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Abstract
Different standard VPT2 codes employ Cartesian coordinates for the computation of rotational and vibrational spectroscopic 
parameters. However, curvilinear internal coordinates offer a number of advantages provided that a general non-redundant 
set of coordinates can be built and employed in an unsupervised workflow. In the present paper I summarize the main results 
and perspectives of a general engine employing curvilinear internal coordinates and perturbation theory for the computa-
tion of rotational and vibrational spectroscopic parameters of large molecules beyond the conventional rigid rotor/harmonic 
oscillator model. Some examples concerning biomolecule building blocks are discussed in some detail in order to better 
analyze the performance of the proposed strategy.
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1 Introduction

The quest for a reliable yet practical modeling of large molec-
ular systems has always played a central role in the field of 
theoretical and computational chemistry, and this balance 
between accuracy and feasibility is likely to persist into the 
future [1]. Combination of different complementary tech-
niques is often the key to determining in an univocal way 
the molecular structure and bond topology for a wide range 
of systems, ranging from small molecules to large biomol-
ecules. In particular, high-resolution spectroscopic studies 
both in the gas-phase (microwave, MW) and in inert matrices 
(infrared, IR) allow an unbiased disentanglement of intrinsic 
stereo-electronic effects without any strong perturbing effect 
from the environment. However, the tuning of experimental 
spectra by different low-lying structures and the interplay 
of different contributions can make the interpretation of 
experimental data troublesome or even impossible without 
the aid of trustworthy in silico simulations. In fact, ongoing 
improvements of hardware, software, and, above all, underly-
ing physical–mathematical models are allowing the analysis 
of experimental data and their interpretation for molecular 

systems of increasing complexity. Despite the undisputed 
effectiveness of static structure–property correlations and 
the fundamental rigid rotor/harmonic oscillator (RRHO) 
model, results that are directly comparable to experiment can 
only be achieved through more advanced models: (i) at the 
electronic level, employing highly-correlated methods; (ii) at 
the nuclear level, by incorporating anharmonic effects in the 
description of the nuclear motions. In fact, a strong limitation 
of the harmonic approximation is that the real vibrations are 
intrinsically anharmonic, and as a consequence vibrational 
energies are systematically overestimated. A common empir-
ical scheme for improving the agreement with experimental 
results rests on the application of scaling factors depending 
on the employed quantum chemical (QC) method and, possi-
bly, on the range of investigated frequencies. However, those 
scaling factors, generally obtained from statistical analyses of 
fundamental transitions, do not improve intensities and are 
often not suitable for higher-quanta transitions. The introduc-
tion of anharmonic effects requires a representation of poten-
tial energy surfaces (PESs) around stationary points beyond 
the quadratic approximation, introducing a series of higher-
order terms involving one or more vibrational coordinates. 
In this context, a crucial point is represented by the inclusion 
of couplings involving different vibrations, which have to 
be properly considered in order to obtain accurate estimates 
of line shapes, frequency shifts, etc. Computational strate-
gies aimed at the study of vibrational properties of molecular 
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systems are usually based on perturbative [2–9] variational 
[10–12] approaches or their combinations [13, 14]. Within 
variational methods, the energy is minimized starting from 
an expansion of the wave functions over a basis of known 
states. This class of methods includes the vibrational self-
consistent-field (VSCF) [12, 15–20] and vibrational configu-
ration interaction (VCI) [21–23]. While the use of accurate 
variational approaches in conjunction with high-order force 
fields allows to obtain estimates vibrational energies close to 
their experimental counterparts, their use is mainly limited 
to systems containing few atoms due to their unfavorable 
scaling with the size of the molecule [24]. With the aim of 
reducing the computational cost, several strategies have been 
devised, such as the iterative subspace expansion algorithms 
[25–28] and protocols for the reduction of the VCI basis [29, 
30]. Over the last decades, several variational approaches 
have been proposed for the resolution of the vibrational 
problems, not only relying on the Watson’s Hamiltonian and 
exploiting different sets of nuclear coordinates. In particu-
lar, different approaches and sophisticated variational, semi-
variational nuclear motion and dynamics theoretical frame-
works (and codes) built upon the use of internal coordinates 
have been discussed by Carrington [31, 32], Csaszar [33, 
34], Lauvergnat [35–37], Tennyson [38, 39], and Yurchenko 
[40], among others. Variational approaches exploiting Monte 
Carlo diffusion methods in internal coordinates have been 
also investigated [41, 42], as well as the use of optimized and 
localized coordinates [43, 44], for example, in the vibrational 
coupled-cluster (VCC) framework [45]. Another option is the 
parametrization of the vibrational wavefunction in tensor for-
mats such as canonical decomposition [46] and matrix prod-
uct states. Following that, the wavefunction representations 
can be optimized through the recent extension of the density 
matrix renormalization group (DMRG) [47, 48] algorithm 
to the study of the vibrational problem, the resulting method 
being referred to as vibrational DMRG (vDMRG) [49, 50].

When comparing the various methods for including 
anharmonic effects, [2, 3, 16–19, 21, 22, 51–53] those based 
on perturbation theory applied to the Watson Hamiltonian 
offer a remarkable balance between accuracy and compu-
tational cost provided that resonance effects are taken into 
proper account. In particular, the vibrational second-order 
perturbation theory (VPT2), [2, 54] based on a fourth-order 
polynomial approximation of the potential energy in terms 
of normal coordinates, allows to study medium-to-large size 
molecular systems. Furthermore, the formulation of VPT2 
based on the Van Vleck contact transformation method [55] 
enables the extension to a generalized model (GVPT2) [6]. 
Within this framework, the diagonalization of a limited set 
of reduced-dimensionality Hamiltonians involving strongly 
interacting states is carried out, while the other states are 
corrected by second-order perturbative contributions. At the 
VPT2 level, also the vibrational dependence of rotational 

constants on molecular vibrations can be expressed through 
a perturbative expansion leading to the determination of spe-
cific vibro-rotational interaction constants and paving the 
route for the calculation of accurate molecular structures 
through the semi-experimental (SE) approach [56].

