-centred data. For
this mosaic, the R2 of 0.66 was reasonable. Again, the
RMSEP was lowest for F. proliferatum. For the training

data (top row, Fig. 6a), F. subglutinans showed good pre-
dictions. Predictions for F. proliferatum were still reason-
able, while those for F. verticillioides were the worst,
although slightly better than the predictions shown in Fig. 5.

For the test set, F. subglutinans had a good classification;
F. proliferatum was slightly worse, but still good, while F.
verticillioides showed a large number of pixels classified as
F. subglutinans and only a smaller number of pixels as F.
verticillioides. From the Evince confusion matrix for the test
set, it was calculated that for F. subglutinans 98.6 % of the
pixels were correctly classified (Table 2). For F. prolifera-
tum, 66.6 % were correctly classified, not taking the 13 %
pixels not classified into consideration. The predictions for F.
verticillioides were much poorer (16.8 % correctly classified),
although only 0.2 % pixels were not classified. The poor
performance of F. verticillioideswas likely due to inconsistent
differences between older and newer growth (as seen in Figs. 1
and 2c). Because of the use of an independent test set, the
results were slightly worse than for Mosaic 2. Again, the F.
verticillioides result was the worst.

Mosaic 4

The training data in Mosaic 4 was the same as for Mosaic 3;
thus, the same four-component model was used to predict
class membership. This time the test set was an image of the
three Fusarium spp. (MRC 0115, MRC 2301 and MRC
0826) inoculated in a single Petri dish after incubation for
120 h (Fig. 6b). A large number of pixels were not classified
for F. verticillioides (16.7 %) and even more for F. prolifer-
atum (19.4 %). In the previous PLS-DA predictions, the
pixels in the F. subglutinans image were almost 100 %
correctly predicted, while in this mosaic, only 80.1 % of
the pixels were correctly predicted with 4.9 % pixels not
classified. For F. verticillioides and F. proliferatum, 39.1 and
86.5 % pixels were correctly predicted (from only classified
pixels). For F. verticillioides, there was a large number of
pixels predicted as false negatives (60.9 %). These pixels
were falsely predicted as F. proliferatum. A false negative is
when the outcome is incorrectly classified as a negative
when it is in fact positive. Thus, the majority of the pixels
in F. verticillioides were classified as not being part of the
class, when in fact they were. The PLS-DA prediction
results of Mosaics 2 to 4 are compared in Table 2.

Non-classified pixels are not desirable and especially F.
verticillioides had many of those in two of the mosaics,
while F. subglutinans rarely had any non-classified pixels.
A high proportion of non-classified pixels gives a false
impression of correct predictions when the percentage of
correct predictions is calculated based only on classified
pixels (column three in Table 2). This was clear when the
percentage of correct predictions was calculated from the
total number of pixels (column 5 in Table 2). The percentage

Fig. 6 a PLS-DA prediction images for Mosaic 3. The top row (row A)
shows images of colonies for F. subglutinans, F. proliferatum and F.
verticillioides (from left to right) used as training data, and the bottom
row (row B) was the test data. b PLS-DA prediction images for Mosaic
4. The test data show the image of the three Fusarium spp. inoculated
in a single Petri dish (1 F. subglutinans, 2 F. proliferatum, 3 F.
verticillioides)
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of correctly classified F. subglutinans always did best, due
to the low percentage of non-classified pixels.

The benefit of using PLS for dimension reduction and
discrimination is that it performs better than PCA when
within-class variation is higher than between-class variation
[58]. In this study the within class variation for F. verticil-
lioides seemed to be much higher than for the other species
as can be seen in the calibration and prediction images in
Figs. 5 and 6. The PLS-DA models, however, failed in
classifying F. verticillioides efficiently. It seemed that the
models could either not classify the pixels of the F. verti-
cillioides image as a known class or attempted to predict it
as belonging to the F. subglutinans or F. proliferatum class.

Conclusion

Using the NIR region, three Fusarium spp. could be dis-
criminated from each other with reasonable accuracy by
hyperspectral imaging and the use of test sets. Including a
number of different strains in the training set complicated
identification in PCA score images. This complication was
enhanced due to the presence of clear radial growth rings
with older growth in the middle and younger growth on the
edge of the mycelium colonies. Global diagnostics for the
PLS-DA models such as R2 and RMSEP serve as a guide of
modelling accuracy for images because of the large number
of pixels and should be used in conjunction with the pre-
diction image. Occasionally, a model has an unsatisfactory
RMSEP, but still shows acceptable prediction results in the
prediction image for a large number of pixels. The use of
NIR hyperspectral imaging allowed one to visualise radial
growth rings in the PCA score images. This would not have
been possible with bulk spectroscopy in the visible or NIR
regions. Because of this, imaging is far superior to integrat-
ing reflectance spectroscopy. An additional advantage of
multivariate image analysis is the possibility to interpret
PC loading line plots for a possible chemical or physical
explanation. Although removing irrelevant pixels from
hyperspectral images enhances the ability to detect chemical
variation by PCA, inherent physical differences cannot be
avoided. Thus, a sound knowledge of the sample(s) is es-
sential for adequate multivariate image analysis. Future
research should include experiments on different growth me-
dia incubated at variable temperatures and water activities.
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