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Abstract
We present two open-source implementations of the locally optimal block preconditioned conjugate gradient (lobpcg) algo-
rithm to find a few eigenvalues and eigenvectors of large, possibly sparse matrices. We then test lobpcg for various quantum 
chemistry problems, encompassing medium to large, dense to sparse, well-behaved to ill-conditioned ones, where the standard 
method typically used is Davidson’s diagonalization. Numerical tests show that while Davidson’s method remains the best 
choice for most applications in quantum chemistry, LOBPCG represents a competitive alternative, especially when memory 
is an issue, and can even outperform Davidson for ill-conditioned, non-diagonally dominant problems.
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1  Introduction

Computing eigenvalues and eigenvectors of matrices is prob-
ably the most prominent linear-algebra operation in quantum 
chemistry. Eigenvalues and eigenvectors are computed in 
the self-consistent field (SCF) algorithm [1–3], in restricted-
step second-order optimizations [4], response theory calcu-
lations [5, 6], algebraic diagrammatic construction (ADC) 
[7, 8], and unitary coupled cluster (UCC) [9–11]. Moreover 
they are calculated in ground and excited state configura-
tion interaction (CI) calculations [12, 13], including in state-
average complete active space self-consistent field (CAS-
SCF) [14–16]. Quantum chemistry calculations are typically 
performed using localized basis sets, most commonly made 
by Gaussian atomic orbitals (GTOs). Thanks to the compact-
ness of such basis sets, the generalized eigenvalue problem 
in SCF can be solved using dense linear-algebra techniques. 

Despite the cubic scaling, diagonalizing the Fock (or Kohn-
Sham) matrix is usually not a significant bottleneck for 
standard calculations, which are instead dominated by the 
cost of assembling the Fock matrix. Iterative diagonalization 
techniques are therefore mostly used for post-Hartree Fock 
calculations, such as CASSCF and CI, where the combinato-
rially scaling size of the CI Hamiltonian makes it impossible 
to build it in memory, let alone diagonalize it, but for the 
smallest cases. They are also used to compute the direction 
and step length in second-order SCF and CASSCF strategies 
and to compute excited states in CI singles and time-depend-
ent SCF. Most of these applications involve computing one, 
or a small number (up to a few hundreds) of eigenvalues and 
eigenvectors, and involve symmetric, diagonally dominant 
matrices.

Since its introduction in 1975, the iterative method pro-
posed by Ernest R. Davidson has been the method of choice 
[17] and the default strategy used by the majority of quantum 
chemistry codes. Davidson’s diagonalization performs par-
ticularly well for diagonally dominant symmetric eigenvalue 
problems, for which it exhibits fast and robust convergence, 
and has been generalized to non-symmetric problems and 
to deal with multiple eigenvalues and eigenvectors [18, 19]. 
However, the method suffers of a few drawbacks. First, its 
performance degrades if the matrix is not diagonally domi-
nant. Even though most algorithms in quantum chemistry 
involve diagonally dominant matrices, this is not always the 
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case, with the parameter Hessian in second-order CASSCF 
being a prominent example. Finally, as the vector subspace 
used in Davidson’s method to expand the sought eigenvec-
tors can become quite large, especially if many eigenvalues 
are needed, the cost of diagonalizing the matrix projected 
in the subspace and of orthogonalizing the new trial vec-
tors can become non-negligible, and memory requirements 
problematic.

The locally optimal block preconditioned conjugate gra-
dient (LOBPCG) method offers a way out by more aggres-
sively truncating the approximation space, while attempt-
ing to preserve the convergence properties of Davidson [20, 
21]. Since its introduction, it has been successfully used in 
several applications, and in particular in approaches to the 
quantum many-body problem in condensed-matter physics 
[22] and [23], but to our knowledge it has not permeated 
quantum chemistry to the same extent.

One important caveat with LOBPCG is its potential 
numerical instabilities, which can degrade convergence sig-
nificantly if care is not taken. This point was emphasized in 
[24], which describes an appropriately stable procedure to 
build an orthogonal basis of expansion vectors. This relies 
crucially on a ortho(X,Y) primitive, whose goal is to 
orthogonalize the vectors in X with respect to those in Y 
and among themselves. This turns out to be surprisingly 
hard to perform reliably in the presence of roundoff errors. 
The strategy suggested in [24] relies on the ortho(X,Y) 
function in [25], which is based on a modified singular value 
decomposition (SVD). This however can sometimes fail 
[26], and the use of the SVD can become expensive. For 
this reason [26] suggests dropping ill-conditioned directions.

