Skip to main content
Log in

Insights into the spectral property and electronic structure of di-triphenylaniline-modified monothiophene, dithiophene and thienothiophene

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory calculations at PBE38/6-311+G** level by involving the polarizable continuum model in solvent dichloromethane were employed to explore the geometries, electronic excitations and associated properties of the donor–acceptor-donor (D–A–D) di-triphenylaniline-modified thiophenes of 4,4′-(thiophene-2,5-diyl)bis(N,N-diphenylaniline) (TPA–Th–TPA), 4,4′-([2,2′-bithiophene]-5,5′-diyl)bis(N,N-diphenylaniline) (TPA–ThTh–TPA) and 4,4′-(thieno[3,2-b]thiophene-2,5-diyl)bis(N,N-diphenylaniline) (TPA–TT–TPA). The spectral properties were investigated with the time-dependent density functional theory at the same theoretical level, involving 37.5% of the Hartree–Fock exchange energies and 50% of the local and non-local contributions, respectively, for the rest of the energies. It was found that the most stable TPA–Th–TPA has no symmetry (C1 point group) in the 1A electronic state, while the most stable structures for both TPA–ThTh–TPA and TPA–TT–TPA have C2 symmetry in the 1A state. Their vertical absorption spectra were examined with the twenty lowest excitations, while the emission spectra were equivalently simulated by the vertical transition (from S1 to S0) of the structure of the S1 state. Both the theoretical absorption and emission spectra agree very well with the experiments in terms of absolute wavelengths and their sequence for different compounds. For the absorption with the maximum wavelength and strength, the theoretical wavelengths reproduced the experiments with deviations of only 4.4, 0.6 and 7.3 nm for TPA–Th–TPA, TPA–ThTh–TPA and TPA–TT–TPA, respectively. While the emission peaks have slightly larger deviations by 44.5, 90.5 and 53.3 nm. Detailed features for the next intense peak, as well as their peak shoulders, were explored. For the electronic properties associated with the S0 → S1 transition, the hole-electron, frontier orbital and natural transition orbital analyses supported charge transfer characteristics. The inter-segment charge transfer analyses provided the magnitude of inter-segment charge transfer of TPA–Th–TPA, TPA–ThTh–TPA and TPA–TT–TPA by 67.1, 60.6 and 66.4%, respectively, within which the transfer from donors to acceptor(s) is dominant. In addition to the largest π conjugation of the ThTh group that leads to the largest redshift of the spectra and charge redistribution, TPA–ThTh–TPA has the largest vertical electron affinity energy, electronegativity and global electrophilicity with 2.01, 3.68 and 4.05 eV, respectively. All the molecules have electrostatic potentials in their S0 and S1 states by approximately 54% in the negative potential region, supplied mainly by the lone pair electrons of the S and N atoms as well as the π electrons of the C atoms. This leads to the compounds being more susceptible to electrophilic reactions. Similar atomic natural charge distributions for the different compounds in their S0 and S1 states were found, with the S atom(s) having the most positive charge (~ 0.42 e) and the N atoms having the most negative charge (~ − 0.51 e). Small changes in the atomic charge were found in the excitations, indicating that the charge transfer does not significantly change the atomic charge distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagarjuna P, Narayanaswamy K, Swetha T et al (2015) CH3NH3PbI3 perovskite sensitized solar cells using a D–A copolymer as hole transport material. Electrochim Acta 151:21–26

    CAS  Google Scholar 

  2. Ong C, Liao SC, Chang T et al (2003) Rapid synthesis of new discotic liquid crystals based on diquinoxalino[2,3-a:2′,3′-c]phenazine containing hexakis(alkoxy) side arms. Tetrahedron Lett 44:1477–1480

    CAS  Google Scholar 

  3. Roussel O, Kestemont G, Tant J et al (2003) Discotic liquid crystals as electron carrier materials. Mol Cryst Liquid Cryst 396:35–39

    CAS  Google Scholar 

  4. Ong C, Liao SC, Chang T et al (2004) In situ Synthesis of hexakis(alkoxy)diquinoxalino[2,3- a :2‘,3‘- c ]phenazines: mesogenic phase transition of the electron-deficient discotic compounds. J Org Chem 69:3181–3185

    CAS  PubMed  Google Scholar 

  5. Liu Q, Wang C, Hu C et al (2022) Platinum(II)-containing donor-acceptor dimesitylborane-based complexes: synthesis, characterization, photophysical and photovoltaic properties. J Organomet Chem 960:122220

