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Abstract Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR/MS) is the best MS technology for
obtaining exact mass measurements owing to its great
resolution and accuracy, and several outstanding FT-ICR/
MS-based metabolomics approaches have been reported. A
reliable annotation scheme is needed to deal with direct-
infusion FT-ICR/MS metabolic profiling. Correlation anal-
yses can help us not only uncover relations between the
ions but also annotate the ions originated from identical
metabolites (metabolite derivative ions). In the present study,
we propose a procedure for metabolite annotation on direct-
infusion FT-ICR/MS by taking into consideration the classifi-
cation of metabolite-derived ions using correlation analyses.
Integrated analysis based on information of isotope relations,
fragmentation patterns by MS/MS analysis, co-occurring
metabolites, and database searches (KNApSAcK and KEGG)
can make it possible to annotate ions as metabolites and
estimate cellular conditions based on metabolite composition.

A total of 220 detected ions were classified into 174
metabolite derivative groups and 72 ions were assigned to
candidate metabolites in the present work. Finally, metabolic
profiling has been able to distinguish between the growth
stages with the aid of PCA. The constructed model using PLS
regression for OD600 values as a function of metabolic
profiles is very useful for identifying to what degree the ions
contribute to the growth stages. Ten phospholipids which
largely influence the constructed model are highly abundant
in the cells. Our analyses reveal that global modification of
those phospholipids occurs as E. coli enters the stationary
phase. Thus, the integrated approach involving correlation
analyses, metabolic profiling, and database searching is
efficient for high-throughput metabolomics.

Keywords Fourier transform ion cyclotron resonance mass
spectrometry .Metabolomics . Metabolite annotation .
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Introduction

Comprehensive metabolomics is clearly distinct from
conventional metabolism studies in that it addresses whole
cellular activities rather than just focusing on enzymes,
reactions, or metabolites. Over the past decade methods that
offer both high resolution and sensitivity for the measure-
ment of a vast number of metabolites have been established
and two major approaches, targeted and nontargeted
metabolomics studies, have been developed in metabolome
studies [1, 2]. Targeted metabolomics plays a crucial role in
understanding the primary effects of genetics alternations
based on restricted information of a class of metabolites,
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and analytical procedures often need to include processes
for identification and quantification of selected metabolites.
Only recent advances in mass spectrometry have allowed
nontargeted metabolomics, which is intended for unbiased
analyses such as mapping metabolite profiles in the whole
cellular processes in given organisms.

Fourier transform ion cyclotron resonance mass spec-
trometry (FT-ICR/MS) is the best MS technology for
obtaining exact mass measurements owing to its great
resolution and accuracy [3, 4], and several outstanding FT-
ICR/MS-based metabolomics strategies have been reported
[5–10]. Development of a general scheme for FT-ICR/MS-
based metabolic profiling, with the aid of its potential for
the high resolution measuring power together with ion
signal intensity information, should thus make a significant
contribution to metabolomics studies. To attain the purpose
of and to understand the cell system based on the
components of metabolites, we apply chemometrics and
bioinformatics approaches to FT-ICR/MS data. Among a
variety of metabolomics strategies, FT-ICR/MS offers a
unique opportunity in nontargeted metabolomics studies
owing to its extreme accuracy (below 1 ppm) in the mass
measurement. Thus, chemical formulas and molecular
identities of metabolites can be predicted with the aid of
high precision mass spectrometry (MS) data and can also be
easily linked to reported metabolites.

Metabolomics research currently confronts a problem
associated with high-throughput data acquisition technolo-
gies including chromatography-coupled mass spectrometry
(MS) and FT-ICR/MS which have facilitated simultaneous
detection and quantification of a large number of metabolite-
derived peaks without metabolite assignment [11]; a very
similar situation has arisen in genomics research in that
technologies for determination of the nucleotide sequence
in the whole genome has progressed without annotations of
gene functions [12]. Progress in annotation of metabolites
in metabolomics can bridge the gap between the data and
their biological interpretation. The problem with annotation
of metabolites is that there is only a piece of information
about peaks corresponding to precise molecular weight for
metabolite-derived ions in MS, but when we measure
quantities of ions in a time series experiment, metabolite-
derived ions such as isotope ions and multivalent ions could
be categorized by correlations between ions originated from
identical metabolites, which can lead to more precise
annotation of ions. Thus, correlation analysis of ions may
be a powerful approach to annotation of metabolites in
metabolomics.

In the present study, we propose a procedure for
metabolite annotation using the data obtained from FT-
ICR/MS by taking classification of metabolite-derived ions
into consideration. Here, we perform the nontargeted
comprehensive analysis of metabolomics for the time series

measurements in Escherichia coli, and discuss a metabolic
profiling scheme on the basis of FT-ICR/MS analyses
furnished with a bioinformatics scheme including data
preprocessing, classification of ions originated from iden-
tical metabolites, and supervised and unsupervised learning
algorithms for metabolomics.

Experimental

Strains and growth conditions

The strain used in this study was E. coli K-12 W3110. An
aliquot (8 ml) of an overnight liquid culture of W3110 in LB
medium at 37 °C was inoculated into in 2 l LB (pH 7.4)
medium in a 3-l jar fermenter. Cells were grown continuously
at 37 °C for ca. 12 h, adjusting the agitation speed to 300 rpm
with fixed 2 l min−1 air flow rate. Growth was monitored by
measuring the optical density at 600 nm (OD600).