In this paper, we clarify the origins of numerical instabili-
ties, in particular due to the ill-conditioned orthogonaliza-
tions and reuse of matrix–vector products. We then present 
an implementation that uses exclusively Cholesky decom-
positions for orthogonalizations. These decompositions 
are known to be efficient but unstable, and for this reason 
the Cholesky orthogonalization has often been regarded as 
impractical; however, it was recently realized that appro-
priate stabilizations based on repeated, potentially shifted 
factorizations, turn it into a completely reliable orthogonali-
zation algorithm [27]. The resulting LOBPCG algorithm is 
extremely stable (converging, if desired, to close to machine 
precision, with no degradation in convergence rate), simple 
(with no dropping of directions, and with a single param-
eter controlling the accuracy of the orthogonalizations), and 
efficient.

In this paper, we present two open-source implementations 
of the LOBPCG algorithm. One is diaglib, an open-source, 
library written in Fortran 95 that also includes an implemen-
tation of Davidson’s method and that can be obtained at the 
following address: https://​github.​com/​Molec​olab-​Pisa/​diagl​ib. 

The library has been interfaced with the cfour suite of quan-
tum chemistry programs [28, 29], which we have used to test 
its performance choosing a variety of test cases. The other is 
included in the DFTK Julia software package [30], supports 
generalized eigenvalue problems and GPUs and is available at 
https://​github.​com/​Julia​MolSim/​DFTK.​jl/. These implemen-
tations are more focused on numerical stability than on sheer 
speed, but are overall efficient, thanks to the extensive use of 
highly optimized blas and lapack routines.

We then test the LOBPCG implementation on a selection of 
quantum chemistry problems that include full CI, second-order 
SCF and CASSCF calculations. For such methods, we com-
pare the performance of LOBPCG to the ones of Davidson’s 
method. Our preliminary results show that while Davidson 
diagonalization is more efficient for strongly diagonally domi-
nant problems, as the ones encountered in full CI, LOBPCG is 
a viable alternative, as it exhibits similar performance and, for 
difficult cases such in CASSCF, can even slightly outperform 
Davidson.

This paper is organized as follows. In Sect. 2, we present 
the LOBPCG algorithm. In Sect. 3, we discuss in detail the 
numerical implementation of LOBPCG, analyzing the possi-
ble numerical issues and proposing cost-effective, yet robust, 
solutions. In Sect. 4, we test our implementation of a few quan-
tum chemistry applications. Finally, some final remarks are 
given in Sect. 5.

2 � Theory

In this section, we describe the LOBPCG algorithm in infi-
nite precision arithmetic, without consideration for numeri-
cal stability. In this paper, we will focus on real symmetric 
matrices, but everything of course extends to Hermitian 
complex matrices. Let A ∈ ℝ

n×n be a symmetric matrix, for 
which we seek m ≪ n eigenvalues. Given a set of vectors 
Y = (y1,… , yp) ∈ ℝ

n×p with p ≥ m , the Rayleigh-Ritz vari-
ational procedure obtains an approximation RR(Y) ∈ ℝ

n×m to 
the first m eigenpairs by building an orthonormal basis of Y, 
computing the p × p matrix representation of A on that set of 
vectors, diagonalizing it and taking the first m eigenvectors.

To use this procedure to obtain an iterative algorithm, a 
way of constructing Y must be specified. A standard method 
for doing so is to use the residuals, defined for a vector x by 
r(x) = Ax − �(x)x , where �(x) = xTA x

xTx
 is the Rayleigh quotient 

of x. In ill-conditioned problems, these residuals might not 
however be a good search direction, and therefore it is useful 
to precondition them according to

where T is a given preconditioner (for instance, when A is 
diagonally dominant, T = (diag(A) − �(x)I)−1).

w = Tr(x)

https://github.com/Molecolab-Pisa/diaglib
https://github.com/JuliaMolSim/DFTK.jl/
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This choice of search direction results in the block 
Davidson algorithm, starting from an initial set of vectors 
X[0] ∈ ℝ

n×m:

where R[k] = AX[k] − X[k]Λ[k] is the residual at the k-th itera-
tion, and Λ[k] is the diagonal matrix composed of the Ritz 
values. Since the expansion subspace is only ever enlarged, 
the implementation is standard: each block of vectors added 
to the subspace is orthogonalized against the previous vec-
tors and against itself (although see subtleties of this opera-
tion in the next section).

Since the Davidson method performs the Rayleigh-Ritz 
procedure in the full convergence history, its computational 
requirements can increase quickly. The LOBPCG algorithm 
instead only keeps the last two iterates:

The method is locally optimal (LO) because the Rayleigh-
Ritz procedure optimizes the Rayleigh quotient in the local 
expansion subspace. It is a block algorithm (B) and uses a 
preconditioner (P). Finally, the intuition of keeping only the 
previous iterate comes from the conjugate gradient (CG) 
algorithm for solving linear systems. This algorithm can 
seem like a drastic truncation of the Davidson method. There 
is however reason to believe that it can converge asymptoti-
cally as quickly as the full Davidson algorithm, inspired by 
the optimality in the Krylov space of the three-terms conju-
gate gradient algorithm [20].