While VPT2 can be successfully applied in many cases, 
it is also characterized by some intrinsic drawbacks that 
prevent its use in some scenarios. As mentioned above, the 
first problem is related to the presence of resonances (both 
Fermi and Darling-Dennison), even though several com-
putational strategies as well as robust schemes have been 
developed over the years [6, 57–62] even for the treatment 
of vibrational intensities. Second, the theoretical framework 
largely depends on the symmetry of the molecule since the 
presence of degenerate vibrations implies a distinct deriva-
tion of the equations [63, 64]. As a consequence, different 
derivations and implementations of VPT2 are required for 
the treatment of systems belonging to different classes of 
symmetry. Recently, this issue was solved by the formula-
tion of a unified model relying on the proper application of 
a posteriori transformations to the wavefunctions [65]. Last 
but not least, large amplitude motions (LAMs) are poorly 
described at the VPT2 level and more generally with a quar-
tic force field. Unfortunately, variational approaches such as 
the VCI or more refined perturbative methods (such as VPT4 
[66]) become rapidly prohibitive as the size of the molecular 
systems increases, due to the necessity of more demand-
ing anharmonic force field calculations and the increasing 
complexity concerning the vibrational calculation. On the 
other hand, low-dimensionality methods tailored for describ-
ing one or a limited number of LAMs [67–72] imply their 
separation from the rest of vibrations, usually referred to 
as small amplitude motions (SAMs). As shown in a previ-
ous study, [73] the definition of a suitable set of internal 
coordinates able to decouple these two classes of vibration 
allows to treat each normal mode through the most appro-
priate method. Starting from the available literature, [74, 
75] the VPT2 framework in terms of curvilinear coordinates 
was developed and successfully applied to both semi-rigid 
and flexible systems, showing in the latter case that not 
only LAMs can be effectively decoupled from SAMs, but 
also that each LAM can be treated independently from the 
others. As a matter of fact, SAMs can be treated through 
the internal-based VPT2, while variational approaches can 
be employed for the calculation of the energy levels of the 
floppy degrees of freedom. When a single LAM is present, 
it can be effectively treated through the discrete variable 
representation (DVR) [76–83]. On the other hand, a higher 
number of LAMs can be in principle handled through the 
reaction-surface Hamiltonian (RSH) [84], reaction-volume 
Hamiltonian (RVH) [85] or VCI-based methodologies.

In this paper, the versatility of internal coordinates and 
their application in both fields of rotational and vibrational 
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spectroscopy will be described. The paper is organized as 
follows. First, an overview of the Cartesian-based version 
of VPT2 will be provided, including the calculation of the 
vibrational contributions to the rotational constants required 
in the SE approach. Particular attention will be devoted to 
the use of different sets of internal coordinates in the non-
linear least-squares fit needed for the calculation of the SE 
equilibrium molecular geometry. Then, the focus will shift 
to the extension of VPT2 to the use of internal coordinates, 
from the calculation of the anharmonic energy levels to the 
definition of a robust scheme for the automatic identifica-
tion of Fermi resonances. In this context, the importance of 
internal coordinates in reducing inter-mode couplings will 
be underlined through the application to systems of biologi-
cal and technological interest.

2  Theory

2.1  Overview of the Cartesian‑based VPT2

In this section, the unified Cartesian-based, VPT2 frame-
work for asymmetric, symmetric, linear, and spherical tops 
is described. In this theoretical model, all normal modes 
are treated independently from one another regardless the 
presence of vibrational degeneracies. In the latter instance, a 
series of linear transformations are employed a posteriori to 
determine the correct energies, wave functions and proper-
ties. The discussion is structured to give a broad overview 
of this methodology up to the derivation of the vibrational 
energy levels also accounting for the presence of Fermi 
resonances.

Let us consider a molecule composed of N vibrational 
modes (N being equal to 3Na − 6 for nonlinear molecules 
and to 3Na − 5 for linear ones, where Na is the number of 
atoms). The reference Hamiltonian is obtained by expanding 
the more general vibro-rotational Hamiltonian proposed by 
Watson [86] in terms of normal coordinates and then only 
considering the purely vibrational terms:

where qi is the i-th dimensionless normal coordinate, pi is 
its conjugate momentum, �i is the corresponding harmonic 
wavenumber (in cm−1 ), Beq
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constant along the � axis and � is the anti-symmetric matrix 
of Coriolis couplings. The terms �ijk and �ijkl are, respectively, 
referred to as cubic and quartic force constants, defined by 
the following notation,

where V represents the potential energy, while U is a mass-
dependent term which does not contribute to the calculation 
of the transition energies, and for this reason it will be not 
considered from now on.

Within the VPT2 framework, the vibrational Hamiltonian 
is expanded through a perturbative series up to the second 
order, the resulting Schrödinger equation being typically 
solved by means of two different approaches, namely the 
Rayleigh–Schrödinger (RSPT) and Van Vleck (CVPT) [55] 
perturbation theory. As a result, the VPT2 vibrational energy 
of a state �vR⟩ is

where v
R,i is the number of quanta associated with the mode i 

in the state R, and �0 is the anharmonic resonance-free zero-
point vibrational energy (ZPVE) [9, 87, 88].
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Inspection of Eqs. 4 and 5 evidences that the presence of 
denominators approaching zero would lead to unphysical 
results. These conditions, collectively known as Fermi reso-
nances (FRs), occur when �i ≈ 2�j or �i ≈ �j + �k . The 
first case is commonly referred to as type I, while the second 
as type II [89]. Several strategies can be adopted to handle 
this problem. In the deperturbed VPT2 (DVPT2), a sequen-
tial screening of all potentially resonant terms is performed, 
and an analysis based on one or more criteria allows to state 
which terms should be removed from the anharmonic calcu-
lation. Generally, this procedure is organized into two step. 
The first one is the evaluation of the energetic proximity of 
the interacting states at the harmonic level,

where i and j can be equal and Δ�1−2 is a threshold defined 
a priori. Second, the overall weight of the term is estimated. 
Several strategies have been proposed for the latter [7, 58, 
90]. In this work, the test proposed by Martin and co-work-
ers [90] has been employed, leading to the following condi-
tion, [91]

where K1−2 is a second threshold required in the procedure. 
In the DVPT2 scheme, each term fulfilling Eqs. 6 and 7 is 
labeled as resonant and removed from the anharmonic cal-
culation. If on the one side this method avoids singularities 
in the calculation of the energy levels, on the other side it 
can lead to a truncate treatment, since the resonant terms are 
systematically neglected. In order to prevent this situation, 
the interaction terms related to FRs can be introduced back 
in a successive, variational step. For the purpose, a vari-
ational matrix H̃ is built starting from the DVPT2 energies 
and Van Vleck Hamiltonian interaction terms. A new set of 
energies is obtained by diagonalizing H̃ , the full procedure 
being referred to as GVPT2F (hereafter, simply GVPT2).