Sample preparation

A culture medium was passed through a 0.45-μm-pore-size
filter (Durapore Membrane, Millipore). Residual E. coli
cells on the filter were washed with Milli-Q water and then
plunged into 2 ml methanol [13]. After sonication for
1 min, the methanol solution was kept at 4 °C for ca. 20 h.
The solution was then filtered through disposable membrane
filter units (DISMIC-13JP, ADVANTEC), evaporated, and
stored at −80 °C until use. Upon FT-ICR/MS analysis, the
extracts were dissolved in 50% (v/v) acetonitrile/water. A set of
2,4-dichlorophenoxy acetic acid ([M−H]−=218.96212), ampi-
cillin ([M−H]−=348.10235), 3-[(3-cholamidopropyl)dimethyl-
ammonio]propanesulfonic acid ([M−H]−=613.38920), and
tetra-N-acetylchitotetraose ([M−H]−=829.32078) were used
as the internal mass calibrants (IMCs) in the negative ion
mode analysis.

FT-ICR/MS conditions

Mass analysis was done in the negative ion mode using an
IonSpec Explorer FT-ICR/MS (IonSpec) equipped with a 7-
T actively shielded superconducting magnet. Ions were
generated from an ESI source with a fused silica needle of
0.005-inch i.d. Samples were infused using a Harvard
syringe pump model 22 at a flow rate of 0.5 to 1.0 μl min−1

through a 100-μl Hamilton syringe. All the experimental
events were controlled using Omega8 software (IonSpec).
Briefly, the potentials on the electrospray emitters were set
to −3.0 kV for the negative electrosprays. The base pressure
in the source region was approximately 5×10−5 torr (1 torr=
133.3 Pa). For the negative electrosprays, sample solutions
were prepared in 50% (v/v) acetonitrile/water with 0.1%
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(v/v) of ammonium hydroxide. Ionized metabolites were
accumulated for a period of 2,500–5,000 ms in a hexapole
ion trap/guide and transferred through a radiofrequency-
only quadrupole into the FT-ICR cell in the superconducting
magnetic field, where they were again trapped. The direct
current potentials in the negative ion mode analyses were 2 V
during the ion accumulation and −2 V for the ion transfer
into the FT-ICR cell. These ions trapped in the hexapole were
extracted for transfer into the FT-ICR cell. In the negative ion
modes, the potentials on the extraction plate were −12 V
during the ion trapping and were reversed to 2 V for the
extraction. The base pressure in the analyzer region was set
to approximately 4×10−10 torr. ESI-MS spectra were
acquired over the m/z range 55–1,000 from 1,024,000
independent data points. MS/MS analyses were done using
the sustained off-resonance irradiation SORI-CID methods
[14, 15]. SORI Rf was set at 0.5–1.5 V, and the N2 collision
gas was used with a 400-ms pulse.

FT-ICR/MS data processing and data analyses

The first requirement for the success of metabolomics is the
ability to mine the generated data and to perform reliable
and comparative analysis. To attain this, we have developed
a bioinformatics scheme (DrDMASS+) consisting of four
stages: (i) peak correction, (ii) multivariate data processing,
(iii) unsupervised learning such as principal component
analysis (PCA) and batch-learning SOM (BL-SOM), and
(iv) supervised learning such as partial least squares (PLS)
regression. DrDMASS+ and its instruction manual are
freely available at http://kanaya.naist.jp/DrDMASSplus/.

(i) Peak correction. Though FT-ICR/MS affords extremely
high resolution m/z values, analytical data fluctuations
are generally associated with the m/z values at the three
or four decimal places level. So, initially, appropriate
m/z values must be estimated from the observed m/z
values. The experimental m/z values of the IMCs were
fixed to their theoretical values, and the m/z error
calibration data were reflected in the m/z compensation
for all other ion species in each spectral scan.

(ii) Multivariate data processing. After compensating m/z
values, ion peak matching among ten independent
scans was done for repeated identifiable m/z values.
The threshold levels of ion appearance frequencies
were freely adjustable. The intensity values of repeat-
edly observed ions were converted into percentage
values of total ion intensity. Thus, metabolomics data
from a single biological sample consisted of averaged
m/z values with intensity information from ten spectral
scans.

(iii) Unsupervised learning. PCA is a multivariate method
to project a distribution of data points in a multidi-

mensional space into a space of fewer dimensions and
BL-SOM is a method to classify such data points into
groups (grids) accommodating similar decrease/in-
crease patterns [16, 17].

(iv) Supervised learning. PLS is a method for linearly
relating a data matrix X (M×N) to a vector y (M×1)
where M and N represent the number of samples and
parameters, respectively. The PLS model is repre-
sented by Eqs. (1) and (2).