The convergence properties of this algorithm are sen-
sitive to the gap between eigenvalues m and m + 1 , which 
might be small. This is particularly clear in the case of a 
simplified version of the LOBPCG algorithm, the block 
gradient descent with fixed step (which might be termed 
“BG,” since it is obtained by removing the locally optimal, 

X[k+1] = RR(X[1],T[1]R[1] … ,T[k]R[k])

X[k+1] = RR(X[k−1],X[k], T [k](AX[k] − X[k]Λ[k])).

preconditioning and conjugate features of LOBPCG), where 
explicit convergence rates can be obtained easily [31]. 
Accordingly, as is standard, in practice one uses a block 
size m which is larger than the number of eigenvalues msought 
actually sought, and stops the algorithm as soon as the first 
msought eigenvalues are converged. The convergence rate is 
then dependent on the gap between eigenvalues msought and 
m + 1.

3 � Implementation

3.1 � The LOBPCG algorithm

When implementing the above algor ithm on a 
computer, we face the difficulty that the basis 
(X[k−1],X[k], T [k](AX[k] − X[k]Λ[k])) is extremely badly con-
ditioned. This is because, as the iteration progress, X[k] 
becomes close to X[k−1] , and the residual becomes small. 
Therefore, if we try to solve the Rayleigh-Ritz problem as 
a generalized eigenvalue problem, the results will be inac-
curate. Instead, following [24], we construct systemati-
cally an orthogonal basis (X[k],W [k],P[k]) of the expansion 
subspace spanned by (X[k−1],X[k], T [k](AX[k] − X[k]Λ[k])) . 
The P[k] is implicitly constructed as the orthogonalization 
of X[k] against X[k−1] ; the W [k] is constructed as the orthogo-
nalization of T [k](AX[k] − X[k]Λ[k]) against X[k] and P[k].

To obtain these orthogonal bases, we introduce the 
primitive ortho(X,Y) which, given a set of orthogonal 
vectors Y, returns an orthogonal basis of the projection of 
the vectors in X onto the space orthogonal to Y. In infinite 
precision arithmetic, this would be given by an orthog-
onalization of X − YYTX  ; in finite precision arithmetic, 
care has to be taken, as we will see in the next section. 
Given this primitive, the LOBPCG algorithm is given in 
Algorithm 1.
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3.1.1 � Basis selection

In such algorithm, X[k],W [k],P[k] are the n × m matrices that 
contain the m desired eigenvectors (X) and the correspond-
ing preconditioned residuals (W) and increments (P), and 
we denote with a ∼ symbol the vectors before orthogonali-
zation. The matrices AX[k],AW [k],AP[k] contain the results 
of the application of A to such vectors. lobpcg is a matrix-
free algorithm, i.e., it does not require to assemble and store 
in memory the matrix A but just to be able to perform the 

relevant matrix–vector multiplications. More details on the 
orthogonalization procedure are given in Sect. 3.2. The 
reduced matrix a[k] ∈ ℝ

3m×3m is diagonalized using stand-
ard dense linear algebra routines (in our implementation, we 
use LAPACK’s dsyev).

In the block implementation of lobpcg, computing P̃[k] 
as X[k] − X[k−1] can become problematic, as these vectors 
become smaller and smaller when approaching convergence, 
which can create numerical instabilities. As a more robust 
alternative, the P̃[k] vectors are computed in a different way. 
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Let u[k]
x

∈ ℝ
3m×m be the first m eigenvectors of the reduced 

matrix. The eigenvectors have a block structure, that is

where each block is a m × m square matrix. The new eigen-
vectors are computed as (line 19)

To compute the P[k+1] vectors, we first get the expansion 
coefficients ũp

[k+1] of X[k+1] − X[k] in V [k] , which are obtained 
by subtracting the identity matrix from the unconverged 
components of u[k]

xx
 . Then, we orthogonalize them against ux 

and use them to compute the new P[k+1] vectors. Note that 
we assemble the P vectors only corresponding to the active 
eigenvectors, i.e., the ones that have not yet converged; for 
this reason, it is important to perform such operation before 
orthogonalizing ũp

[k+1].

3.1.2 � Reuse of applications

Apart from the choice of a basis and its orthogonalization, a 
numerically sensitive point is the reuse of the applications of 
A . Since this is a potentially costly operation, it is not feasi-
ble to recompute for instance A P

[k] before the Rayleigh-Ritz 
procedure; instead, we use the fact that P[k] is built as a linear 
combination of other vectors, on which we know the appli-
cation of A . If this is done naively, however this can result 
in a large error. This is because, in general, if A V is known 
to some precision � , then (A V)u will be an approximation 
of A(Vu) with a precision of the order of ‖u‖�.

