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Abstract Biofilms are complex aggregates formed by
microorganisms such as bacteria, fungi and algae, which
grow at the interfaces between water and natural or artificial
materials. They are actively involved in processes of
sorption and desorption of metal ions in water and reflect
the environmental conditions in the recent past. Therefore,
biofilms can be used as bioindicators of water quality. The
goal of this study was to determine whether the biofilms,
developed in different aquatic systems, could be success-
fully discriminated using data on their elemental composi-
tions. Biofilms were grown on natural or polycarbonate
materials in flowing water, standing water and seawater
bodies. Using an unsupervised technique such as principal
component analysis (PCA) and several supervised methods
like classification and regression trees (CART), discrimi-
nant partial least squares regression (DPLS) and uninfor-
mative variable elimination–DPLS (UVE-DPLS), we could
confirm the uniqueness of sea biofilms and make a
distinction between flowing water and standing water
biofilms. The CART, DPLS and UVE-DPLS discriminant
models were validated with an independent test set selected
either by the Kennard and Stone method or the duplex

algorithm. The best model was obtained from CART with
100% correct classification rate for the test set designed by
the Kennard and Stone algorithm. With CART, one variable
describing the Mg content in the biofilm water phase was
found to be important for the discrimination of flowing
water and standing water biofilms.

Keywords Biofilms . Chemometrics . Environmental
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Uninformative variable elimination–discriminant partial least
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Introduction

Water quality assessment requires monitoring of carefully
selected parameters. Usually water and sediment samples
are collected in the hope that their chemical compositions
will help to understand the nature of a given local or global
environmental event. The chemical analysis of water indi-
cates the water quality at the time of sampling, while
analysis of sediments provides information about long-term
environmental changes in aquatic systems. Biofilms reflect
the environmental conditions in the recent past [1]. They are
complex communities composed of microorganisms, which
grow at almost any water–substrate interface. Biofilms can
accumulate metal ions and play an important role in the
processes of sorption and desorption of chemical elements
[2]; therefore, they can be very useful bioindicators of water
quality.

The aim of this work is to investigate whether the biofilms
grown in different aquatic systems can be discriminated on
the basis of their chemical compositions. If the discrimina-
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tion is possible, the next interesting question will be which
measured parameters are responsible for it.

For the purpose of the study, biofilm samples originating
from different water bodies such as flowing water, standing
water or seawater were collected. The elemental concen-
trations of biofilms and the water phase extracted at the
sampling locations were then analysed using inductively
coupled plasma optical emission spectrometry (ICP-OES)
and inductively coupled plasma mass spectrometry (ICP-
MS), respectively. To obtain useful information on the data
collected, several pattern recognition techniques are going to
be applied. These are principal component analysis (PCA),
classification and regression trees (CART), discriminant
partial least squares regression (DPLS) and uninformative
variable elimination–DPLS (UVE-DPLS). PCA is an unsu-
pervised pattern recognition method that aims to compress
and to visualise the data structure, which allows for an easy
interpretation of relationships between samples and the
measured parameters. The supervised pattern recognition
methods like CART, DPLS and UVE-DPLS aim to develop
classification or decision rule(s) using a set of samples with
known group origin. Then the classification rule(s) deter-
mines the belongingness of unknown samples to the
available groups [3]. The application of such approaches
in our study will provide a better understanding of the
accumulation behaviour of different biofilms.

Experimental

Description of the sampling procedure

The biofilm samples investigated can be divided into two
groups: a group of systematically sampled biofilms and a
group of uniquely sampled biofilms. The samples of the group
of systematically sampled biofilms can be further split into
two subgroups, namely, biofilms grown on polycarbonate
plates and biofilms developed on natural substrates. A

detailed description of the samples collected is presented in
Table 1.

The biofilm samples collected in the Saale river, in a
pond and in the Leutra river were systematically sampled,
i.e. the biofilm and water samples were gathered within a
definite period of time. The Saale river was chosen as a
body of flowing water. The river flows through highly
populated regions, which are heavily industrialised and are
subjects of typical geogenic and anthropogenic pollution
[4]. The Saale water and biofilm samples were collected
within a 2-year period (from September 2003 till October
2005). The sampling point was situated in the village of
Kunitz located downstream of Jena (Thuringia, Germany).
This place was preferred, because it reflects a characteristic
pollution of the nearby town. The Saale river is there about
1.5 m deep and Kunitz is remote from civilisation. These
conditions facilitated the sampling campaign.