X ¼
XL

k¼1

tkp
T
k þ E ð1Þ

y ¼
XL

k¼1

tkqk þ e ð2Þ

Here, pk and qk are called the loading vector of X, and
the coefficient of y for the kth component, respectively. L is
the number of components and tk is a score vector for the kth
component. E (M×N) and e (M×1) represent the residual
matrix and vector, respectively. The number of PLS
components, L, is determined to maximize a predicted corre-
lation coefficient (Rpred) by leave-one-out cross-validation
for each component according to Eq. (3):

Rpred ¼ 1�
P

yobs � ypred
� �2

P
yobs � yobsð Þ2 : ð3Þ

Here, yobs is an experimental y value, ypred is a predicted
y value, and yobs is the mean of yobs. The PLS equations
(Eqs. (1) and (2)) can also be transformed into a linear form
represented by Eq. (4) [18]:

y ¼ Xbþ f : ð4Þ
Here, b is a regression coefficient vector and its elements
are represented by bj (j=1,2,...,N).

DPClus

DPClus is a graph clustering software that can extract densely
connected clusters using an algorithm that is based on density
and periphery tracking of clusters [19]. It is also necessary to
provide a value of minimum density we allow for the
generated clusters (d), a minimum value for cluster property
that determines the nature of periphery tracking (cpin), and a
minimum number of objects that we want in a cluster.
DPClus is freely available at http://kanaya.naist.jp/DPClus/.

Species–metabolite relationship database

We have accumulated the information of 41,644 species–
metabolite pairs encompassing 21,118 metabolites and
13,094 species in the KNApSAcK database (as of 1
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February 2008) [20]. Information on metabolites in the
database can be searched by metabolite name, organism,
molecular weight, molecular formula, and mass spectral
data taking the ionization modes ([M+NH4]

+, [M+Na]+,
[M+K]+, [M+H]+, and [M−H]−) into consideration. Fur-
thermore, the KNApSAcK package installed in the user’s
computer provides tools for analyzing their own datasets of
mass spectra provided the files that contain the data are
prepared according to the program’s instructions. This
database system and its online manual are freely available
at http://kanaya.naist.jp/KNApSAcK/.

Results and discussion

Data processing of FT-ICR/MS: from data acquisition
to assessment of cellular conditions according to metabolite
composition

The concept of FT-ICR/MS data processing from data
acquisition of a time series experiment to describe cellular
conditions from exponential to stationary growth phase by
metabolites consists of five steps (Fig. 1). Time series

experiments are a popular method for studying a wide
range of biological systems. In bacteria, there are a few
reported papers which comprehensively analyzed bacteria
intrametabolites [21]. However, to our knowledge there are
no papers about bacteria which address total intrametabolic
profiling. In order to elucidate intrametabolite profiling in a
whole cell, we performed the time series experiment in E.
coli (Fig. 1a). Samples were collected at 135, 150, 170,
190, 250, 420, 480, and 720 min postinoculation (which
correspond to T1, T2, T3, T4, T5, T6, T7, and T8,
respectively), and metabolites were extracted, and measured
by FT-ICR/MS. FT-ICR/MS raw data were processed for
differential metabolomics according to the peak correction
and peak matching of the DrDMASS+ program. We
selected m/z values whose appearance frequencies were
higher than 50% among ten scans. Thus, differential
metabolomics was studied in terms of corrected m/z values
with average signal intensities of reproducible ions from ten
independent spectral data. The observed m/z values for ions
individual measurements in the time series experiment were
calibrated with those of internal standards [8]. Peak
matchings were carried out to make a matrix consisting of
intensities for m/z values and time points (Fig. 1b) utilizing
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Fig. 1 Data processing scheme
consisting of five steps. a Time
series experiments in E. coli.
The growth curve shows eight
time points (135, 150, 170, 190,
250, 420, 480, and 720 min
postinoculation corresponding
to T1, T2, T3, T4, T5, T6, T7,
and T8, respectively), at which
samples were taken, and metab-
olites were extracted, and mea-
sured by FT-ICR/MS. b Data
structure after data preprocess-
ing by DrDMASS+ including
peak correction and peak
matching. M and s shows the
number of detected ions and
samples, respectively. c Classi-
fication of ions into metabolite
derivative groups by DPClus
based on the correlations be-
tween detected ions. d Annota-
tion of ions by searching
metabolite databases (KNAp-
SAcK and KEGG). e Assess-
ment of cellular conditions
according to metabolite compo-
sition by using multivariate
analyses
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a metabolomics platform, based on FT-ICR/MS incorporat-
ing the metabolite profiling tool DrDMASS+. After the
processing step, 220 independent ions were detected in the
negative ion mode analysis. Thus, our time series data
matrix consists of intensities of 220 independent ions
corresponding to metabolites for eight measurement points.

There are many ions originated from identical metabo-
lites, i.e., isotope ions and multivalent ions. If detected ions
are classified into identical metabolite-derived ion groups,
we can use further information for annotating chemical
structures in metabolites because isotope pattern allows us
to estimate the number of carbons in molecular formulas for
metabolites, and the real number of metabolites included in
samples can also be estimated. This step was carried out by
DPClus software (Fig. 1c). After classification of ions into
specific metabolite derivative groups, we performed anno-
tation of ions as metabolites using public natural compound
databases, KNApSAcK [20] and KEGG [22–24] (Fig. 1d),
and cellular conditions were characterized by the compo-
sition of metabolites using two approaches, supervised and
unsupervised learning. Cellular condition could be assessed
by the metabolite composition using principal component
analysis (PCA), and the relationship between cell densities
and the metabolite composition, reflecting transition from
exponential to stationary phases, could be understood by
using partial least squares (PLS) regression (Fig. 1e).
Marker metabolites significant in exponential and stationary
growth were determined using PLS regression.