    CAS  Google Scholar 

  6. Zhang T, Holmes RJ (2018) Overcoming the trade-off between exciton dissociation and charge recombination in organic photovoltaic cells. Appl Phys Lett 113(14):143302–143303

    Google Scholar 

  7. Sugathan V, John E, Sudhakar K (2015) Recent improvements in dye sensitized solar cells: a review. Sust Energ Rev 52:54–64

    CAS  Google Scholar 

  8. Barnsley JE, Pelet W, McAdam J et al (2019) When “donor–acceptor” dyes delocalize: a spectroscopic and computational study of D–A dyes using “michler’s base.” J Phys Chem A 123(28):5957–5968

    CAS  PubMed  Google Scholar 

  9. Siebbeles L, Grozema FC (2011) Charge and exciton transport through molecular wires. Taft, Netherlands

    Google Scholar 

  10. Davidson E (1997) Modern electronic structure theory. J Comput Chem 18:1328

    CAS  Google Scholar 

  11. Weiss D, Cowdery J, Young R (2008) Electron transfer in chemistry. Italy, Bologna

    Google Scholar 

  12. Zitzler-Kunkel A, Lenze MR, Schnier T et al (2014) Comparative studies on optical, redox, and photovoltaic properties of a series of D–A–D and analogous D–A chromophores. Adv Funct Mater 24(29):4645–4653

    CAS  Google Scholar 

  13. Hou F, Liu X, Hao X et al (2021) New benzotriazole-based D–A–D type solvatochromic dyes for water content detection in organic solvents. Dyes Pigments 195:109667

    CAS  Google Scholar 

  14. Biswas S, Pramanik A, Ahmed T et al (2016) Superiority of D–A–D over D–A type of organic dyes for the application in dye-sensitized solar cell. Chem Phys Lett 649:23–28

    CAS  Google Scholar 

  15. Dai X, Cheng X, Kan Z et al (2020) Research progress on small-molecule photovoltaic materials based on donor–acceptor–donor type polycyclic aromatic hydrocarbons. Chin J Org Chem 40(12):4031

    CAS  Google Scholar 

  16. Chowdhury P, Chan YH (2022) Recent advances in D–A–D based Pdots with NIR-II fluorescence for deep-tissue imaging. Mol Syst Des Eng 7(7):702–719

    CAS  Google Scholar 

  17. Pati PB (2016) Benzazole (B, N, O, S, Se and Te) based D–A–D type oligomers: SWITCH from electropolymerization to structural aspect. Org Electron 38:97–106

    CAS  Google Scholar 

  18. Karak A, Manna SK, Mahapatra AK (2022) Triphenylamine-based small-molecule fluorescent probes. Anal Methods-Uk 14(10):972–1005

    CAS  Google Scholar 

  19. Ning Z, Tian H (2009) Triarylamine: a promising core unit for efficient photovoltaic materials. Chem Commun (Camb) 41(6):5483–5495

    Google Scholar 

  20. Karpicz R, Puzinas S, Krotkus S et al (2011) Impact of intramolecular twisting and exciton migration on emission efficiency of multifunctional fluorene-benzothiadiazole-carbazole compounds. J Chem Phys 134(20):204508

    CAS  PubMed  Google Scholar 

  21. Achelle S, Baudequin C, Plé N (2013) Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes Pigments 98(3):575–600

    CAS  Google Scholar 

  22. Holzer B, Lunzer M, Rosspeintner A et al (2019) Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties. Mol Syst Des Eng 4(2):437–448

    CAS  Google Scholar 

  23. Holzer B, Bintinger J, Lumpi D et al (2017) Color fine-tuning of optical materials through rational design. ChemPhysChem 18(5):549–563

    CAS  PubMed  Google Scholar 

  24. Pramjit S, Eiamprasert U, Surawatanawong P et al (2015) Carbazole-bridged double D–A dye for efficient dye-sensitized solar cell. J Photoch Photobio A 296:1–10

    CAS  Google Scholar 

  25. Zhang T, Brumboiu IE, Grazioli C et al (2018) Lone-pair delocalization effects within electron donor molecules: the case of triphenylamine and its thiophene-analog. J Phys Chem C 122(31):17706–17717

    CAS  Google Scholar 

  26. Wang J, Liu K, Ma L et al (2016) Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem Rev 116(23):14675–14725

    CAS  PubMed  Google Scholar 

  27. Choi H, Paek S, Lim N et al (2014) Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. Chem Eur J 20(35):10894–10899