A small pond of 0.75-m depth was selected as a typical
example of a standing water body. It was located in the city
of Jena. The sampling campaign duration was the same as
for the sampling campaign in the Saale river. At these two
locations, the biofilms were artificially grown on polycar-
bonate plates (10 cm × 10 cm) exposed vertically to the
water (in the Saale river, in a streaming direction). The
plates were fixed into polypropylene boxes, approximately
10 cm under the water surface and 1 m away from the
riverbank. After a definite time of exposure, the biofilm
samples were immediately transferred into plastic boxes
filled with the river or pond water and transported to the
laboratory. The plates were then washed with bidistilled
water and the biofilm samples were scraped off the whole
surface of the polycarbonate plates using a Teflon spatula.
The river and pond water samples were collected every
2 weeks.

The Leutra river, located in the city of Jena, was chosen
as the second example of a flowing water body. The stony
bed of the river, its small depth and good accessibility
facilitated the sampling campaign. The biofilm samples

Table 1 Description of the biofilm and water samples collected

Group of biofilms Subgroup of biofilms Character of the water phase Number
of samples

Systematically
sampled biofilms

Biofilms grown on
polycarbonate plates

f—the Saale river 11
s—the Teich pond 22

Biofilms grown on
natural substrates

f—the Leutra river 13

Uniquely sampled
biofilms

Biofilms grown on
natural substrates

f—Celle (a, b), Lauscha (a, b, c), Oberpöllnitz,
Falken, London, Munich, New York, Geithain, Steinach, Juquitiba

12

s—Chemnitz, New Hampshire, Bossow, Metebach, Erfurt, Rippachtal 6
m—Travemünde (a, b), Punta Skala, Nin, Majorca, Damp, Steinbeck 7

a, b and c denote different sampling locations.
f a body of flowing water, s a body of standing water, m a body of seawater
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from the Leutra river were scraped off the riverbed stones
using a plastic spatula. They were placed into polyethylene
bottles and transported to the laboratory. The sampling
campaign at the Leutra river was held in autumn 2005 and
in spring 2006. Additionally, water samples were collected.

The sampling procedure, for water and uniquely sampled
biofilms, was the same as that carried out for the Leutra
river. The locations of the sampling sites were selected
according to the availability of a suitable sampling device.
The samples collected were also placed into polyethylene
bottles and transported to the laboratory.

Analytical procedure

The biofilm samples collected were air-dried at 105 °C.
Then, the samples containing 10–50 mg biofilm powder
were dissolved in 3 ml of 70–72% perchloric acid and were
heated for 3 h at 50 °C. The remaining dry matter of each
sample was further dissolved in water so that the resulting
solution was up to 5 ml. A Fisons Instruments (Beverly,
MA, USA) Maxim 112 inductively coupled plasma optical
emission spectrometer was used to analyse Al, Ca, Fe, K,
Mg, Mn, Na and Sr, while Cd, Co, Cr, Cu, Ni, P, Se and Zn
were determined with a PerkinElmer (Wellesley, MA, USA)
Elan 6000 inductively coupled plasma mass spectrometer.
An external aqueous calibration was adopted for the
analysis by ICP-OES, while a standard addition procedure
was used for the element analysis by ICP-MS. All contents
correspond to the sample dry weight. The trueness of the
measurements was tested by analysing a certified reference
algae material. The element contents were certified for an
aqua regia digestion. Additionally, the element contents
were determined after microwave digestion with nitric acid.
No differences between these two digestion methods were
obtained. All the measurements were done in triplicate and
the relative standard deviation of the technique was 10–
15% for all the biofilms, indicating good repeatability of
the measurements.

Theory

Classification and regression trees

The CART method was proposed by Breiman et al. [5], for
data modelling and classification. Depending on the type of
the response variable, y (categorical or continuous), either
classification or regression trees are built. In the present
study, we will focus on constructing classification trees
only. The goal of CART is to form a set of mutually
exclusive regions in the data space, containing as homoge-
neous groups of objects as possible. This is achieved by
finding optimal splits of some suitable explanatory varia-

bles at a given threshold value, such that a defined impurity
function is minimised. The impurity function measures the
homogeneity of each node obtained from the split. It takes
the lowest value for pure nodes [5]. The nodes are split
while a specified number of objects are not present in the
child nodes or the nodes are not pure. A node which cannot
be split any further is called a terminal node. One of the
most popular impurity functions is entropy [5] and it is the
function used in our study.