Consider the problem of computing AP[k] , line 24 of 
the algorithm. In exact arithmetic, we could compute 
P̃[k] = V [k]ũ[k]

p
 , compute AP̃[k+1] = (AV [k])ũ[k]

p
 , orthogonalize 

P̃[k+1] against X[k+1] and update AP̃[k+1] accordingly, etc. This 
however amounts to obtaining AP[k+1] by right-multiplying 
AV [k] with a sequence of potentially ill-conditioned (and 
therefore of large norm) matrices, which incurs a large error 
on AP[k+1] . Instead, we obtain directly the expansion coef-
ficients u[k]

p
 of P[k+1] on V [k] and obtain AP[k+1] as (AV [k])u[k]

p
 . 

Since both P[k+1] and V [k] are orthogonal, so is u[k]
p

 , and there-
fore no precision is lost in the update AP[k+1] = AV [k]u[k]

p
 . 

The same is true for the update AX[k+1] = AV [k]u[k]
x

 (line 19).

3.1.3 � Locking

Another crucial aspect of an efficient and stable imple-
mentation concerns the treatment of converged eigen-
vectors. In our implementation, we freeze the first mconv 

(1)u[k] =

⎛
⎜⎜⎝

u[k]
xx

u[k]
wx

u[k]
px

⎞
⎟⎟⎠

(2)X[k+1] = X[k]u[k]
xx

+W [k]u[k]
wx

+ P[k]u[k]
px

consecutive eigenvectors, which means that we only com-
pute mact = m − mconv new residuals, W and P vectors. 
The converged eigenvectors are kept into X, to enforce the 
orthogonality of the active search subspace. This means 
that the reduced matrix and the V subspace dimensions are 
m + 2mact , and that only mact matrix–vector multiplications 
are performed at each iteration, combining thus stability and 
efficiency.

3.2 � A robust and stable ortho(X,Y) procedure

One of the most crucial steps in lobpcg is the orthogonaliza-
tion of a set of vectors against a given set and its subsequent 
orthonormalization. We first tackle the ortho(X) routine, 
which orthogonalizes a set of vectors.

3.2.1 � The ortho(X) procedure

The gold standard for orthogonalizing a set of vectors is to 
compute the (thin) singular value decomposition of X and 
then take the left singular vectors. A slightly less expensive, 
yet very stable alternative, is to use the QR decomposition 
of X, which in our tests performs equivalently well. Another 
good option is the modified Gram-Schmidt algorithm. How-
ever, these algorithms can all become expensive, especially 
if a large number of eigenvalues are sought.

An alternative and cheaper strategy is to compute the 
Cholesky decomposition of the overlap matrix

The orthogonal vectors can then be obtained by solving the 
triangular linear system

This is often more efficient, as it allows for greater paral-
lelization and full use of BLAS3 routines.

This procedure works in infinite precision, but has two 
issues in finite precision. First, even after a first Cholesky 
orthogonalization, the vectors can fail to be orthogonal. Sec-
ond, the Cholesky decomposition can fail, because M may 
not be positive-definite to machine precision; this happens 
when the conditioning of X is larger than the square root of 
the inverse machine epsilon, about 108 in double-precision 
arithmetic.

Fortunately, there is a simple fix to the first problem: 
orthogonalize twice. This has been established to produce 
vectors orthogonal to machine precision [32]. For the second 
problem, following [27], we level shift the metric before 
its Cholesky decomposition by adding a small constant to 
its diagonal. Such a constant can be chosen very small (in 
our implementation, we start from 100 times the norm of 
X times the machine precision) and, if the decomposition 

(3)XTX = M = LLT

(4)�����(X)LT = X.
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still fails, increased until the Cholesky decomposition is suc-
cessful. In our tests, the shifted decomposition never failed, 
and therefore, with at most 4 Cholesky orthogonalizations 
(one failed unshifted, one shifted, then two unshifted) we are 

guaranteed to obtain vectors that are orthogonal to machine 
precision. In practice, often much less than this is needed—
failures of the first Cholesky orthogonalization have been 
observed only exceptionally. A pseudo-code for the ortho 
procedure is given in algorithm 2.

The algorithm as given is somewhat wasteful, as in the 
common case where only one or two successful Cholesky 
factorizations are needed it recomputes the overlap to check 
for termination. This can potentially be alleviated by com-
puting a cheap estimation to the norm of L−T : if this is mod-
erate, then the new vectors are orthogonal to a good accu-
racy, and a new round is unnecessary.