    CAS  PubMed  Google Scholar 

  28. Agarwala P, Kabra D (2017) A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J Mater Chem A 5(4):1348–1373

    CAS  Google Scholar 

  29. Mahmood A (2016) Triphenylamine based dyes for dye sensitized solar cells: A review. Sol Energy 123:127–144

    CAS  Google Scholar 

  30. Zhang F, Zhao X, Yi C et al (2017) Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dyes Pigments 136:273–277

    CAS  Google Scholar 

  31. Bélières M, Sartor V, Fabre PL et al (2018) Simple electron donor molecules based on triphenylamine and carbazole derivatives. Dyes Pigments 153:275–283

    Google Scholar 

  32. Fan Z, Zhao H, Li N et al (2015) Tuning charge balance in solution-processable bipolar triphenylamine-diazafluorene host materials for phosphorescent devices. Acs Appl Mater Inter 7(18):9445–9452

    CAS  Google Scholar 

  33. Findlay NJ, Breig B, Forbes C et al (2016) High brightness solution-processed OLEDs employing linear, small molecule emitters. J Mater Chem C 4(17):3774–3780

    CAS  Google Scholar 

  34. Han X, Bai Q, Yao L et al (2015) Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode. Adv Funct Mater 25(48):7521–7529

    Google Scholar 

  35. Liu X, Liang J, You J et al (2016) Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes Pigments 131:41–48

    CAS  Google Scholar 

  36. Duraimurugan K, Balasaravanan R, Siva A (2016) Electron rich triphenylamine derivatives (D-π-D) for selective sensing of picric acid in aqueous media. Sensor Actuat B-Chem 231:302–312

    CAS  Google Scholar 

  37. Liu T, Huo F, Yin C et al (2016) A triphenylamine as a fluorophore and maleimide as a bonding group selective turn-on fluorescent imaging probe for thiols. Dyes Pigments 128:209–214

    CAS  Google Scholar 

  38. Misra R, Maragani R, Arora D et al (2016) Positional isomers of pyridine linked triphenylamine-based donor-acceptor organic dyes for efficient dye-sensitized solar cells. Dyes Pigments 126:38–45

    CAS  Google Scholar 

  39. Wang Y, Yang C, Chen J et al (2016) Influence of the donor size in panchromatic D–π-A–π-A dyes bearing 5-phenyl-5H-dibenzo-[b, f]azepine units for dye-sensitized solar cells. Dyes Pigments 127:204–212

    CAS  Google Scholar 

  40. Zhou N, Prabakaran K, Lee B et al (2015) Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J Am Chem Soc 137(13):4414–4423

    CAS  PubMed  Google Scholar 

  41. Zhao C, Wang T, Li D et al (2017) Synthesis and characterization of triphenylamine modified azobenzene dyes. Dyes Pigments 137:256–264

    CAS  Google Scholar 

  42. Jin H, Tian J, Wang S et al (2014) Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Adv 4(32):16839–16848

    CAS  Google Scholar 

  43. Li W, Gan X, Liu D et al (2016) High contrast off–on fluorescence photo-switching via copper ion recognition, trans–cis isomerization and ring closure of a thiosemicarbazide Schiff base. RSC Adv 6(50):44599–44605

    CAS  Google Scholar 

  44. Meng B, Miao J, Liu J et al (2018) A new polymer electron acceptor based on thiophene-S, S-dioxide unit for organic photovoltaics. Macromol Rapid Comm 39(2):170050

    Google Scholar 

  45. Nguyen TVT, Seo YJ (2017) Highly sensitive fluorescent sensor targeting CuCl2 based on thiophene attached anthracene compound (TA). Tetrahedron Lett 58(10):941–944

    CAS  Google Scholar 

  46. Leliège A, Blanchard P, Rousseau T (2011) Triphenylamine/tetracyanobutadiene-based D–A–D π-conjugated systems as molecular donors for organic solar cells. Org Lett 13:3098–3101

    PubMed  Google Scholar 

  47. Wei N, Wang W, Yin S et al (2010) Theoretical studies on the electronic structures and optical properties of tri-aryl end-capped terthiophene derivatives. Chin J Chem 28(10):1907–1914

    CAS  Google Scholar 

  48. Casado J, Ruiz DMC, Shirota Y et al (2003) Computation and spectroelectrochemistry as complementary tools for the study of electrochemically induced charged defects in 4-[Bis(4-methylphenyl)amino]phenyl oligothiophenes as model systems for hole-transporting materials. J Phys Chem B 107:2637–2644