Owing to a binary data splitting, the results of CART can
easily be visualised as a binary tree, which consists of a
number of nodes symbolising subgroups of data objects.

In order to ensure good prediction properties of the
constructed tree, the number of the tree nodes should be
optimal. Selection of the optimal number of nodes relies
upon a deletion of some nodes from the tree, which is done
by means of the so-called cost-complexity pruning [5].

Discriminant partial least squares

The DPLS approach aims to relate a set of n explanatory
variables (predictors), X (m × n), to a dependent variable, y.
The dependent variable, y, is either a discrete variable,
representing the belongingness of m objects to two defined
groups denoted by −1 and 1, or a binary variable.

The popularity of the DPLS method in chemometrics is
due to its attractive properties. DPLS can successfully deal
with multicollinearity in the data by constructing a few (f)
latent factors, T (m × f), which maximise the covariance
between X and y [6].

In order to obtain DPLS models with good prediction
abilities, an optimal number of factors should be chosen.
The optimal number of factors is usually found with the
help of a cross-validation procedure [6]. The model with
the smallest root mean square error of cross-validation
(RMSCV) is to be selected. The goodness of model fit is
indicated by a root mean square (RMS) error, whereas the
success of the prediction is expressed by a root mean square
error of the test set. Moreover, the performance of DPLS
depends on the set of samples used for its construction. The
model set has to cover all possible sources of data variance.
Furthermore, DPLS is sensitive to the number of objects
used to build the model. Its performance is optimal when
the model set contains two groups with the same number of
objects [7]. The predictive ability of the model built also
depends on the quality of the variables measured.

Uninformative variable elimination–discriminant partial
least squares

Usually, the samples collected are characterised by a large
number of variables in order to ensure a detailed description
of the event studied. However, some of the experimental
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variables may be irrelevant for the particular discriminant
problem. Such uninformative variables, which have a high
variance, but small covariance with y, lead to a DPLS
model with unsatisfactory predictive ability. Therefore,
finding an optimal set of variables by discarding the un-
informative variables from the data can substantially
improve the DPLS model by a decrease of the prediction
error for test samples or/and a decrease of model complex-
ity. The variable selection method used in our study is
UVE-DPLS [8]. With UVE-DPLS, variables with unstable
regression coefficients are removed. In order to estimate the
stability of the regression coefficients, a matrix, N (m × p),
containing at least p=300 random variables, is augmented
with the matrix of experimental variables, X (m × n), which
results in a matrix, Z, of dimension m × n+p. To keep the
influence of the variables added negligible, their elements
are generated from the normal distribution and are
multiplied by a small constant with magnitude 1×10–10.
The matrix of regression coefficients is constructed by the
use of a leave-one-out cross-validation procedure, i.e. m
PLS models are built and each one by using m-1 objects.
The stability of a variable is determined by the ratio of the
mean of m regression coefficients and their standard
deviation. The variables with absolute stabilities of regres-
sion coefficients below a given cutoff value are uninforma-
tive and are deleted from the data. The cutoff value is
defined as the largest absolute value of all stability values
for the random variables added.

The goodness of a discrimination model is characterised
by the percentage of correct classification or the so-called
correct classification rate. It is commonly agreed that the
higher the correct classification rate, the better the model.
Additionally, one should consider sensitivity and selectivity
of the model. For a two-class problem for instance, sensi-
tivity is defined as the percentage of correctly classified
samples of class A, while selectivity is the percentage of
correctly classified samples of class B.

Results and discussion

All the data collected were organised in a matrix, X, of
dimension 71 × 34. All 71 biofilm samples (Table 1) were
characterised by the contents of 17 chemical elements
analysed in the biofilms and in the water phases extracted at
the sampling locations. Three groups of samples were
distinguished depending on the type of water body, namely
flowing water, standing water and seawater.

Firstly, PCA was used for an overall exploration of the
data structure. PCA is an unsupervised approach, and is
frequently employed for data compression and visualisation
[9]. With PCA, the original data matrix, X (m × n), is
decomposed into two matrices: a scores matrix, T (m × n),

the columns of which contain principal components (PCs)
and a loadings matrix, P (n × n). PCs are found as linear
combinations of explanatory variables by maximising the
variance of projected data. The loadings matrix, P, describes
the contributions of each variable to the constructed PCs.