Classification of ions into metabolite derivative groups

The difference of m/z value between isotope ions originated
from carbon atom (1.0033 u) is a clue for determining
whether or not the ions are originated from identical
metabolites. Furthermore, ions, originated from identical
metabolites, occurring in different ion valence are also
detected. Isotope intensity pattern of a metabolite in an MS
chart can serve as a powerful additional constraint for
removing wrong elemental composition candidates [25].
When intensities of ions are correlated to each other in a
time series experiment, those ions would be expected to be
originated from an identical metabolite. Tautenhahn et al.
[26] successfully combined highly correlated pairs of mass
signals in LC-MS to chemical relation hypothesis groups.
Thus, taking into consideration the differences of m/z
values for ions and correlation of time series profiles of
ions, isotope ions can be classified into metabolite
derivative groups, which lead to estimation of molecular
formula of metabolites. To attain this, we visualized all
correlations in a time series experiment between ions.
Pairwise ion–ion correlations were calculated by Pearson’s
correlation coefficient (r) [27]. We extracted a set of 742
unique binary relations involving 148 ions by the threshold

r≥0.9 (p<2.3×10−3, n=8) and visualized this by using the
graph-clustering method called DPClus. Out of total 220
detected ions, 72 ions do not show significant correlation
with other ions. Figure 2 shows the configuration of the 742
relations including 148 ions assigned to 11 isolated clusters
(ID=1 to 11). Two largest isolated subgraphs consisting of
43 and 28 ions, respectively, can be characterized by six
clusters (ID=1−1 to 1−6) and three clusters (ID=2−1 to 2−3),
of size > 2, which are all complete graphs where an edge
connects every pair of distinct vertices within the same cluster.
Ions assigned to multiple complete subgraphs are depicted by
blue nodes. Relations between ions and cluster IDs are listed
in the Electronic supplementary material (Table S1).

We assume that ions which belong to the same cluster
and have appropriate m/z difference of 13C and certain
valences could be considered to have originated from
identical metabolites. Initially, to determine isotopic ion
pairs, we searched ion pairs under conditions that the ion
pairs have not only correlation with each other but also
appropriate m/z difference for certain k-valence, i.e.,
M−+H+=2M2−+2H+=...=kMk−+kH+. Furthermore, to deter-
mine ion pairs originated from identical metabolites, our
search was extended to ions other than isotope ions. Thus,
19 metabolite derivative groups consisting of multiple ions
including isotope and multivalent ions were identified
(Fig. 2, surrounded by red broken lines). In total, 148 ions
were classified into 102 metabolite derivative groups which
include isotope ions and multivalent ions.

Annotation of ions

The concept of metabolite annotation comprises mass
spectral annotation and biological metadata annotation
including description of actual experimental conditions that
help unravel the biological role of metabolites by their
changes in levels in response to genetic and environmental
perturbation [28, 29]. In the present study, we use the term
‘metabolite annotation’ to describe a procedure of provid-
ing chemical characterization to individual metabolite-
derived ions; thus our annotation procedure can be
classified as a mass spectral annotation, which is important
for interpretation of cellular conditions according to
metabolite compositions. There are two distinct ways to
provide metabolite annotation: an exhaustive computation
of all chemically possible isomeric structures or a query of
databases for known natural compounds. In the present
study, we annotated ions based on the latter method using
additional evidence of chemical information such as MS/
MS fragmentations. Three publicly available databases
concerning natural products are PubChem [30], KEGG,
and KNApSAcK. The PubChem database is comprised of
records for over 19.6 million compounds with over 11
million unique structures including small molecules, par-
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ticularly diagnostic and therapeutic agents. In our study,
ions are natural compounds and it is better to search the
databases that contain natural products. In KEGG, the
metabolic pathways are constructed by interspecies gene
relations such as orthologs and paralogs, so metabolite–
species relations can be obtained via information of
enzymes. The KEGG database focuses on metabolites
related to known metabolic pathways and includes around
13,000 metabolites. On the other hand, the relationships
between metabolites and their biological origins have been
addressed systematically in the KNApSAcK database,
which has accumulated 41,644 records (species–metabolite
pairs) encompassing 21,118 metabolites and 13,094 species
(as of 1 February 2008). The total number of secondary
metabolites for which molecular structures have been
elucidated is estimated to be 50,000 [31]. So, around 42%
of metabolites have been compiled in the database and this
is considered to be enough for searching candidates
including species information. As the first stage, we searched
metabolites in two databases (KEGG and KNApSAcK) by
molecular weights estimated from m/z values for ions.