    CAS  Google Scholar 

  49. Lumpi D, Holzer B, Bintinger J et al (2015) Substituted triphenylamines as building blocks for star shaped organic electronic materials. New J Chem 39(3):1840–1851

    CAS  Google Scholar 

  50. Tao T, Qian HF, Zhang K et al (2013) Functionalized oligothiophene-based heterocyclic aromatic fluorescent compounds with various donor–acceptor spacers and adjustable electronic properties: a theoretical and experimental perspective. Tetrahedron 69(35):7290–7299

    CAS  Google Scholar 

  51. Xia Q, Burkhardt M, Halik M (2008) Oligothiophenes in organic thin film transistors – Morphology, stability and temperature operation. Org Electron 9(6):1061–1068

    CAS  Google Scholar 

  52. Kawate K, Ohkura K, Yamazaki M et al (1994) Organic electroluminescent devices with thiophene derivatives. Proceedings of SPIE. IEEE J Em Sel Top P 2174:200–211

    CAS  Google Scholar 

  53. Wang Y, Fang DC, Zhang LP et al (2019) Isobenzothiophene-bridged molecules for significantly enhanced two photon absorption properties. J Photoch Photobio A 375:132–140

    CAS  Google Scholar 

  54. Jiang Y, Peng H, Mai R et al (2019) Alcohol-soluble anode modifier for highly efficient inverted solar cells with oligo-oxyethylene chains. Org Electron 68:200–204

    CAS  Google Scholar 

  55. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111(3):1417–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin L, Liebscher J (2007) Carbon—carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    CAS  PubMed  Google Scholar 

  57. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 27(11):2457–2483

    Google Scholar 

  58. Soto-Rojo R, Baldenebro-López J, Flores-Holguín N et al (2014) Comparison of several protocols for the computational prediction of the maximum absorption wavelength of chrysanthemin. J Mol Model 20(8):1–9

    CAS  Google Scholar 

  59. Meguellati K, Ladame S, Spichty M (2011) A conceptually improved TD-DFT approach for predicting the maximum absorption wavelength of cyanine dyes. Dyes Pigments 90(2):114–118

    CAS  Google Scholar 

  60. Mai J, Lu T, Xu P et al (2022) Predicting the maximum absorption wavelength of azo dyes using an interpretable machine learning strategy. Dyes Pigments 206:110647

    CAS  Google Scholar 

  61. Nakano K, Konishi T, Imamura Y (2019) Estimation of maximum absorption wavelength of polymethine dyes in visible and near-infrared region based on time-dependent density functional theory. Chem Phys 518:15–24

    CAS  Google Scholar 

  62. Wang D, Zhou G, Xu X et al (2002) Nonlinear absorption and upconversion properties of two-photon absorption dye: ASPI. Opt Laser Technol 34:55–58

    CAS  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 Rev. A.02, Wallingford, CT

  64. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  65. Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    PubMed  Google Scholar 

  66. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    PubMed  Google Scholar 

  67. Bardhan JP (2009) Numerical solution of boundary-integral equations for molecular electrostatics. J Chem Phys 130(9):094102

    PubMed  Google Scholar 

  68. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic ecitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    CAS  Google Scholar 

  69. Casida M, Jamorski C, Casida K et al (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    CAS  Google Scholar 

  70. Stratmann R, Scuseria G, Frisch M (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    CAS  Google Scholar 

  71. Bauernschmitt R, Häser M, Treutler O et al (1997) Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett 264:573–578

    CAS  Google Scholar 

  72. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  73. Putz MV, Mingos DMP (2012) Applications of density functional theory to chemical reactivity. Heidelberg, New York

  74. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    CAS  Google Scholar 

  75. Stephens PJ, Devlin FJ, Chabalowski C (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  76. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789

    CAS  PubMed  Google Scholar 

  77. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    CAS  Google Scholar 

  78. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    CAS  Google Scholar 

  79. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    PubMed  Google Scholar 

  80. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  81. Ahmed S, Kalita DJ (2018) Charge transport in isoindigo-dithiophenepyrrole based D–A type oligomers: A DFT/TD-DFT study for the fabrication of fullerene-free organic solar cells. J Chem Phys 149(23):234906

    PubMed  Google Scholar 

  82. Schleyer P, Maerker C, Dransfeld A et al (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    CAS  PubMed  Google Scholar 