3.2.2 � The ortho(X,Y) procedure

Using the previous orthogonalization algorithm, we could 
implement the �����(X, Y) as �����(X − YYTX) . This is 

however numerically unstable: if X − YYTX is of order � 
(because X was almost in the range of Y), then the orthogo-
nalization above will multiply it by a factor of order 1∕� , mean-
ing that YTortho(X − YYTX) will be of order �∕� , where � is 
the machine epsilon, and the vectors will not be sufficiently 
orthogonal to Y. To avoid this, we use a loop: first project out 
Y, then orthogonalize, iteratively until convergence. In prac-
tice, two steps are usually enough to achieve convergence.

The algorithm for the ortho(X,Y) procedure is given 
in algorithm 3.
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Similar to before, this algorithm is relatively wasteful in the 
common case where one or two passes are enough, because 
it recomputes YTX to check for termination. This can be rem-
edied by monitoring the growth factor of ortho(X) (the 
maximum amplification of errors in X caused by the ortho 
routine, and therefore a measure of the lack of Y-orthogonality 
after one iteration), and exiting the loop when that number is 
moderate.

3.3 � Generalized eigenvalue problems

Missing from this algorithm is a discussion of generalized 
eigenvalue problems, simply because they are not often 
encountered in quantum chemistry. In the generalized eigen-
value problem, one solves Ax = �Bx , where B is a sym-
metric positive definite matrix. Eigenvectors are orthogonal 
with respect to the modified inner product ⟨x, y⟩

B
= xTBx . 

The theoretical LOBPCG algorithm is unchanged except 
for the fact that residuals are now Ax − �Bx , and that all 

orthogonalizations are with respect to the modified inner 
product.

Our practical algorithm has to be modified by keeping a B
-orthogonal basis V. This could be done by using the B inner 
product in the orthogonalization of W, line 26 of the algorithm 
above, and maintaining the values of BV along the iterations. 
However, a naive implementation of this step requires either 
multiple applications of B (twice per iteration, on W̃ [k+1] and on 
W [k+1] ) or potentially unsafe reuses of applications of B . As a 
compromise, a good option is to use the intermediate quantity

which is B-orthogonal to X[k+1] and P[k+1] , but whose vectors 
are only orthogonal (and not B-orthogonal) to each other. 
This set of vectors Ŵ [k+1] is however well conditioned (with 
respect to the B-inner product). We can therefore B-orthogo-
nalize it to compute W [k+1] = Ŵ [k+1]L−T with L a well-con-
ditioned matrix; it is then safe to re-use the B application 

Ŵ [k+1] = �����(W̃ [k+1], (BX[k+1],BP[k+1])),

Fig. 1   All-electron full CI calculations for water using Davidson or LOBPCG. Total timings (left panel) and cumulative time for the Rayleigh-
Ritz and orthogonalization procedures (right panel)

Fig. 2   Frozen-core full CI calculations for water using Davidson or LOBPCG. Total timings (left panel) and cumulative time for the Rayleigh-
Ritz and orthogonalization procedures (right panel)
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as BW [k+1] = (BŴ [k+1])L−T . This appeared to perform very 
well in our tests, even if B itself was not well-conditioned. 
If more stability is needed, reuses of B applications appear 
necessary.

4 � Numerical experiments

To test our implementation of LOBPCG, and to compare its 
performance with respect to the block-Davidson method, 
we interfaced the diaglib library with the cfour quantum 
chemistry package [28, 29]. As typical problems where an 
iterative procedure to compute one or a few eigenvectors is 
required, we selected three different test cases, coming from 
full CI Hamiltonian, quadratically convergent self-consistent 
field (SCF) and quadratically convergent complete active 
space self-consistent field (CASSCF). In all the calcula-
tions, we use a threshold of 10−14 for the ortho(X,Y) 
and ortho(X) procedures. Together with the convergence 
threshold for the eigenvectors, this is the only parameters 
that control the LOBPCG calculation. For Davidson, we 
use a subspace dimension of 25, i.e., we keep in memory 
up to 25 vectors per eigenvector in the history. For both the 
algorithms we exploit a locking procedure for the converged 
eigenvectors.