Isotope patterns allow us to estimate the number of
carbons in molecular formulas for metabolites because
natural compounds on earth reflect the natural abundance of
stable elemental isotopes, such as 13C (which is found at
approximately 1.07% of the most frequent isotope 12C)
[32]. The abundance of isotope ions is dependent on the
actual elemental composition and can therefore serve as a
powerful filter in calculating unique elemental composi-
tions from mass spectral data [33]. In view of rigorous
atomic mass, mass differences between isotopes of atoms
are not identical, e.g., mass differences between 1H and 2H,
12C and 13C, and 14N and 15N are 1.0063 u, 1.0033 u, and
0.9970 u, respectively. Several software methods calculate
isotope patterns of compounds based on the assumption
that mass differences of atomic isotopes for different atoms
can be considered to be identical [34]. Because of the extent
of high resolution in FT-ICR/MS, we cannot neglect the
isotope differences, i.e., it could be possible to separately
detect each isotope ion containing 2H, 13C, 15N and so on.
But intensities of isotope compounds with isotope atoms
other than 13C would be too small to consider, because the
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ADP-L-glycero-beta-D-manno-heptopyranose; M-4, octanoic acid; M-
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M-17, antibiotic MI 178–34F18A2, antibiotic MI 178–34F18C2
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probability of ions containing 2H, 15N, and so on is much
lower compared with ions containing 13C. So assuming that
an isotope ion M+1 is derived from only 13C, a relative
ratio of M (12C) and M+1 (13C) separated by the difference
(1.0033 u) of m/z values for two peaks can allow us to
estimate how many carbon atoms a compound should
contain without prior information about the structure. In
addition to this, MS/MS fragmentation patterns provide
structural information of metabolites, so we performed MS/
MS analysis for the five peaks corresponding to m/z=(A)
662.1037, (B) 719.4868, (C) 733.5056, (D) 747.5183, and
(E) 761.5293.

In ion A, the intensity of m/z=662.1037 is highly
correlated with those of m/z value 663.1080 in cluster 6,
so those would be isotope ions, i.e., m/z=662.1037 (M) and
m/z=663.1080 (M+1) because of the difference 1.0043.
The number of carbon atoms estimated by the intensity
ratio of 662.1037 to 663.1080 was in the range of 19 and
21 at the 99% confidence interval of the t test (Table 1). We
got 845 possible molecular formulas consisting of six types
of atoms (C, H, O, N, P, and S) in the range of ±0.01 for an
ion with m/z=662.1037. After reducing candidates that do
not have the estimated number of carbon atoms, we could
get 92 possible candidates, i.e., about 89% candidate
molecular formulas could be considered to be not true. The
candidate metabolite for ion A according to the KNApSAcK
search (no hits in KEGG database) is nicotinamide adenine
dinucleotide (NAD) (C21H27N7O14P2), and ions obtained
from MS/MS analysis (m/z=540.0782, 328.0532) for ion
(A) are consistent with the fragmentation pattern of NAD
(Fig. 3a), i.e., fragmentation ions with m/z=540.0782 and
328.0532 could be assigned to ([C15H20N5O13P2]

−) [theo-
retical m/z=540.0533] and ([C10H11N5O6P]

−) [theoretical
m/z=328.0447], respectively. Thus, we annotated the ions
corresponding to m/z=662.1037 and 663.1080 in cluster 6
as NAD and also m/z=331.0586 in cluster 6 as a doubly
charged ion ([M−2H]2−) of NAD.

Next, we annotated four selected monoisotope ions m/z=
(B) 719.4868, (C) 733.5056 (D) 747.5183, and (E)
761.5293. Though the candidate metabolites could not be

obtained by the database search, fragmentation ions for
those were obtained by MS/MS analyses in Fig. 3b–e. In
the MS/MS spectrum corresponding to the ion with m/z=
(B) 719.4868 (Fig. 3b), two peaks for fragment ions (e.g.,
m/z=253.2181 and 255.2337) could be assigned to an
unsaturated fatty acid (C16H30O2) [theoretical m/z=
253.2167 ([R2O]

−)] and a saturated fatty acid (C16H32O2)
[theoretical m/z=255.2324 ([R1O]

−)], indicating that the ion
with m/z=719.4868 is a phosphatidylglycerol (PG). All
ions (B–E) possess some common identifiable peaks (e.g.,
m/z=255.2337, 391.2260, 465.2628, and 483.2735 in
Fig. 3b), suggesting that they are similar types of
molecules, i.e., four ions, B–E, referred to as PG1 to PG4,
respectively, would be different types of PGs summarized
in Fig. 4a. The numbers of carbon atoms estimated at the
99% confidence interval of the t test were also true for all
four ions, suggesting that identification of isotope ions
based on the graph clustering and estimating the number of
carbon atoms by the confidence interval of the t test could
also be reliable to reduce the number of candidate
molecular formulas. We also checked the effect of other
constraints for reducing candidates, i.e., using element
ratio constraints (H/C 0.2−3.1, O/C 0–1.2, N/C 0–1.3, P/C
0–0.3, and S/C 0–0.8) [25], but there was no impact after
reducing by the t test (element ratio column in Table 1),
suggesting that if we get the isotope pattern data for a
metabolite in a time series, the relative ratio of isotope ions
(M and M+1) can efficiently narrow down candidate
molecular formulas even without other constraints. Though
incorporating chromatographic separation systems into the
FT-ICR/MS system is helpful to estimate the relative ratio
of isotope ions and also to predict the candidate molecular
formula of unknown ions in a single measurement, time
series data set can also ensure the possibility of candidate
molecular formulas from a statistical perspective, i.e., the
confidence interval of the t test.