2.2  Vibrational corrections

The rotational constants of a target molecule are among 
the most important parameters obtained from the study 
of rotational and vibro-rotational spectra, and they are 
inversely proportional to the principal moments of iner-
tia. In general, the availability of this kind of data for 
different isotopic species allows for the determination 
of structural parameters like bond lengths and angles 
[92]. Nevertheless, since molecules are not rigid rotors 
and are subject to vibrational motion, the notion of a 
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reference molecular geometry is far from being a simple 
concept. An important step forward has been done by 
Pulay and co-workers [56] through the introduction of 
the SE approach for the determination of the equilibrium 
structure of a molecule. While more difficult to measure 
at the experimental level, this kind of structure properly 
accounts for vibrational effects and it is independent from 
the isotopic species. Furthermore, it is directly compara-
ble to quantum-mechanical data. Within the SE method, 
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As it can be deduced from Eq. 10, the coefficients ��,i are 
affected by resonances, occurring when �i ≈ �j . However, 
in the calculation of the vibrational correction this issue is 
solved by recasting the Coriolis contribution as follows,

Once the set of SE rotational constants is assembled, a non-
linear least-squares fit is carried out in order to determine 
the molecular geometry, which is described by a proper 
set of nuclear coordinates. For the purpose, the theoretical 
framework has been implemented in the MSR (Molecular 
Structures Refinement) software, [96–98] developed in our 
research group and designed for the determination of equi-
librium structures through the SE approach. Over the last 
years, the MSR code has been employed for the characteriza-
tion of numerous molecular systems including sulfur-con-
taining [96, 99] and astrochemical systems, [100] biological 
building blocks [97] and non-covalent complexes [101]. The 
program has been developed with the target of being as gen-
eral as possible, and equipped with a series of features at dif-
ferent levels. First, a wide range of optimization algorithms 
(such as the Gauss–Newton and Levenberg-Marquardt) has 
been included. Second, the so-called predicate observations 
[102–104] can be added to the set of reference data. Within 
this approach, the set of SE data is augmented with quan-
tum-mechanical estimates of one or more parameters. This 
feature can be particularly advantageous when the number of 
isotopic species is not sufficiently large for the full structural 
characterization. Third, a detailed error analysis has been 
implemented, with the possibility to calculate, for example, 
the standard deviations on the singular parameters, the outli-
ers and the condition number.

2.3  Curvilinear coordinates formalism

As previously anticipated, the choice of a proper set of curvi-
linear internal coordinates plays a central role in vibro-rota-
tional analyses. For the present discussion, let us consider a 
set of non-redundant internal coordinates s . Since the latter 
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are nonlinear functions of Cartesian coordinates, a strategy 
commonly adopted is represented by a Taylor-series expan-
sion around the reference structure,

where x = {x1, x2,… , x3Na
} collects the nuclear Cartesian 

coordinates, Na is the number of atoms, and the Wilson B 
matrix and its Cartesian derivative B

′

 have been introduced,

It is worth pointing out that Eq. 13 can be truncated at dif-
ferent levels depending on the area of study. In the present 
work, a first-order expansion is sufficient to obtain a set of 
internal coordinates for the structural refinement, while the 
Wilson B

′

 tensor is required in the field of anharmonic vibra-
tional spectroscopy.

Concerning the calculation of accurate molecular struc-
tures, Z-matrix internal coordinates (ZICs) represent the most 
common choice. ZICs are mostly based on chemical intuition; 
however, they are not completely unambiguous. Because of 
this, selecting a different set of ZICs could provide a distinct 
outcome, indicating a substantial user-dependency. Moreover, 
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process from converging. In order to bypass this problem, a 
protocol based on molecular symmetry has been adopted. The 
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while R contains the redundancies. The selection of A 1 coor-
dinates is carried out through a multi-step procedure which 
is shortly outlined here, while a full description is reported 
in Ref. [97]. First, the guess structure is displaced along each 
DIC, and the resulting geometry is converted to its Cartesian 
counterpart. The latter is then subjected to the application 
of all symmetry operations of the point group, and only if it 
remains unchanged, the corresponding displacement inter-
nal coordinate is marked as totally symmetric. Finally, the 
matrix product BB† expressed in terms of DICs can be cast 
in a block-diagonal form, each block being related to an 
irreducible representation of the point group. Once all A 1 
coordinates have been detected, their presence in the same 
block is checked as a further confirmation. The use of A 1 
coordinates in the optimization presents two basic advan-
tages. In fact, it is characterized by a black-box definition 
of a non-redundant set of internal symmetry coordinates. 
Second, the generation of geometrical constraints is com-
pletely automatized in order to handle in a transparent way 
even large molecular systems. With the aim of highlighting 
the effectiveness of the mentioned procedure, a complete 
study at different levels will be presented later. In particular, 
the stability of the fit with respect to the set of coordinates 
has been object of interest. The accuracy of the proposed 
methodology will be shown through the analysis of systems 
of biological and astrochemical interest. Furthermore, the 
comparison of our results with advanced, highly accurate 
protocols will be object of discussion as well.

2.4  Internal‑based VPT2 framework

In this section, the main aspects of the internal-based VPT2 
framework are described, while interested readers are referred 
to Ref. [65] for a more detailed discussion.

In order to set up the expressions required for the calcula-
tion of VPT2 energies within the internal-based VPT2 frame-
work, the first step is the definition of the vibrational Ham-
iltonian. At variance with the Cartesian-based formulation, 
the kinetic energy operator is not diagonal anymore, implying 
additional terms arising from the perturbative expansion.