4.1 � Full CI calculations

We compute the first few total symmetric electronic states 
of water at the full CI level of theory, using a determinant 
CI direct implementation. The full CI Hamiltonian is sparse 
and diagonally dominant, but extremely large, and thus 
provides a good test case for well-behaved, large, sparse 

systems. Furthermore, the iterative solution of (Full) CI 
problems is a quite common task in quantum chemistry, 
as it is encountered in CASCI/CASSCF and truncated CI 
(including for excited states at the CI singles level of theory). 
We use Pople’s 6–31 G∗ basis set [33] and perform both 
all-electron and frozen-core calculations, correlating thus 
10 electrons in 18 orbitals (18 360 640 determinants) or 8 
electrons in 10 orbitals (1 416 732 determinants). We seek 
10, 20 or 50 eigenpairs. Convergence is achieved when the 
root-mean-square norm of the residual is smaller than 10−9 , 
and its maximum absolute value is smaller than 10−8 . For 
LOBPCG, we seek 5 additional eigenpairs, as numerical 
tests proved that this improves convergence and, despite the 
additional matrix–vector products required, improves overall 
performance. Note that we do not check that the additional 
eigenvalues are converged, as they are only used to increase 
the expansion subspace. No additional eigenpairs are sought 
for Davidson, as this choice showed the overall best perfor-
mance. A brief description of the process that led us to these 
choices is reported in the Supporting Information.

It comes as no surprise that Davidson outperforms 
LOBPCG for Full-CI calculations. As the full-CI Ham-
iltonian is strongly diagonally dominant for closed-shell 
systems, it is an ideal scenario for Davidson, an algorithm 
originally conceived for exactly this problem. Neverthe-
less, the performance of LOBPCG is comparable, the latter 
algorithm being about 20–30% slower than the former. 
It is interesting to note that while for LOBPCG the cost 
of the Rayleigh-Ritz and orthogonalization procedures 
is overall negligible with respect to the cost of comput-
ing matrix–vector multiplications, this is not the case for 
Davidson. Keeping up to 25 vectors in the history comes 
with a cost that can be clearly seen in the right panels of 
Figs. 1, 2. On the other hand, the larger subspace used in 
Davidson’s method allows for faster convergence, which 

Fig. 3   Orbital rotation Hessian diagonalization at SCF convergence (left panel) and with extended Hückel guess orbitals (right panel). The num-
ber of iterations required to achieve convergence is reported as a function of the number of seeked eigenpairs
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is achieved in 28, 37 and 24 iterations for the calculation 
seeking 10, 20 and 50 eigenpairs, respectively, both for the 
all-electron and the frozen-core calculations. This has to 
be compared with 26, 41 and 45 iterations for LOBPCG, 
again, for both sets of calculations. On the other hand, 
the long history is also a limitation for Davidson, as the 
amount of memory required to perform a calculation can 
become very high. As an example, the largest calculation 
performed (all-electron, 50 states) required about 356 
GB of memory for Davidson, to be compared with 55 for 
LOBPCG. Using a smaller subspace dimension in David-
son is of course possible, but such a size must be chosen 
with some care. To better illustrate this point, we repeated 
the Davidson calculations using a maximum of 10 points 
in the history: no calculation fully converged within 100 
iterations, with 1, 3 and 2 non-converged roots. There-
fore, while Davidson is optimal for full CI calculations 
if enough memory is available to use a large expansion 

subspace, LOBPCG can be seen as a competitive alterna-
tive when this is not the case.

4.2 � Quadratically convergent SCF calculations

In quadratically convergent implementations of the self-
consistent field, the Hartree-Fock wavefunction is optimized 
by using a second-order method. In CFOUR, this is done 
using an efficient numerical realization of the Levenberg-
Marquardt method [34], known as norm-extended optimiza-
tion, where the step is computed from the lowest eigenpair 
of the (augmented) orbital-rotation Hessian [35]. The same 
matrix is used in response calculations and for the analysis 
of the stability of the Hartree-Fock wavefunction, which 
requires again to compute a few eigenvalues and eigenvec-
tors of the orbital-rotation Hessian. For closed-shell systems, 
such a matrix is dense, but typically diagonally dominant. 
While computing and storing in memory the full Hessian is 

Fig. 4   Root-mean-square (RMS) of the residual along the iterations for the diagonalization of the orbital rotation Hessian at SCF convergence 
seeking for one eigenpair. The subspace for the Davidson algorithm is of size 25 (left panel) and 3 (right panel)

Fig. 5   Root-mean-square (RMS) of the residual along the iterations 
seeking for one eigenpair (left panel) and number of iterations to 
achieve convergence as a function of the number of seeked eigenpairs 