It has been reported that PGs are composed of various
molecular species [35]. In the present study, another six
metabolite derivative groups can be annotated as PGs by
following three ‘rules’ in fatty acid metabolism (Fig. 4b):

Table 1 Summary of reduction of candidates using the isotope pattern in ions in MS/MS analyses

Ion
ID

Cluster
ID

Monoisotope
(M)

Isotope
(M+1)

Difference Number
of candidates
±0.01

Estimated
carbon
number

Number of
estimated
candidates

Element
ratio

Candidate Actual
number of
carbon atoms

A 6 662.1037 663.1080 1.0044 845 19–21 92 90 NAD 21
B 1 719.4868 720.4917 1.0048 146 36–40 33 33 PG1 38
C 2 733.5056 734.5087 1.0032 167 38–44 34 34 PG2 39
D 1 747.5183 748.5227 1.0044 175 39–40 12 12 PG3 40
E 2 761.5293 762.5340 1.0047 219 28–60 102 102 PG4 41

M ‘monoisotope’ column corresponds to [M−H]− in the negative ion mode analysis
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(1) Cyclopropane fatty acid (CFA) formation occurs as one
of the modifications of phospholipids [36, 37]. A mass
difference of 14.0157 corresponding to CFA was obtained
in five pairs of PGs (PG1 and PG2, PG3 and PG4, PG5
(m/z=691.4588) and PG6 (m/z=705.4757), and PG7 (m/z=
745.5045) and PG8 (m/z=759.5242), and PG9 (m/z=
773.5375) and PG10 (m/z=787.5556)). (2) An elongation
process occurs in fatty acids [38], i.e., a mass difference of
28.0313 u corresponds to one cycle of two-carbon addition
in fatty acid biosynthesis, which was obtained in six pairs
of PGs (PG5 and PG1, PG1 and PG3, PG7 and PG9, PG6
and PG2, PG2 and PG4, and PG8 and PG10). (3) A

desaturation process, i.e., a mass difference of 2.0157 was
obtained in two pairs of PGs (PG3 and PG7, and PG4 and
PG8). So, annotation of PG5 to PG10 could be validated by
enzyme reactions in lipid metabolism.

We searched the other 174 ions using KNApSAcK, and
obtained 163 metabolite candidates from the search of the
entire metabolite inventory in the database. Based on the
species–metabolite relationship and MS/MS analyses
above, we were finally able to assign 33% of 220 detected
ions to candidate metabolites. If we restrict the search to
only bacteria–metabolite relations of the KNApSAcK
database, then we find 26 ions are related to 38 metabolites
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(Table 2). Out of these, there is only one whose candidates
have different molecular formulas. The other 25 ions
correspond to unique elemental compositions, suggesting
that the information of species–metabolite relationship is
efficient to extract useful lists of candidate metabolites. In
this study, the percentage of ions annotated to metabolite
candidates is much higher than that in the case of a plant
reported by Nakamura et al. (10% of peaks in Arabidopsis
thaliana) [9].

Cellular conditions assessed according to metabolite
composition

Figure 5 shows (a) the growth curve, (b) the number of ions
detected in each time point, and (c) expression profiles of
metabolites in clusters 1–5. The number of ions detected in
each cluster decreases toward T6 and after that increases

toward T8, suggesting that after the exponential phase,
composition of metabolites in E. coli would be largely
changed at T6.

Ions in clusters 5 and 3 correspond to ion accumulation
in T2 and T3 at the exponential phase (Fig. 5c), respec-
tively, suggesting that these metabolites would be necessary
only at certain cell states. A candidate for the ion with m/z=
281.2444 in cluster 5 obtained by KNApSAcK searching is
oleic acid (M-12 in Fig. 2; error of m/z=0.0042) which is a
precursor of phospholipids and has one double bond,
suggesting that biosynthesis of fatty acid with double bond
might occur in the exponential but not stationary phase, and
other ions in cluster 5 would be compounds in a pathway
related to fatty acid biosynthesis.

Candidates for the ion with m/z=565.0503 (M-6) in
cluster 3 are UDP-D-glucose and UDP-D-galactose. Candi-
dates for the ion with m/z=606.0775 (M-7) are UDP-N-
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acetyl-D-mannosamine and UDP-N-acetyl-D-glucosamine,
which are precursors of lipopolysaccharides (LPS) [39],
suggesting that LPS biosynthesis would occur only in the
exponential phase and relate to abundances of UDP-D-
glucose and UDP-D-galactose, and other ions in cluster 3
would be compounds related to LPS biosynthesis. A
candidate for the ion with m/z=143.1080 in cluster 3 is
octanoic acid (M-4), which is the direct precursor of a
vitamin, lipoic acid, and is also an exponential phase-
specific metabolite. E. coli contains a pool of octanoic acid
which can act as a substrate for lipoate ligase during lipoate
starvation of a lipoic acid auxotroph [40]. The accumulation
of octanoic acid at stage T3 would be needed in the

exponential phase to prepare biosynthesis of vitamins. Ions
in cluster 4 correspond to ion accumulation in T7 at the
stationary phase (Fig. 5c), suggesting that ions in cluster 4
would be compounds related to the stationary phase.