Let us consider a set of M internal coordinates 
s = {s1, s2,… , sM} ( M ≥ N ). The expression of the kinetic 
energy operator (KEO) in terms of s is well known and can be 
stated through the introduction of the Wilson G matrix,

where M is the diagonal matrix of atomic masses and B is 
built over the coordinates s . By introducing �̃ = det(G) , the 
expression of the operator is [35, 110, 111]
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where ℏ is the reduced Planck constant and

is an inherently quantum-mechanical contribution, com-
monly known as extra-potential term. Similarly to the Car-
tesian-based treatment, the unperturbed eigenstates stem 
from the harmonic theory of vibrations. Within the present 
framework, the harmonic frequencies and normal modes are 
obtained through the Wilson GF method: [112]

The diagonal elements of � are the squared angular fre-
quencies, the matrix L contains the eigenvectors linking the 
normal coordinates Q = {Q1,Q2,… ,QN} to the vector s,

while the Wilson F matrix is the Hessian of the potential 
energy in terms of the internal coordinates, and can be 
directly calculated from its Cartesian counterpart Hx (see 
Appendix A). Since the extra-potential term can be generally 
approximated with its equilibrium value, it can be neglected 
in the calculation of transition energies. Following the intro-
duction of the customary dimensionless normal coordinates 
q and their conjugate momenta p , the vibrational Hamilto-
nian Hv can be obtained,

where � is the G matrix expressed in wavenumbers and V 
is the potential energy operator. The anharmonic contribu-
tions due to the kinetic energies can be evaluated through 
the Taylor-series expansion of the g matrix,

where �eq

ij
= �i�ij and �ij,kl… represent the derivatives of the 

� matrix expressed in wavenumbers:

By inserting Eq.  23 into Eq.  21 and considering the 
expansion of potential energy, the following expression is 
obtained:

(17)T = −
ℏ2

2

M
∑

i=1

M
∑

j=1

�

�si
�ij

�

�sj
+ V

�

(18)V
�
=

�2

32

M
∑

i=1

M
∑

j=1

[

�ij

�̃2

𝜕�̃

𝜕si

𝜕�̃

𝜕sj
− 4

𝜕

𝜕si

(

�ij

�̃

𝜕�̃

𝜕sj

)]

(19)GFL = L�

(20)s = LQ

(21)Hv =
1

2

N
∑

i=1

N
∑

j=1

pi�ijpj + V

(22)�ij = �
eq

ij
+

N
∑

k=1

�ij,kqk +
1

2

N
∑

k=1

N
∑

l=1

�ij,klqkql

(23)�ij,kl… =

(

�n�ij

�qk�ql …

)

eq
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(24)H
(0) =

1

2

N
∑

i=1

�i(q
2
i
+ p2

i
)

(25)H
(1) =

1

6

N
∑

i=1

N
∑

j=1

N
∑

k=1

(

�ijkqiqjqk + 3�ij,kpiqkpj
)

(28)
16�V

ii
= �iiii −

5�iii
2

3�i

−

N
∑

j = 1

(j ≠ i)

�iij
2(8�2

i
− 3�2

j
)

�j(4�
2
i
− �2

j
)

Analogously to the treatment in terms of Cartesian-based 
normal coordinates (CNCs), the anharmonic energies can 
be obtained by either CVPT or RSPT. Furthermore, thanks 
to the invariance of the harmonic Hamiltonian, the second-
quantization formalism can be still applied. The main differ-
ence with respect to the Cartesian-based framework is that 
each vibrational property Q is composed of three contribu-
tions, namely a purely potential ( QV ), a purely kinetic ( QT  ) 
and a cross term ( Q× ). Within the internal-based VPT2, the 
energy is provided by the same expression as Eq. 3, where 
the anharmonic � matrix is expressed as the sum of the three 
contributions mentioned above:

As expected, the purely potential term does not show any-
difference compared with its Cartesian counterpart but the 
absence of the Coriolis term and the explicit expression of 
all contributions are reported in the following,

(26)H
(2) =

1

24

N
∑

i=1

N
∑

j=1

N
∑

k=1

N
∑

l=1

(

�ijklqiqjqkql + 6�ij,klpiqkqlpj
)

(27)� = �V + �T + �×

(29)

4�V

ij
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2�iij
2�i
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− �2

j

−
2�ijj

2�j
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−
�iii�ijj

�i
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�iij�jjj

�j

−

N
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(k ≠ i, j)
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2�k(�
2
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i
− �2

j
)�ijk

2
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�k

]

(30)
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where few misprints of Eqs. 35 and 37 of Ref. [73] have 
been corrected. By applying the partial fraction decomposi-
tion and introducing the tensors}

the elements of the � matrix can be rewritten in a more 
compact form, which is also required for the application of 
the DVPT2 scheme:

(33)

4�×
ij =

�ii,i�ijj + �jj,i�iii

�i
+

�iij�jj,j + �ii,j�jjj

�j
−

4(�ij,i�iij�j − �ii,j�iij�i)

4�2
i − �2

j

−
4(�ij,j�ijj�i − �jj,i�ijj�j)

4�2
j − �2

i

+
N
∑

k = 1
(k ≠ i, j)

[ 4�ik,j�ijk�i(�2
i − �2

j − �2
k) + 4�jk,i�ijk�j(�2

j − �2
i − �2

k)

(�i + �j + �k)(�i − �j − �k)(�i − �j + �k)(�i + �j − �k)

+
8�i�j�k�ij,k�ijk

(�i + �j + �k)(�i − �j − �k)(�i − �j + �k)(�i + �j − �k)
−

�ii,k�jjk + �iik�jj,k

�k

]

(34)�ijkl = �ijkl + �ij,kl + �kl,ij

(35)�ijk = �ijk − (�ij,k + �ik,j + �jk,i)

(36)�ijk = �ijk − (�ij,k − �ik,j − �jk,i)

(37)

16�ii = �iiii −
�2
iii
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iii
∕2
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−
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2

N
∑
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[

4�2
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+
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2�i − �j

]

(38)

4�ij = �iijj −
1

2

[

�2
iij

2�i + �j
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iij

2�i − �j
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−
1

2

[

�2
jji
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+
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]

−
�iii�ijj
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−
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−
1
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N
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ijk

�i + �j + �k

−
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ijk
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+
�2
ikj
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−
�2
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+
2�kii�kjj

�k

]

One of the most interesting aspects of Eqs. 37 and 38 is 
their analogy with the Cartesian-based treatment from the 
algebraic point of view. In the first place, the internal-based 
elements of � show the same functional form as those intro-
duced in Eqs. 4 and 5. Consequently, the internal-based � 
matrix can be interpreted as a full-fledged generalization of 
the corresponding Cartesian counterpart, implying a remark-
able simplification at the implementation level. In fact, the 
extension of any code implementing the Cartesian-based 
VPT2 becomes straightforward. Moreover, the diagnostic of 
Fermi resonances can be carried out through a direct exten-
sion of the Martin test. While the first step in the identifica-
tion of FRs (see Eq. 6) does not require further changes, 
the second step becomes a straightforward generalization 
of Eq. 7:

It is evident that Eq. 7 can be generated from Eq. 39 by 
setting the derivatives of the g matrix to zero, since in that 
case �ijk = �ijk.