(right panel) for the diagonalization of the CASSCF augmented Hes-
sian at the first macroiteration
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possible, such a task is expensive and exhibits a steep scaling 
in computational cost with respect to the system’s size, as 
assembling it requires a costly partial integral transforma-
tion. Direct implementations are therefore usually preferred. 
To compare Davidson to LOBPCG, we compute the first few 
eigenpairs (up to 10) of the Hessian after convergence of the 
SCF procedure for a transition metal complex, FeC(CO)3 , 
using Dunning’s cc-pVDZ basis set. To provide an example 
on a somewhat more challenging case, we further repeat the 
calculations, but at the beginning of the SCF calculations, 
that is, using orbitals computed with an extended Hückel 
guess. Far from convergence, the Hessian has many nega-
tive eigenvalues and is not guaranteed to be as diagonally 
dominant as with fully converged orbitals. In the following 
calculations, convergence is achieved when the root-mean-
square norm of the residual is smaller than 10−7 , and its max-
imum absolute value is smaller than 10−6 . Such threshold is 
adequate for stability analysis, but also for the first steps of 
a second-order optimization procedure. For both Davidson 
and LOBPCG, to improve convergence, we seek twice the 
eigenpairs required and stop the calculation when just the 
required ones are converged. The size of the subspace for 
Davidson is 25. For the calculations at SCF convergence, 
where the Hessian is strongly diagonally dominant (Fig. 3, 
left panel) Davidson outperforms again LOBPCG. On the 
other hand, the less well-behaved case (Fig. 3, right panel) 
shows a different picture. LOBPCG and Davidson exhibit a 
very similar behavior, with LOBPCG even outperforming 
Davidson in a few cases. As orbital rotation Hessians are 
hardly very large matrices (for the case reported here, the 
size is 3849), using large expansion subspaces in Davidson 
can probably further improve convergence, but for difficult 
cases, LOBPCG can be a valid alternative.

We report in Fig. 4 (left panel) the root-mean-square 
residual as a function of the iterations for the computa-
tion of the first eigenpair of the orbital rotation Hessian. 
As expected the behaviors between the two algorithms are 
analogous.

We would like here to underline the fact that LOBPCG 
manages to behave similarly to Davidson even despite the 
very small size of the subspace used for the Rayleigh-Ritz 
procedure. To show how remarkable this is, we report in 
Fig. 4 (right panel) a comparison between LOBPCG and 
Davidson, where for the latter we use a three-dimensional 
subspace–that is, the same dimension used in LOBPCG. 
Davidson eventually manages to converge; however, it 
requires a much larger number of iterations. While this is 
purely an academic example, as such small expansion sub-
spaces are never used in practice, it testifies to the effective-
ness of the LOBPCG 3-terms sequence.

4.3 � CASSCF calculations

CASSCF calculations can be very challenging from a 
numerical point of view, which makes second-order meth-
ods particularly attractive [4, 36–38]. In cfour, the same 
technique used for Hartree-Fock, namely, the norm-extended 
optimization algorithm, is used. The (augmented) Hessian in 
CASSCF is made by a dense, typically quite ill-conditioned, 
medium-sized block for the orbital optimization and a large, 
sparse, usually diagonally dominant block that corresponds 
to the Hamiltonian in the CAS space. Even for well-behaved 
systems, computing the NEO step, which in turn requires 
computing the first eigenpair of the augmented Hessian, can 
be challenging. To illustrate this, we report calculations on 
niacin (vitamin B3), a small conjugated organic molecule. 
We correlated all the � electrons, resulting in a CAS(6,6) 
calculation, and we employ Pople’s 6–31 G* basis set [33]. 
Symmetry broken unrestricted natural orbitals are used as 
a guess [39, 40]. The system is very well behaved, and con-
vergence of the wavefunction is achieved in just 3 s-order 
iterations. Nevertheless, the iterative calculation of the step, 
i.e., the augmented hessian lowest eigenvector, can still be 
challenging. We report in the left Fig. 5 the convergence 
pattern for Davidson and LOBPCG at the first second-order 
iteration. LOBPCG outperforms Davidson at every second-
order iterations, 27, 25 and 23 iterations at the first, second 
and third second-order step, to be compared with 32, 28 and 
31 iterations for Davidson. Also when more than one eigen-
pair is required, as it is the case for state-specific excited 
state calculations, LOBPCG keeps being the best perform-
ing algorithm, as reported in the right panel of Fig. 5. This 
behavior is not surprising, as the CASSCF augmented Hes-
sian is not diagonally dominant and is consistent with what 
observed for second-order SCF calculations starting with 
extended Hückel orbitals Davidson’s performance may be 
improved by increasing the size of the expansion subspace. 
This is, however, not the best option, as for large active 
spaces the size of the Hessian can become very large—com-
parable with the sizes reported for full CI calculations. Using 
very large expansion subspaces is therefore very demanding 

Table 1   Total number of iterations required to converge the lowest 
eigenvalue of the CASSCF orbital-rotation Hessian at the first mac-
roiteration using the LOBPCG and Davidson solvers with three dif-
ferent preconditioners

LOBPCG Davidson

Diagonal Tridiagonal iLU Diagonal Tridiagonal iLU

56 53 47 52 54 50
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in terms of memory, and can make the orthogonalization 
expensive. LOBPCG seems therefore a more robust choice 
for this specific problem.