According to profiles in Fig. 5c, clusters 1 and 2 are
exponential and stationary phase specific, respectively. It is
well known that phospholipid production decreases dra-
matically at the stringent response [41, 42], and the bulk of
CFA synthesis occurs as cultures enter the stationary phase
of growth [38]. Those facts are consistent with the
structures of PG2, PG4, PG6, PG8, and PG10 in cluster 2
being CFA forms of PG1, PG3, PG5, PG7, and PG9 in
cluster 1, respectively. In addition to this, CFA synthesis
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occurs in a broad range of phosphatidylglycerols after T5.
Thus, cellular conditions of E. coli could be explained in
terms of the composition of metabolites.

Unsupervised learning such as PCA and BL-SOM
makes it possible to examine metabolic phenotyping of
seedlings treated with different herbicidal chemical classes

for pathway-specific inhibitions [8] and accurate classifica-
tion of genes based on time series expression profiles which
led to the prediction of gene functions [5, 6, 43]. Figure 6a
shows the PCA projection of measurement points in time
series data. The proportions, that is, percent variances to
total variance, are 94.3% and 2.4% for the first and second

Table 2 Summary of candidates for ions based on KNApSAcK search using bacteria–metabolite relationship

Detected
m/za

Theoretical
m/z

Molecular
formula

Exact
mass

Error Candidate Species

72.9878 73.9951 C2H2O3 74.0004 0.0053 Glyoxylic acid Escherichia coli
143.1080 144.1153 C8H16O2 144.1150 0.0003 Octanoic acid Escherichia coli
253.2137 254.2210 C16H30O2 254.2246 0.0036 omega-Cycloheptanenonanoic acid Alicyclobacillus acidocaldarius
253.2185 254.2258 C16H30O2 254.2246 0.0012 omega-Cycloheptanenonanoic acid Alicyclobacillus acidocaldarius
281.2444 282.2516 C18H34O2 282.2559 0.0042 Oleic acid Escherichia coli

C18H34O2 282.2559 0.0042 cis-11-Octadecanoic acid Lactobacillus plantarum
C18H34O2 282.2559 0.0042 omega-Cycloheptylundecanoic acid Alicyclobacillus acidocaldarius

297.2410 298.2482 C18H34O3 298.2508 0.0026 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
297.2467 298.2540 C18H34O3 298.2508 0.0032 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
297.2516 298.2589 C18H34O3 298.2508 0.0081 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
321.0506 322.0579 C10H15N2O8P 322.0566 0.0013 dTMP Escherichia coli K12
346.0570 347.0643 C10H14N5O7P 347.0631 0.0012 AMP Escherichia coli

C10H14N5O7P 347.0631 0.0012 3′-AMP Escherichia coli
C10H14N5O7P 347.0631 0.0012 dGMP Escherichia coli

401.0168 402.0241 C10H16N2O11P2 402.0229 0.0012 dTDP Escherichia coli
402.9962 404.0035 C9H14N2O12P2 404.0022 0.0013 UDP Escherichia coli
426.0237 427.0310 C10H15N5O10P2 427.0294 0.0016 Adenosine 3′,5′-bisphosphate Escherichia coli

C10H15N5O10P2 427.0294 0.0016 ADP Escherichia coli
C10H15N5O10P2 427.0294 0.0016 dGDP Escherichia coli

454.0391 455.0464 C20H19Cl2NO7 455.0539 0.0075 Antibiotic MI 178–34F18A2 Actinomadura spiralis
MI178–34F18

C20H19Cl2NO7 455.0539 0.0075 Antibiotic MI 178–34F18C2 Actinomadura spiralis
MI178–34F18

458.1112 459.1185 C15H22N7O8P 459.1267 0.0083 Phosmidosine B Streptomyces sp. strain RK-16
495.1039 496.1112 C24H20N2O10 496.1118 0.0006 Kinamycin A Streptomyces murayamaensis

sp. nov.
C24H20N2O10 496.1118 0.0006 Kinamycin C Streptomyces murayamaensis

sp. nov.
505.9908 506.9981 C10H16N5O13P3 506.9957 0.0023 ATP, dGTP Escherichia coli
547.0756 548.0829 C16H26N2O15P2 548.0808 0.0020 dTDP-L-rhamnose Escherichia coli
565.0503 566.0576 C15H24N2O17P2 566.0550 0.0025 UDP-D-glucose Escherichia coli

C15H24N2O17P2 566.0550 0.0025 UDP-D-galactose Escherichia coli
606.0775 607.0848 C17H27N3O17P2 607.0816 0.0032 UDP-N-acetyl-D-mannosamine Escherichia coli