  83. Chen Z, Wannere C, Corminboeuf C et al (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105(10):3842–3888

    CAS  PubMed  Google Scholar 

  84. Fallah-Bagher-Shaidaei H, Wannere C, Corminboeuf C et al (2006) Which NICS aromaticity index for planar pi rings is best? Org Lett 8:863–866

    CAS  PubMed  Google Scholar 

  85. Hachi M, Slimi A, Fitri A et al (2021) Theoretical design and characterization of D–A1-A based organic dyes for efficient DSSC by altering promising acceptor (A1) moiety. J Photoch Photobio A 407:113048

    CAS  Google Scholar 

  86. Nazeeruddin M, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate) Ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    CAS  Google Scholar 

  87. Borrelli R, Ellena S, Barolo C (2014) Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine-based squaraine dye. Phys Chem Chem Phys 16(6):2390–2398

    CAS  PubMed  Google Scholar 

  88. Gąsiorski P, Matusiewicz M, Gondek E et al (2018) Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: experiment and DFT/TDDFT calculations. Opt Mater 75:719–726

    Google Scholar 

  89. Lanke SK, Sekar N (2016) Novel NLOphoric 2-methoxy carbazole-based push pull chromophores: synthesis, photophysical properties and TD-DFT Study. J Photoch Photobio A 321:63–71

    CAS  Google Scholar 

  90. Singh DK, Asthana BP, Srivastava SK (2012) Modeling the weak hydrogen bonding of pyrrole and dichloromethane through Raman and DFT study. J Mol Model 18(8):3541–3552

    CAS  PubMed  Google Scholar 

  91. Dobrowolski J, Jamróz M, Mazurek A (1992) IR study on double hydrogen bonding in dichloromethane. J Mol Struct 275:203–210

    CAS  Google Scholar 

  92. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42(3):845–856

    CAS  PubMed  Google Scholar 

  93. Zou LY, Ren AM, Feng JK et al (2008) Theoretical study on photophysical properties of multifunctional electroluminescent molecules with different pi-conjugated bridges. J Phys Chem A 112(47):12172–12178

    CAS  PubMed  Google Scholar 

  94. Hilborn R (1983) Erratum: “Einstein coefficients, cross sections, f values, dipol moments, and all that” [Am. J. Phys. 50,982 (1982)]. Am J Phys 51:471

    Google Scholar 

  95. Coulson C (1973) Physics of Atoms and Molecules. Mosc U Phys B+ 24:617

    Google Scholar 

  96. Lukeš V, Šolc R, Milota F et al (2008) Theoretical investigation of the structure and the electron-vibrational dynamics of 9,9′-spirobifluorene. Chem Phys 349(1–3):226–233

    Google Scholar 

  97. Chouk R, Bergaoui M, Jaballah N et al (2019) Shedding light on structural, optoelectronic and charge transport properties of PPV stereoisomers for multilayer OLED application: A first principle computational studies. J Mol Liq 284:193–202

    CAS  Google Scholar 

  98. Sun Y, Lu Z, Ma W et al (2021) A porous organic polymer nanosphere-based fluorescent biosensing platform for simultaneous detection of multiplexed DNA via electrostatic attraction and pi-pi stacking interactions. RSC Adv 11(61):38820–38828

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25

    CAS  Google Scholar 

  100. Lumpi D, Horkel E, Plasser F et al (2013) Synthesis, spectroscopy, and computational analysis of photoluminescent bis(aminophenyl)-substituted thiophene derivatives. ChemPhysChem 14(5):1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Slimi A, Hachi M, Fitri A et al (2020) Effects of electron acceptor groups on triphenylamine-based dyes for dye-sensitized solar cells: Theoretical investigation. J Photoch Photobio A 398:112572

    CAS  Google Scholar 

  102. Jiao Y, Zhu J, Guo Y et al (2017) Synergetic effect between spin crossover and luminescence in the [Fe(bpp)2][BF4]2 (bpp = 2,6-bis(pyrazol-1-yl)pyridine) complex. J Mater Chem C 5(21):5214–5222

    CAS  Google Scholar 

  103. Le BT, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506

    Google Scholar 

  104. Zhao D, Saputra RM, Song P et al (2020) Enhanced photoelectric and photocatalysis performances of quinacridone derivatives by forming D-π-A-A structure. Sol Energy 201:872–883

    CAS  Google Scholar 

  105. Zojer E, Buchacher P, Wudl F et al (2000) Excited state localization in organic molecules consisting of conjugated and nonconjugated segments. J Chem Phys 113(22):10002–10012