Once the set of FRs has been identified, the correspond-
ing interaction elements of the contact-transformed Hamil-
tonian can be calculated,

paving the route for the extension of the GVPT2 scheme to 
the use of internal coordinates. Let us underline that thanks 
to the analogy between the Cartesian- and internal-based 
frameworks of VPT2 in terms of the analytical expressions 
of wave functions, vibrational energies and diagnostic of 
FRs, the extension of the internal-based VPT2 for asymmet-
ric tops to the treatment of linear, symmetric and spherical 
tops can be carried out through the procedure described in 
Ref. [65].

(39)
�jki

4

64(1 + �jk)
2
|�i − �j − �k|

3
≥ K1−2

(40)

⟨vR + 1i�H̃�vR + 1j + 1k⟩ = jki

�

(v
R,i + 1)(v

R,j + 1)(v
R,k + 1 + 𝛿jk)

8(1 + 3𝛿jk)
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3  Implementation

In this section, the implementation of the algorithms 
employed in this work is briefly addressed, while a deeper 
discussion is reported elsewhere [65, 97].

3.1  Internal‑based VPT2 framework

A full calculation within the internal-based VPT2 frame-
work is carried out through different steps and exploits 
an interplay of implementations within a recently devised 
standalone code and a development version of the quantum-
chemistry package Gaussian. In particular, the standalone 
program performs the harmonic vibrational analysis, the 
generation of the single-point Gaussian  input files required 
for the calculation of both potential and kinetic energy 
derivatives with respect to the normal coordinates by finite 
differences, and the calculation of such derivatives. On the 
other side, the tasks carried out through the Gaussian pack-
age are the initial optimization, the calculation of Cartesian 
force constants at both equilibrium and out-of-equilibrium 
geometries, and the application of the VPT2 framework for 
the calculation of the anharmonic frequencies. Summariz-
ing, the new program is mainly aimed at generating the 
anharmonic force field and the Wilson g derivatives, while 
the internal-based VPT2 framework has been implemented 
in the Gaussian package. Even though different quantum-
chemistry programs can be employed for the generation 
of the derivatives required in the anharmonic treatment, in 
the present work the G16 [113] package has been always 
employed.

3.2  Calculation of semi‑experimental structures

As previously discussed, the main ingredients for the calcu-
lation of SE structures are the experimental rotational con-
stants, vibrational corrections, weights and the guess geom-
etry. In general both the guess geometry and vibrational 
corrections are evaluated through a quantum-chemistry 
package. Similarly to the application of the VPT2 frame-
work in internal coordinates, the G16 package has been used 
for this purpose. Once these preliminary operations have 
been carried out, the whole set of data is used to start the 
structural refinement by the MSR program, leading to the 
characterization of the molecular geometry.

Since the new code and MSR share a common set of 
libraries, they have been recently assembled in a single suit 
of programs for vibro-rotational analyses.

4  Computational details

Most of the available electronic structure methods imple-
menting analytical second-order derivatives of potential 
energy have been employed. The hybrid density functional 
B3PW91 [114] has been used in conjunction with the jul-
cc-pVDZ (hereafter julDZ) basis set [115]. Furthermore, 
tight d functions have been included (julDZd) for the treat-
ment of atoms belonging to the third period. The double-
hybrid functional revDSD-PBEP86 [116] and second-order 
Møller–Plesset perturbation theory (MP2) [117] have been 
employed in conjunction with the jun-cc-pVTZ (hereafter 
junTZ) basis set [115]. The latter has been augumented with 
tight d functions (junTZd) for calculations involving third-
period atoms. The empirical dispersion contributions have 
been systematically accounted for in density functional the-
ory (DFT) computations by means of Grimme’s D3 model 
with Becke–Johnson damping [118, 119].

5  Results and discussion

Several systems have been analyzed in detail with the objec-
tive of validating the theoretical framework developed in 
the fields of both molecular structure prediction and vibra-
tional spectroscopy. In this section, selected test cases will 
be discussed to highlight the main aspects characterizing the 
computational protocols developed so far.

5.1  Determination of SE equilibrium structures

As previously outlined, the choice of the set of coordi-
nates represents one of the main steps needed to obtain 
reliable SE structures. While the effectiveness of ZICs for 
this type of calculations is now well recognized, in this 
context the attention will be focused on symmetry-based 
optimizations. With the aim of investigating different sym-
metries, the simplest Criegee intermediate (point group 
C s ) and thiophene (C2v ) have been selected as case stud-
ies. Furthermore, for both systems detailed analyses are 
available in the literature, which provided highly accurate 
SE structures. For this reason, they represent ideal test 
cases to validate the computational protocol discussed in 
the present work.

First, let us consider the Criegee intermediate (see 
Fig. 1), which is a planar system fully described by 7 
degrees of freedom.