Prior to the PCA analysis, the explanatory variables were
autoscaled, because they had been measured in different
units. Autoscaling is performed by subtracting the column
mean from each data element and dividing it by the
corresponding standard deviation. It gives variables the
same importance in the PCA analysis. The results of PCA
for autoscaled data are presented in Fig. 1.

The first three PCs explain about 50% of the total data
variance (Fig. 1a). Figure 1a indicates that the compression
is not very effective, because the data variance is distributed
over all PCs. However, some general trends in the data
structure can be revealed.

All the seawater samples are differentiated from the
standing water and flowing water samples in the PC 1–PC
2 score plot (Fig. 1b). The sea samples can be divided into
two subgroups. The first subgroup contains the samples
from Steinbeck (Germany), Travemünde (Germany) and
Damp (Germany), located in the Baltic Sea, while the
second subgroup includes the samples from Punta Skala
(Croatia), Nin (Croatia) and Majorca (Spain), situated in the
Mediterranean Sea. The standing water and flowing water
biofilm samples overlap. The flowing water biofilm sample
from Munich can also be distinguished from all the other
samples along PC 2. This distinction is even more evident
along PC 3 (Fig. 1c). Looking at the loading plots, shown
in Fig. 1d and e, one finds the reasons for the objects’
distributions observed in the score plots. PC 1 represents
the Sr, Cu, Mg, Se, K and Na contents in the water phase
(W-Sr, W-Cu, W-Mg, W-Se, W-K, W-Na). This factor can
be related to the salt content of the water phase and is
conditionally called the ‘salt’ factor. The second PC, PC 2,
is mainly associated with Fe and Mg (Fig. 1d). These
elements are basic components participating in the biofilm
formation. PC 3 reflects the Mn, Zn, Cd, Pb, Fe, and Co
contents in the water phase. The presence of Cd and Pb is
usually a result of environmental contamination and that is
why PC 3 is associated with the anthropogenic influence.
From the information obtained from the score and loading
plots, it follows that the water phase of the biofilm grown in
seawater is indeed richer in dissolved salts than the water
phase of the standing water and flowing water bodies. The
levels of Fe and Mg in sea biofilms are also higher in
comparison with those for the other biofilms. The salt
content, pH and temperature of water vary at different
sampling locations and they influence the biofilm forma-
tion. It was reported in [10] that Mg strongly influences
attachment and biofilm structure. The surface colonisation
and biofilm depth increase with the increasing Mg con-
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Fig. 1 Principal component analysis of the data set containing the
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centration. The biofilms collected in Punta Skala, Nin and
Majorca contain higher levels of dissolved salts in the water
phase and higher Fe and Mg contents in comparison with
the biofilms collected in Travemünde, Damp and Steinbeck.
The sample originating from Munich shows a high anthro-
pogenic influence, i.e. it has higher Mn, Zn, Cd, Pb, Fe and
Co contents in the water phase and lower Fe and Mg
contents in the biofilm in comparison with the other samples.

In order to see whether the biofilms developed in standing
water could be distinguished from the biofilms grown in
flowing water, supervised approaches such as CART, DPLS
and UVE-DPLS were applied. Furthermore, it was important
to determine if the models constructed could predict the
origin of new biofilm samples and how well. Another ques-
tion to be answered was what variables are responsible for an
eventual discrimination of groups. Only seven biofilms were
grown in seawater; therefore, they were excluded from the
forthcoming analysis.