C17H27N3O17P2 607.0816 0.0032 UDP-N-acetyl-D-glucosamine Escherichia coli
618.0897 619.0970 C17H27N5O16P2 619.0928 0.0042 ADP-L-glycero-beta-D-manno-

heptopyranose
Escherichia coli

662.1037 663.1109 C21H27N7O14P2 663.1091 0.0018 NAD Escherichia coli
664.1095 665.1168 C21H29N7O14P2 665.1248 0.0080 NADH Escherichia coli
741.4729 742.4801 C32H62N12O8 742.4814 0.0012 Argimicin A Sphingomonas sp.
786.4712 787.4785 C41H65N5O10 787.4731 0.0054 BE 32030B Nocardia sp. A32030
853.3166 854.3239 C41H46N10O9S 854.3170 0.0069 Argyrin G Archangium gephyra Ar 8082

C45H56Cl2N2O10 854.3312 0.0073 Decatromicin B Actinomadura sp. MK73–NF4
C39H50N8O12S 854.3269 0.0030 Napsamycin C Streptomyces sp. HIL

Y–82,11372

a Values correspond to the [M−H]− ion in the negative ion mode analysis
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principal components (PC1 and PC2), respectively. So the
first two principal components, which can explain 96.7% of
total variance, are enough to examine the differences in
eight time points. The distribution of eight time points in the
first two PCs as shown in Fig. 6a implies that time points are
clearly classified into two groups, an early group consisting
of T1, T2, T3, T4, and T5, and a late group consisting of
T6, T7, and T8, suggesting that the different growth stages
could be represented by the metabolomics data. The former
and latter roughly correspond to exponential and stationary
phases in the growth curve of E. coli. This result shows that
the metabolite profile in E. coli seems to be totally shifted
from T5 to T6, which is also consistent with the transient
point in the number of detected ions in Fig. 5b.

To directly relate composition of metabolites to cellular
conditions, we applied partial least squares (PLS) regres-
sion to the metabolite profiling data. PLS regression
provides a quantitative model to estimate the cellular
conditions based on the composition of metabolites. So in
the present study, we focused on the PLS model to estimate
cellular conditions from exponential to stationary phase
based on intensities of m/z values in FT-ICR/MS and
examined quantitative differences of metabolites based on
the PLS model. Growth of bacteria can be generally
monitored by measuring the optical density at 600 nm
(OD600). A linear model for estimating the OD600 values
according to the metabolite quantities in individual time
points provides the useful information associated with
quantitative differences of the metabolite between expo-
nential and stationary phases. To attain this, we conducted
PLS regression, which is applicable when the number of
independent variables is very large compared with the
number of samples. Using Eq. (4) the OD600 value can be
directly estimated from the corresponding intensity vector
of m/z values. When the ion has a positive value of a
regression coefficient by PLS regression, its ion’s level
should increase from exponential to stationary phase
because the optical density is saturated in the highest level
of the growth curve. We got the best linear model in PLS
regression with one component (Rpred=0.94). The Pearson’s
correlation between the observed and predicted OD600

values is r=0.97, suggesting that our constructed model
would work well, and is informative to clarify the relation
between a growth stage and metabolite profile. Next, we
plotted the regression coefficients of each ion determined
by using the proposed model in order to elucidate which
metabolite is important for estimating the OD600 values
(Fig. 6b). The ions with negative and positive coefficients
contribute to the constructed model, negatively and posi-
tively, and are dominant in exponential and stationary
phase, respectively. Four ions (PG1, m/z=719.4868; PG2,
m/z=733.5056; PG3, m/z=747.5183; PG4, m/z=761.5293)
which were analyzed by MS/MS analysis as described
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above had the highest coefficients. Other annotated six ions
(PG5, m/z=691.4588; PG6, m/z=705.4757; PG7, m/z=
745.5045; PG8, m/z=759.5242; PG9, m/z=773.5375;
PG10, m/z=787.5556) also had higher coefficients, sug-
gesting that PLS analysis could extract stage-specific
metabolites efficiently. Thus, the observed behavior of
metabolites is highly reflected in the regression coefficients
of the PLS model and the interpretation of the coefficients
is fairly consistent with the transition of metabolites from
exponential to stationary phase.

Conclusions

This study presents a metabolomics approach to analyze
growth-specific metabolites of bacteria, based on the FT-
ICR/MS platform. Correlation analyses can make it possible
to predict unknown molecular structure using isotope ratios
by way of grouping metabolite derivative ions. Though 1-
ppm mass accuracy alone is insufficient for unique elemental
composition assignment [33], integrated analysis based on
information of isotope relation, fragmentation patterns by
MS/MS analysis, and co-occurring metabolites can
makes it possible to annotate ions as metabolites and
estimate cellular conditions based on metabolite compo-

sition. PCA revealed the differences between the growth
stages on the basis of 220 independent metabolites,
suggesting that metabolic profiling is a useful method
for distinguishing the growth stages. Using PLS regres-
sion we constructed a linear relationship between OD600

values and metabolite profiles. High correlation between
predicted and observed OD600 values certifies the correct-
ness of the linear model. Our analyses reveal that global
CFA formation of PGs occurs as E. coli enters the
stationary phase from the exponential phase. The results
indicate that nontargeted metabolomics based on direct-
infusion FT-ICR/MS is useful for analyzing the responses
of biological systems to a variety of changes. Our
integrated methodology is applicable to metabolic studies
involving other organisms.
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