A detailed analysis has been performed by McCarthy and 
co-workers [120], where the experimental rotational 
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constants of nine isotopic species combined with vibrational 
corrections at the CCSD(T)/ANO1 [121] level of theory 
have been employed in the prediction of the SE structure. In 
the present work, the same set of experimental data has been 
used for the calculation of both the effective ( r0 ) structure 
and, in conjunction with vibrational corrections at the rDSD/
junTZ level, its SE counterpart. However, due to the planar-
ity of the system only two of the three moments of inertia 
are independent. As a matter of fact, 18 rotational constants 
have been actually included in the optimization. The fit has 
been performed employing both ZICs (see Section S1 of the 
Supplementary Information) and A 1-DICs as nuclear coor-
dinates. Concerning the latter, a set of PICs has been gener-
ated from the molecular connectivity, followed by the cal-
culation of DICs and the extraction of the totally-symmetric 
coordinates. As expected from a C s planar systems, the A 1
-DICs correspond to those DICs which do not alter dihedral 
angles. Since A 1-DICs are much less chemically intuitive if 
compared with ZICs, an error propagation has been applied 
to express both SE geometries in terms of the latter through 
a double-step procedure. In the first place, the vari-
ance–covariance matrix expressed in terms of A 1-DICs ( �

A1
 ) 

has been converted to the corresponding Cartesian-based 
counterpart ( �

x
 ) through the following expression,

where B†

A1
 represents the pseudo-inverse of the Wilson B 

matrix expressed in terms of A 1-DICs evaluated at the opti-
mized geometry. Secondly, the �

x
 matrix has been converted 

to ZICs,

where BZ is the Wilson B matrix in terms of ZICs at the 
optimized geometry. The new standard deviations and con-
fidence intervals have been obtained starting from the square 
roots of the diagonal elements of �

Z
 . The different sets of 

(41)�
x
= {BA1

}T�
A1

{BA1
}

(42)�
Z
= {B†

Z
}T�

x
{B†

Z
}

structural parameters are reported and compared with those 
proposed by McCarthy and co-workers in Table 1.

Inspection of Table 1 shows that that the SE geometries 
obtained through ZICs and A 1-DICs exactly coincide both 
in terms of structural parameters and standard deviation 
and, what is even more important they present also struc-
tural parameters close to their reference counterparts. Con-
sequently, the symmetry-based approach has been applied 
without the setup of a user-defined Z-matrix, but still reach-
ing the same accuracy.

A further validation of the proposed methodology has 
been performed by the structure determination of thiophene 
(see Fig. 2), a C 2v heteroaromatic cycle.

A first characterization of this system performed by our 
research group employed the experimental rotational con-
stants of eight isotopologues combined with vibrational 
corrections based on the B2PLYP and B3LYP functionals 
in conjunction with the cc-pVTZ and SNSD basis sets, 
respectively. [122] More recently, a detailed experimental 
and theoretical investigation of thiophene has been car-
ried out by Orr and co-workers [123]. In particular, the 
set of experimental data has been extended to include 26 
isotopic species, with the latter being used together with 
vibrational and electronic corrections at the CCSD(T)/cc-
pCPVTZ level of theory for the structural refinement. In 
agreement with the calculations reported in Ref. [123], 24 
isotopic species have been included in the present work. 
Similarly to the Criegee intermediate, only two rotational 
constants for each isotopologue have been considered, 
leading to a set of 48 experimental rotational constants 
usable in the nonlinear regression. At variance with Ref. 
[123], only vibrational corrections at the B3P/julDZd level 
have been used to correct the experimental data, as well as 
to compute the guess structure for the optimization. A full 
comparison of the effective and SE structure with those 
proposed in Ref. [123] is reported in Table 2.

In analogy with the Criegee intermediate, both the SE 
equilibrium structure and the standard deviation are invari-
ant under change of coordinates. The search of totally sym-
metric coordinates provided the correct number of coordi-
nates (8), and their use reaches the same structure obtained 
by using the Z-matrix indicated in Ref. [123] and reported in 
Section S1 of the Supplementary Information. Last but not 
least, a good agreement between the SE structural param-
eters retrieved in this work and those proposed by Orr and 
co-workers has been detected despite the different nature 
of the corrections to the experimental rotational constants.

5.2  Anharmonic calculations in internal coordinates

With the aim of highlighting the advantages of an internal-
based formulation of VPT2, our recently developed engine 
has been be applied to both semi-rigid and flexible systems. 

Fig. 1  Molecular structure and atom labeling of the simplest Criegee 
intermediate
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In the former case, the choice of the coordinates set plays 
a more marginal role even though it leads to a remarkable 
reduction of inter-mode couplings. This finding paves the 
way to the systematic use of cost-effective protocols aimed 
at calculating vibrational properties. In fact, the reduction of 
couplings between different vibrations results in the calcula-
tion of low-dimensionality anharmonic force fields, which 
represent the bottleneck of an anharmonic calculation. This 
effect is even stronger when flexible systems are taken into 
account, especially concerning the couplings involving 
LAMs.

In the present work, 1,1-difluoroethylene (see Fig. 3) has 
been selected as test-case for semi-rigid systems.

The calculation of the fundamental vibrational frequen-
cies at the anharmonic level has been performed by employ-
ing all VPT2 schemes discussed in the previous sections 
within both internal- and Cartesian-based frameworks. A 
full comparison of the results with the experimental data is 
reported in Table 3.

As expected, the Cartesian- and internal-based calcula-
tions do not show any difference in the resulting transition 
frequencies. It is also worth specifying that Coriolis contri-
butions have been properly considered in the calculations 
based on Cartesian coordinates. As a matter of fact, specific 
second-order terms in the expansion of the KEO yield con-
tributions formally equivalent to the Coriolis terms. Despite 
the GVPT2 results obtained on the basis of Cartesian and 
internal coordinates are numerically indistinguishable, the 
magnitude of the couplings is remarkably affected by the 
choice of the nuclear coordinates. This pattern has been also 
observed for terms which do not contribute directly to the 
calculation of anharmonic transition energies in this context, 
such as three-mode quartic force constants.

Inspection of Fig. 4 shows that the magnitude of inter-
mode terms is definitively reduced when switching from 
the Cartesian-based representation of normal coordinates to 
that employing curvilinear coordinates. Furthermore, vibra-
tional couplings are not transferred from potential to kinetic 
energy, since there exist only six first-order derivatives of the 
Wilson � matrix exceeding 100 cm−1 , while all second-order 
derivatives are well below this value.