To construct a reliable discriminant model and to test its
predictive ability, the data were divided into two subsets
(model and test) with the Kennard and Stone [11, 12] and
duplex [13] algorithms enabling a uniform subset selection.
In the Kennard and Stone method, objects in the model set
are selected sequentially, starting with the object closest to
the data mean. The next object included in the subset is the
one situated furthest away from the first one. The third
object selected is the most distant one from the objects
selected in the model set. The selection of objects continues
while a predefined number of objects are not assigned to
the model set. The remaining objects form the test set. As a
similarity measure, the Euclidian distance was used. With
the duplex algorithm, the two most distant objects in the
data are found and included in the model set. The next two
most distant objects are assigned to the test set. The
remaining objects are consecutively added to the subsets,
switching over to the most distant unassigned object with
respect to the model set and to the most distant unassigned
object with respect to the test set. The Kennard and Stone
algorithm ensures that the objects in the model set cover all
possible sources of data variance, while the duplex method
guarantees the representativeness of both subsets. Selection
of model and test sets should be done for each group
separately. When a preprocessing procedure is required,
the selection of objects is applied to preprocessed data. In
our study, the model and test sets were selected using
autoscaled data in order to remove the scale differences
among variables while evaluating the Euclidean distances
among objects. It should be mentioned that the performance
of CART is not influenced by autoscaling. In our study, the
model set of dimension 42 × 34 contains 21 flowing water
and 21 standing water biofilm samples, whereas the test set
of dimension 22 × 34 includes 15 biofilms of flowing water
and seven biofilms of standing water.

Results of CART, DPLS and UVE-DPLS for model and test
sets designed with the Kennard and Stone algorithm

To trace the importance of variables responsible for the
discrimination of both groups, a classification tree was built.
After tenfold cross-validation, an optimal tree, containing
two terminal nodes, was selected. The cross-validation error
is 14%, indicating a relatively good predictive ability of the
constructed tree shown in Fig. 2.

Since there is only one split in the tree, the discriminant
problem is rather simple and the most discriminative variable
describes the Mg content in the water phase (W-Mg). As
mentioned before, Mg plays an important role during the
biofilm formation [10]. All the model set samples, belong-
ing to the group of standing water (17 samples), have Mg
content in water phase below 37 mg g−1. The remaining
samples (21 flowing water biofilms and four standing water
biofilms) are placed in the left terminal node, which results
in a misclassification error of 9.5% for the complete tree.
Although four model standing water biofilms are recog-
nised as flowing water biofilms, the constructed classifica-
tion tree provides a correct classification of 100% for the
test samples (Table 2). Therefore, the model yields fairly
high sensitivity (percentage of correct classification of the
test flowing water biofilms) and selectivity (percentage of
correct classification of the test standing water biofilms).

Additionally, good discrimination results can be obtained
when the primary split is made on the variable describing
the Ca content in the water phase (W-Ca). This variable is a
competitive variable selected after removing W-Mg. The
split on W-Ca leads to a total misclassification error of
14.3%. The presence of Ca has been shown to have an
influence on mechanical properties of biofilms [14].

In the next step of the investigation, DPLS was con-
sidered, in order to check if a discrimination model using
linear combinations of explanatory variables can perform
better than CART. The DPLS model has complexity 1. The
RMSCV is 0.95 and RMS error is 0.64. The DPLS model
constructed allows for 81.8% correct classification of the
test set samples. The analysis of the misclassified test
samples indicates that four out of 15 (26.7%) flowing water
biofilms collected in the Leutra river are incorrectly predicted

Fig. 2 Classification tree
constructed for 42 biofilm model
samples with target variable
describing the type of the water
(flowing, f, or standing, s), in
which the biofilms were grown
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as standing water biofilms; therefore, the model has a lower
sensitivity (73.3%) than the CART model. All the test
samples belonging to the group of standing water biofilms
are well predicted, which again indicates the high selectivity
(100%) of the model constructed (Table 2). An improved
DPLS model was obtained by use of the UVE-DPLS
approach, after discarding the uninformative variables. The
one-factor UVE-DPLS model constructed with three infor-
mative variables (W-Mg, W-Ca, W-Sr), offers a total correct
classification of 90.9% for the test set. It yields a selectivity
of 100% and a better sensitivity (86.7%) in comparison with
the DPLS model, because only two out of 15 (13.3%)
biofilms grown in the flowing water of the Leutra river are
now assigned to the group of standing water biofilms
(Table 2).

The best discrimination results are obtained from CART,
even though this model shows a misclassification error of
9.5% for the complete tree. Since the splits are done in a
univariate way, the correlation between variables is not
taken into account. Therefore, CART provides unsatisfactory
results when a linear combination of variables is responsible
for discriminating the samples. This, however, cannot be
verified unless multivariate approaches such as DPLS and
UVE-DPLS are used. Although CARTand UVE-DPLS have
different objective functions, common variables are selected
as essential for the discrimination. The primary variable,
W-Mg, and two competitive variables, W-Ca and W-Sr, in
CART are also selected by UVE-DPLS.