    CAS  Google Scholar 

  106. Köse M, Mitchell W, Kopidakis N et al (2007) Theoretical Studies on Conjugated Phenyl-Cored Thiophene Dendrimers for Photovoltaic Applications. J Am Chem Soc 129:14257–14270

    PubMed  Google Scholar 

  107. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct Chem 25(5):1521–1533

    CAS  Google Scholar 

  108. Etienne T (2015) Transition matrices and orbitals from reduced density matrix theory. J Chem Phys 142(24):244103

    PubMed  Google Scholar 

  109. Yuan J, Yuan Y, Tian X et al (2017) Insights into the photobehavior of fluorescent oxazinone, quinazoline, and difluoroboron derivatives: molecular design based on the structure-property relationships. J Phys Chem C 121(14):8091–8108

    CAS  Google Scholar 

  110. Geerlings P, De PF, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    CAS  PubMed  Google Scholar 

  111. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys-Chim Sin 25(03):590–600

    CAS  Google Scholar 

  112. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. P Natl Acad Sci Usa 82(20):6–6723

    Google Scholar 

  113. Shahab S, Sheikhi M, Filippovich L et al (2020) Quantum-chemical modeling, spectroscopic (FT-IR, excited states, UV/Vis, polarization, and Dichroism) studies of two new benzo[d]oxazole derivatives. J Mol Struct 1202:127352

    CAS  Google Scholar 

  114. Lu T, Qiu C (2022) Realization of Conceptual Density Functional Theory and Information-Theoretic. Conceptual Density Functional Theory. Chennai, India

  115. Robert G, Parr LS, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Google Scholar 

  116. Suresh CH, Remya GS, Anjalikrishna PK (2022) Molecular electrostatic potential analysis: a powerful tool to interpret and predict chemical reactivity. Wires Comput Mol Sci 12(5):1–31

    Google Scholar 

  117. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wires Comput Mol Sci 1(2):153–163

    CAS  Google Scholar 

  118. Murray JS, Politzer P (2009) Molecular surfaces, van der Waals radii and electrostatic potentials in relation to noncovalent interactions. Croat Chem Acta 82(1):267–275

    CAS  Google Scholar 

  119. Manzetti S, Lu T (2013) The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance. J Phys Org Chem 26(6):473–483

    CAS  Google Scholar 

  120. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model 38:314–323

    PubMed  Google Scholar 

  121. Murray JS, Politzer P (2017) Molecular electrostatic potentials and noncovalent interactions. Wires Comput Mol Sci 7(6):1–996

    Google Scholar 

  122. Rong F, Lu T, Chen F (2014) Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution. Acta Phys-Chim Sin 30(4):628–639

    Google Scholar 

  123. Cao J, Ren Q, Chen F et al (2015) Comparative study on the methods for predicting the reactive site of nucleophilic reaction. Sci China Chem 58(12):1845–1852

    CAS  Google Scholar 

  124. Qian BH, Ma WX, Lu LD et al (2010) Synthesis, characterization, crystal structure and quantum chemistry calculation of an arenedisulfonate bridged Zn(II) coordination polymer. Acta Phys-Chim Sin 26(3):610–616

    CAS  Google Scholar 

  125. Clark A, Sonnenberg J, Hay P et al (2004) Density and wave function analysis of actinide complexes: what can fuzzy atom, atoms-in-molecules, Mulliken, Lowdin, and natural population analysis tell us? J Chem Phys 121:2563–2570

    CAS  PubMed  Google Scholar 

  126. Lu T, Chen F (2012) Comparison of computational methods for atomic charges. Acta Phys-Chim Sin 28(1):1–18

    Google Scholar 

Download references

Acknowledgements

Part of the computations was performed in the High-Performance Computation Center of the Northwestern Polytechnical University. Support by the National Natural Science Foundation of China (No. 51761135032) is greatly acknowledged.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51761135032).

Author information

Authors and Affiliations

Authors

Contributions

HX did the experiments, performed the theoretical calculations and prepared the initial manuscripts. BX prepared the figures. SZ instructed the experiments. KS layout the research methods and revised the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kehe Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11294 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Xue, B., Zhu, S. et al. Insights into the spectral property and electronic structure of di-triphenylaniline-modified monothiophene, dithiophene and thienothiophene. Theor Chem Acc 142, 84 (2023). https://doi.org/10.1007/s00214-023-03028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03028-2

Keywords

Navigation