Table 1  Equilibrium molecular 
structure of the simplest Criegee 
intermediate (distances in Å, 
angles in degrees)

[a] Equilibrium geometry at the rDSD/junTZ level
[b] All fits have been performed on moments of inertia equally weighted
[c] Vibrational corrections at the rDSD/junTZ level of theory
[d] Vibrational corrections at the CCSD(T)/ANO1 level of theory
[e] Mean standard deviation (uÅ2)
[f] r = n − p is the number of degrees of freedom, n and p being the number of SE data and parameters, 
respectively

Coordinate r
[a]
e

ZICs[b] A1-DICs[b] Ref. [120]

r0 r
SE [c]
e

r0 r
SE [c]
e

r
SE [d]
e

r(C−Hc) 1.0830 1.087(1) 1.0794(2) 1.087(1) 1.0794(2) 1.0806(2)
r(C−Ht) 1.0797 1.079(2) 1.0761(4) 1.079(2) 1.0761(4) 1.0772(4)
r(C−O) 1.2696 1.2774(9) 1.2699(2) 1.2774(9) 1.2699(2) 1.2689(2)
r(O−O) 1.3243 1.3425(9) 1.3407(2) 1.3425(9) 1.3407(2) 1.3405(1)
a(O−C−Hc) 118.82 117.6(9) 118.70(3) 117.6(9) 118.70(3) 118.65(2)
a(O−C−Ht) 114.71 114.9(2) 114.96(7) 114.9(2) 114.96(7) 114.82(4)
a(O−O−C) 119.27 117.96(2) 117.834(4) 117.96(2) 117.834(4) 117.910(3)
�[e] 0.003 0.0005 0.003 0.0005
r
[f] 11 11 11 11

Fig. 2  Molecular structure and atom labeling of thiophene
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The AAT conformer of glycolic acid (see Fig. 5) has been 
selected as a flexible system presenting LAMs.

A recent detailed analysis of the conformers of glycolic 
acid [126] shows that most of them are characterized by 
the presence of this kind of vibrations, poorly described at 
the VPT2 level. In this work, the AAT conformer has been 
considered, since it is characterized by two distinct LAMs, 
representing then an ideal system for studying also inter-
mode couplings between different LAMs. The simulations 
have been performed employing a dual-level method based 
on the substitution approach [73], where the anharmonic 
calculation at the B3P/julDZ level of theory has been refined 
by the inclusion of harmonic frequencies evaluated at the 

rDSD/junTZ level (hereafter rDSD/junTZ//B3P/julDZ). 
Furthermore, the reduced-dimensionality scheme has been 
used, so that anharmonic corrections have been applied to 
all vibrations but LAMs. The set of fundamental wavenum-
bers obtained within both the Cartesian- and internal-based 
GVPT2 framework are compared with their experimental 
counterparts in Table 4.

The data reported in Table  4 show that both sets of 
GVPT2 transition frequencies are in remarkable agreement 
with their experimental counterparts, with a mean absolute 
error (MAE) always lower than 10 cm−1 . Despite the similar-
ity of the results for Cartesian and internal coordinates, the 
behavior of the inter-mode couplings is very different, espe-
cially when interaction terms involving LAMs are examined. 
In order to highlight this aspect, the contribution of LAMs 
has been investigated by comparing the quartic force con-
stants involving modes 20 and 21, which are reported in 
Fig. 6.

It is apparent that both diagonal and off-diagonal terms 
are much larger in Cartesian coordinates (exceeding 
80,000 cm−1 for �21,21,21,21 ), while the values are definitely 
more reasonable for the internal-based counterparts. Inter-
estingly, this behavior also involves couplings between 
LAMs and stretching modes. As an example, the val-
ues the semi-diagonal quartic force constants �20,20,1,1 and 
�21,21,1,1 expressed in CNCs are, respectively, −3733 and 
−9347 cm−1 , while the corresponding internal-based coun-
terparts are −27 and −62 cm−1 . Hence, the internal-based 
representation of vibrations allows not only for an improved 

Table 2  Equilibrium molecular 
structure of thiophene (distances 
in Å, angles in degrees)

[a] Equilibrium geometry at the B3P/julDZd level
[b] All fits have been performed on moments of inertia equally weighted
[c] Vibrational corrections at the B3P/julDZd level of theory
[d] Vibrational and electronic corrections at the CCSD(T)/cc-pCPVTZ level of theory
[e] Mean standard deviation (uÅ2)
[f] r = n − p is the number of degrees of freedom, n and p being the number of SE data and parameters, 
respectively

Coordinate r
[a]
e

ZICs[b] A1-DICs[b] Ref. [123]

r0 r
SE [c]
e

r0 r
SE [c]
e

r
SE
e

r(S−C1) 1.7168 1.7167(6) 1.7106(2) 1.7167(6) 1.7106(2) 1.71049(18)
r(C1−C2) 1.3733 1.3699(8) 1.3666(2) 1.3699(8) 1.3666(2) 1.36564(31)
r(C1−H1) 1.0870 1.0766(5) 1.0756(1) 1.0766(5) 1.0756(1) 1.07714(17)
r(C2−H2) 1.0892 1.0777(5) 1.0779(1) 1.0777(5) 1.0779(1) 1.07856(14)
r(C2−C3) 1.4255 1.430(1) 1.4229(3) 1.430(1) 1.4229(3) 1.4224(10)
a(C1−S−C4)/2 46.07 46.07(2) 46.035(5) 46.07(2) 46.035(5) 46.024(7)
a(S−C1−C2) 111.51 111.57(5) 111.61(1) 111.57(5) 111.61(1) 111.608(16)
a(S−C1−H1) 120.14 119.67(7) 120.26(2) 119.67(7) 120.26(2) 120.065(28)
a(C1−C2−H2) 123.35 123.45(7) 123.43(2) 123.45(7) 123.43(2) 123.414(23)
a(C1−S−C4) 92.14 92.13(4) 92.07(1) 92.13(4) 92.07(1) 92.047(15)
�[e] 0.002 0.0006 0.002 0.0006
r
[f] 40 40 40 40

Fig. 3  Molecular structure of 1,1-difluoroethylene
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Table 3  Comparison of the 
Cartesian and curvilinear 
VPT2, DVPT2, and GVPT2 
wavenumbers (in cm−1 ) of 
1,1-difluoroethylene at the 
MP2/junTZ level with the 
experimental data

[a] Ref. [124]
[b] Ref. [125]
[c] Mean absolute error with respect to the experimental data

State Assign.[a] Symm � Cartesian[b] Curvilinear[b]