4.4 � Preconditioning

To improve the convergence of both LOBPCG and Davidson 
one can devise different types of preconditioners. In most 
quantum chemistry applications, computing and storing in 
memory the matrix of which one seeks one or a few eigen-
pairs is prohibitively expensive, which forces the choice of a 
Jacobi (diagonal) preconditioner in most cases. This is defi-
nitely the case for the full CI and CASSCF examples showed 
in the previous section. However, for both second-order 
SCF and CASSCF, we have implemented the explicit con-
struction of the orbital rotation Hessian, mainly as a debug 
option, which allows us to perform a few numerical experi-
ments. In particular, we compare three possible choices and 
focus on the CASSCF orbital-rotation Hessian as a test case, 
as it is notoriously ill-conditioned and therefore we expect 
that a more advanced preconditioning strategy may be par-
ticularly beneficial. For these examples, we only seek to 
compute one eigenpair. The first preconditioner that we test 
is, as in the previous sections, approximates the matrix to its 
diagonal. The second one, which will be here addressed as 
tridiagonal, improves upon the diagonal approximation by 
also including the upper and lower diagonal elements. These 
two options should perform particularly well in diagonally 
dominant matrices. As a third choice, we propose a sparse 
approximation M to the matrix A, that is

where we set tol equal to 0.5 and decreased it to 0.1 as soon 
as the root-mean-square norm of the residual is close to con-
vergence. For both the second and third options it is neces-
sary to solve a linear system. For the tridiagonal case we 
simply exploit a LAPACK routine which performs a Gauss-
ian elimination with partial pivoting. Instead, in the case of 
the sparse M matrix, the linear system is solved using the 
incomplete LU (iLU) decomposition [41] as implemented by 
Saunders et al [42]. In Table 1 we compare the behavior of 
LOBPCG and Davidson when changing the preconditioner. 
As expected the preconditioner based on the sparse approxi-
mation of A is the one that performs best. However, such 
an option may become expensive and requires to store the 
full matrix in core or at least to have an heuristic procedure 
to estimate the elements. From this simple-minded experi-
ment, we note that both methods benefit from better precon-
ditioners, with LOBPCG exhibiting slightly more marked 
improvements. However, assembling such preconditioners 
is expensive, as it requires to build the matrix, or at least 

(5)Mij =

{
Aij, if |Aij| > tol or i = j

0, otherwise

some approximation to it, in memory, which in many prac-
tical cases is far too demanding. Given the relatively small 
beneficial effect of going beyond a diagonal preconditioner, 
we believe that the latter is the optimal compromise choice.

5 � Conclusions and perspectives

In this contribution, we have described an efficient and 
numerically robust implementation of LOBPCG, available 
both in the DFTK plane-wave density functional program 
and in the open-source library diaglib. We have discussed 
in detail how to avoid numerical problems and error propa-
gation and presented a cost-effective, yet stable strategy to 
orthogonalize a set of vectors using Cholesky decomposition 
of the overlap matrix. We have then compared the result-
ing implementation to Davidson’s method for a selection of 
test cases in quantum chemistry. Davidson’s method is the 
de facto standard for solving large eigenvalue problems in 
quantum chemistry and for good reasons. As many of such 
problems are characterized by strongly diagonally dominant 
matrices, Davidson’s method always exhibits reliable, fast 
convergence. This comes, however, at a price. To be effi-
cient, Davidson’s method requires a rather large expansion 
subspace, which can become cumbersome for large-scale 
calculations, both in terms of memory requirements and 
computational effort in the orthogonalization step. Further-
more, the method has some difficulties dealing with non-
diagonally dominant matrices, as the ones encountered in 
CASSCF calculations. For all these reasons, LOBPCG rep-
resents a valid alternative. Due to its low memory require-
ments, it can be used to treat systems for which deploying 
Davidson’s method would be too costly. It can also be a 
backup method in cases where Davidson fails or, for par-
ticularly hard cases as in CASSCF, used as a default method. 
The implementation in diaglib is free and accessible, and 
can be used under the terms of the LGPL v2.1 license, while 
the one in DFTK is available under the MIT license. It is 
our hope that it will provide an useful tool to the developers 
community in quantum chemistry.

Our numerical experiments highlight the degradation of 
the convergence rate of the Davidson method as the history 
size is truncated. On the other hand, LOBPCG is able to 
maintain a good convergence rate (although slightly infe-
rior to untruncated Davidson) with a subspace of size 3N. It 
would be an interesting topic of further research to devise 
a method that is able to interpolate between the two, being 
able to use a large history size if available, but preserving 
the good behavior of LOBPCG when used with a smaller 
history size. This could pave the way toward a fully adaptive 
method that truncates the history size dynamically based on 
available information.
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