Results of CART, DPLS and UVE-DPLS for model and test
sets designed with the duplex algorithm

Results of CART, DPLS and UVE-DPLS were obtained
using data designed with the duplex algorithm, which
ensures the representativeness of the model and test sets.

The classification tree built has two terminal nodes and
the primary split is again made on the variable representing
the Mg content (W-Mg) in the water phase. The cross-
validation error is 7.1%. Two out of 42 model set samples

are wrongly classified, which leads to a misclassification
error of 4.8% for the complete tree. Compared with the
previous results, the constructed tree shows a better
performance for the model set samples, but worse predic-
tion rates (Table 2); therefore, the model has again a fairly
high sensitivity (100%), but quite low selectivity (57.1%).

The DPLS model constructed for the data designed by
the duplex algorithm shows slightly better prediction ability
(86.4%) than the model built for the data designed by the
Kennard and Stone algorithm (81.6%). It presents a better
sensitivity (100%), but a reduced selectivity, with only
57.1% of standing water samples being well recognised. A
discriminant model characterised by relatively high sensi-
tivity and selectivity parameters is to be preferred over a
model with a high sensitivity and a low selectivity. There-
fore, the UVE-DPLS model for data designed by the
Kennard and Stone algorithm is to be favoured (Table 2).
All the methods allow a correct prediction for 86.4% of
samples. The samples collected at Chemnitz and White Dak
Pond, Metebach, are improperly classified by all methods.
In fact, this is not a striking observation though when the
data contain some samples that are different in comparison
with the majority of samples. These samples are always
assigned to the model set using the Kennard and Stone
method and then the test samples are correctly predicted.
Using the duplex method, we assigned some atypical
samples to the test set, which results in a construction of
models with too pessimistic predictive abilities.

Results of CART, DPLS and UVE-DPLS for biofilm
samples grown on natural substrates

Another important issue to be discussed is whether the
biofilm samples grown on natural substrates (see the group
of uniquely sampled biofilms in Table 1) can be used to
derive similar conclusions as those drawn using the whole
data. If this is possible, the sampling procedure will be
carried out in a simpler way, which will be less time-
consuming and relatively low in price.

Table 2 Correct classification rate (CCR), sensitivity and selectivity of the models

Selection of model and test sets Kennard and Stone Duplex

Technique CARTa DPLS UVE-DPLSb CARTc DPLS UVE-DPLSd

Flowing water vs. standing water samples
CCR (%) 100.0 81.8 90.9 86.4 86.4 86.4
Sensitivity (%) 100.0 73.3 86.7 100.0 100.0 100.0
Selectivity (%) 100.0 100.0 100.0 57.1 57.1 57.1

CART classification and regression trees, DPLS discriminant partial least squares regression, UVE uninformative variable elimination
a Selected variable: W-Mg
b Selected variables: W-Mg, W-Ca and W-Sr
c Selected variable: W-Mg
d Selected variables: Fe, Mg, Al, W-Cr, W-Cu, W-Mg, W-Ca, W-Sr and W-K
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Fig. 3 Principal component analysis of the data set containing the
uniquely sampled biofilms: a scree plot of the cumulative percentage
of data variance explained by the consecutive PCs, b projection of
biofilms on the plane defined by PC 1 and PC 2, c projection of

biofilms on the plane defined by PC 1 and PC 3, d projection of
variables on the plane defined by PC 1 and PC 2 and e projection of
variables on the plane defined by PC 1 and PC 3
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For an initial inspection of the data structure, PCA was
considered. PCA was applied to autoscaled data (25×34)
containing only uniquely sampled biofilms and the results
are presented in Fig. 3

The first three PCs account for 59.1% of the total data
variance (Fig. 3a). Similar to PCA of the whole data, the
compression is not very effective. The biofilms grown in
seawater can again be distinguished along PC 1 (Fig. 3b).
Moreover, two subgroups of sea biofilms are distinguished
along PC 1 (Fig. 3c). The content of the subgroups is the
same as before. The biofilm sample collected in Munich is
again found far away from all the other samples. Another
extreme biofilm sample, collected in the Aller river (Celle,
Germany), appears along PC 3. Regarding the variable
loadings (Fig. 3d, e), PC 1 is again associated with the salt
content of the biofilm water phases, while PC 2 probably is
now linked to the contamination of the biofilm water
phases, because the variables W-Zn, W-Cd, W-Ni, W-Fe,
W-Co, W-Mn and W-Pb possess high loading values. PC 3
consists of Zn, Cd and Pb, which are usually associated
with an anthropogenic influence and this factor is therefore
associated with contaminants accumulated by the biofilm.
Summarising the results of PCA, one can additionally point
out that the biofilm samples collected in Majorca, Punta
Skala and Nin are richer in Zn, Cd and Pb in comparison
with the remaining sea biofilm samples. Moreover, the
highest Zn, Cd and Pb contents are characteristic for the
biofilm sample from Celle.