�
VPT2

�
DVPT2

�
GVPT2

�
VPT2

�
DVPT2

�
GVPT2 Exp.[b]

�11⟩ CH2 (S) str A1 3246 3139 3117 3083 3139 3119 3085 3058
�12⟩ C-C str 1778 1744 1738 1743 1745 1738 1743 1743
�13⟩ CH2 sciss 1423 1354 1377 1360 1355 1380 1361 1359
�14⟩ CF2 (S) str 944 929 929 929 929 929 929 925
�15⟩ CF2 sciss 555 550 550 550 550 550 550 550
�16⟩ C-C twist A2 730 714 714 714 713 713 713 708
�17⟩ CH2 op wag B1 813 789 789 789 792 792 792 802
�18⟩ CF2 op wag 641 631 631 631 631 631 631 610
�19⟩ CH2 (A) str B2 3360 3222 3222 3222 3222 3222 3222 3176
�110⟩ CF2 (A) str 1331 1296 1296 1296 1296 1296 1296 1301
�111⟩ CH2 rock 970 951 951 951 951 951 951 954
�112⟩ CF2 rock 438 437 437 437 437 437 437 437
MAE[c] 15 15 10 15 15 10

Fig. 4  Comparison of the number of cubic ( �ijk ( i ≠ j ≠ k )) and quartic ( �ijkk ( i ≠ j )) force constants of 1,1-difluoroethylene above a given thresh-
old (in cm−1 ) computed at the MP2/junTZ level with Cartesian or curvilinear coordinates
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separation of LAMs from SAMs, but it also lays the founda-
tions for a multi-mode, one-dimensional treatment of LAMs.

6  Conclusion

In this work, I have presented a general engine for vibra-
tional and rotational spectroscopy based on curvilinear inter-
nal coordinates.

Concerning the determination of semi-experimental molec-
ular structures, the new methodology provides a transparent 
way for the a priori definition of the nuclear coordinates 
required in the optimization process and a unambiguous defi-
nition of geometrical constraints without loss of accuracy. The 
algorithm implemented into the MSR software enables SE 
nonlinear regression starting from a minimal set of input data 
without any intermediate, user-dependent step. The applica-
tions presented in this context confirmed our initial hypotheses 
and previous studies, paving the route for the study of larger 
systems.

The outcomes of a number of test cases demonstrate the 
reliability of the new GVPT2 engine based on curvilin-
ear internal coordinates and allowing to effectively handle 
medium-to-large-size molecules. It is worth mentioning that 
this methodology is completely general for all those electronic 
structure methods implementing analytical Cartesian force 
constants. Comparison with the standard Cartesian-based 
framework shows two main benefits. The first one is the ease 
of implementation from an existing code based on the Car-
tesian formulation of VPT2. The second one is a significant 
improvement in the separation of large amplitude motions and 

their further treatment by more appropriate methodologies. In 
fact, a significant reduction in the inherent problems of VPT2 
applied to this kind of systems has been verified at different 
levels. More sophisticated strategies for treating LAMs are 
currently under study in our research group, with the aim to 
study molecular systems featured by a growing number of this 
type of vibrational motions.

Fig. 5  Molecular structure of the AAT conformer of glycolic acid

Table 4  Comparison of the Cartesian and curvilinear GVPT2 fun-
damental wavenumbers (in cm−1 ) of the AAT conformer of glycolic 
acid with the experimental data

[a] Harmonic frequencies at the rDSD/junTZ level of theory
[b] Hybrid model based on the substitution approach combining har-
monic frequencies at the rDSD/junTZ level of theory and anharmonic 
corrections at the B3P/julDZ level
[c] Average of measurements of Refs. [127] (IR, Ar matrix), [128] 
(IR N 2 matrix) and [129] (Raman, Ar matrix)
[d] From Raman Ar matrix measurement (Ref. [129])
[e] From IR Ar matrix measurement (Ref. [127])
[f] Average of measurements of Refs. [127] (IR, Ar matrix) and [129] 
(Raman, Ar matrix)
[g] Mean absolute error (in cm−1 ) with respect to the experimental 
data. States �19⟩ , �113⟩ , �116⟩ , �120⟩ and, �121⟩ excluded

State �[a] Cartesian[b] Curvilinear[b] Exp

�11⟩ 3873 3681 3678 3672[c]

�12⟩ 3705 3470 3475 3474[c]

�13⟩ 3112 2976 2975 2976[d]

�14⟩ 3062 2965 2960 2952[d]

�15⟩ 1849 1817 1814 1806[c]

�16⟩ 1503 1455 1450 1448[e]

�17⟩ 1433 1390 1384 1388[e]

�18⟩ 1390 1352 1346 1360[e]

�19⟩ 1282 1258 1249 –
�110⟩ 1252 1224 1217 1198[e]

�111⟩ 1173 1132 1127 1136[e]

�112⟩ 1086 1048 1046 1059[e]

�113⟩ 1032 992 987 –
�114⟩ 863 848 844 846[e]

�115⟩ 683 677 652 653[e]

�116⟩ 627 615 608 –
�117⟩ 570 553 545 559[f]

�118⟩ 512 505 499 503[f]

�119⟩ 313 303 292 309[f]

�120⟩ 130 – – –
�121⟩ 87 – – –
MAE[g] 8 7
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Appendix A Transformation of force 
constants

One of the main steps in the internal-based anharmonic 
treatment is the conversion of the harmonic force constants, 
usually computed in terms of Cartesian coordinates, to inter-
nal coordinates. Let us consider a generic molecular geom-
etry and the corresponding Cartesian gradient and force 
constants, referred to as gx and Hx , respectively. In order to 
convert them to a basis of M internal coordinates represented 
by the vector s , the first step is the calculation of the internal-
based gradient vector,

where B is the Wilson B matrix built over s , B† is its pseudo-
inverse, while P is the projection matrix employed to remove 
the contribution of translational and rotational motions.

Then, the calculation of the first-order Cartesian deriva-
tive of the B , namely B′ is carried out in order to derive a 
compact expression for the Hessian matrix in internal coor-
dinates, namely F,

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00214- 023- 03069-7.

(A1)gs = (B†)TPgx

(A2)F = (B†)TP(Hx − gsB
�)P(B†)
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