In order to construct the CART, DPLS and UVE-DPLS
models, only data of natural biofilms grown in flowing
water and in standing water were considered. Since the
number of samples in each group is small (Table 1), the
models were used for an exploratory purpose only. Because
of this, the predictive abilities of the models were not tested
using an independent test set.

The complete classification tree with three terminal
nodes is shown in Fig. 4. The primary split is made on
the variable describing the Pb content in the water phase
(W-Pb). W-Pb is the most discriminant variable. The next
split on variable Al corrects the improper assignment of one
sample and it is of a lower importance. Owing to the small
number of samples, the required tenfold cross-validation

procedure could not be applied and, therefore, the cross-
validation error was not reported. All the biofilms grown in
standing water are well classified, but two biofilm samples
grown in flowing water are wrongly classified, which results
in a total classification rate of 88.9%. The incorrectly
classified samples originate from Steinach (Germany) and
Geithain (Germany).

The DPLS model constructed has complexity 1. RMSCV
is 1.78 and RMS error accounts for 0.59. Two samples are
incorrectly classified. One of them belongs to the biofilms of
standing water and originates from Chemnitz (Germany),
while the other one is the biofilm collected in the flowing
water body (São Lourenço) located in Juquitiba (Brazil). The
DPLS model built yields a total classification rate of 88.9%.
It should be emphasised that DPLS can lead to a too
optimistic result when the number of variables outnumbers
the number of samples [7]. A remedy for this problem is to
reduce the number of variables by the use of a feature
selection technique, e.g. UVE-DPLS. The UVE-DPLSmodel
has RMSCVof 0.95. One variable, namely W-Pb, is selected.
However, all biofilms grown in flowing water are correctly
classified with the model constructed, but all biofilms grown
in standing water are improperly classified.

Conclusions

Discrimination between sea biofilms and the remaining
standing water and flowing water biofilms is straightfor-
ward by investigating the score plots obtained from PCA.
The loading plots emphasise the expected higher salt
content of the water phases extracted from the sea biofilms
as well as their higher levels of Fe and Mg in comparison
with the other biofilms. A further discrimination between
flowing water and standing water biofilms is possible by
means of supervised methods like CART, DPLS and UVE-
DPLS. The best discriminant model is obtained from
CART. One variable describing the Mg content in the
water phase (W-Mg) is enough to build a model with 9.5%
misclassification error. All test samples selected by the
Kennard and Stone algorithm are correctly classified using
the constructed CART model. The DPLS and UVE-DPLS
methods do not outperform CART for the data set studied
and, therefore, it can be pointed out that a linear combination
of explanatory variables does not lead to a better prediction
for new samples. Moreover, CART appears as a very simple
and efficient discriminant technique leading to a straightfor-
ward data interpretation in terms of explanatory variables.
Hence, CART can be considered as a pilot discriminant
approach. When the CARTmodel is not satisfactory, one can
apply discriminant methods, such as DPLS and UVE-DPLS,
or if necessary to use a nonlinear multivariate classifier like,
e.g., support vector machines.

Fig. 4 Classification tree con-
structed for 18 biofilm samples
with target variable describing
the type of the water (flowing, f,
or standing, s), in which the
biofilms were grown
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All discriminant models, CART, DPLS and UVE-DPLS,
lead to 86.4% correct classification for the test set designed
by the duplex algorithm. However, CART uses only one
variable (W-Mg), UVE-DPLS selects nine variables and
DPLS uses all explanatory variables to build the model.

Discrimination of flowing water and standing water
biofilms that are uniquely sampled, using CART, DPLS and
UVE-DPLS models, is done only for a better understanding
of the data collected. For a definite conclusion whether
these two groups of samples can be discriminated, more
samples are required to properly validate the discriminant
models.
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