Skip to main content
Log in

Halogen bonding: a designer strategy for graphyne-like two-dimensional architectures

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Assembly of molecular systems into extended frameworks guided by weak non-covalent interactions is a hot topic of research in supramolecular chemistry. Herein, by an orchestration of intermolecular interactions guided by halogen bonding, we propose a computational designer strategy to steer the growth of graphyne-like molecular assemblies. Toward this, we analyze the halogen-bonded molecular assemblies of 1,3,5-triazine-based and benzene-1,3,5-tricarbonitrile-based monomers into graphyne-like and graphdiyne-like frameworks. The underlying halogen bonding interactions are quantified by way of intermolecular interaction energies and rationalized by way of molecular electrostatic potential and natural energy decomposition analysis, which allows for the separation of total intermolecular interaction energies into various components. The energetics of complexation indicate that, for the cyano-aromatic-based two-dimensional frameworks, iodo-substituted assemblies are stronger than the corresponding hydrogen-bonded assemblies and for the carbon nitride-based two-dimensional frameworks, bromo- and iodo-substituted assemblies are stronger than the hydrogen-bonded counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Estarellas C, Bauzá A, Frontera A, Quiñonero D, Deyà PM (2011) Phys Chem Chem Phys 13:5696–5702

    Article  CAS  PubMed  Google Scholar 

  2. Bauzá A, Frontera A (2015) Angew Chem Int Ed 54:7340–7343

    Article  Google Scholar 

  3. Parameswaran AM, James A, Aboobacker A, Srinivasamurthy Swathi R (2023) ChemPhysChem 24:e202200548

    Article  CAS  PubMed  Google Scholar 

  4. Murray JS, Shields ZPI, Seybold PG, Politzer P (2015) J Comput Sci 10:209–216

    Article  Google Scholar 

  5. Colin M (1814) Ann Chim 91:252–272

    Google Scholar 

  6. Guthrie F (1863) J Chem Soc 16:239–244

    Article  Google Scholar 

  7. Remsen I, Norris J (1896) Amer Chem J 18:90–95

    CAS  Google Scholar 

  8. Rhoussopoulos O (1883) Ber Dtsch Chem Ges 16:202–203

    Article  Google Scholar 

  9. Seamon WH, Mallet JW (1881) Chem News 44:188–189

    Google Scholar 

  10. Benesi HA, Hildebrand J (1949) J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  11. Benesi HA, Hildebrand JH (1948) J Am Chem Soc 70:2832–2833

    Article  CAS  Google Scholar 

  12. Mulliken RS (1950) J Am Chem Soc 72:600–608

    Article  CAS  Google Scholar 

  13. Bjorvatt T, Hassel O (1962) Acta Chem Scand 16:249–255

    Article  Google Scholar 

  14. Hassel O, Rømming C (1962) Q Rev Chem Soc 16:1–18

    Article  CAS  Google Scholar 

  15. Hassel O (1970) Science 170:497–502

    Article  CAS  PubMed  Google Scholar 

  16. Hassel O, Hvoslef J (1954) Acta Chem Scand 8:873

    Article  CAS  Google Scholar 

  17. Olie K, Mijlhoff FC (1969) Acta Crystallogr B 25:974–977

    Article  CAS  Google Scholar 

  18. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  19. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  20. Bent HA (1968) Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  21. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275

    Article  CAS  Google Scholar 

  22. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem 44:57–64

    Article  Google Scholar 

  23. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  24. Legon AC (1999) Angew Chem Int Ed 38:2686–2714

    Article  CAS  Google Scholar 

  25. Chopra D, Row TNG (2011) CrystEngComm 13:2175–2186

    Article  CAS  Google Scholar 

  26. Lu Y-X, Zou J-W, Yu Q-S, Jiang Y-J, Zhao W-N (2007) Chem Phys Lett 449:6–10

    Article  CAS  Google Scholar 

  27. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Cryst Growth Des 11:4238–4246

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS, Clark T (2015) In: Metrangolo P, Resnati G (eds) Halogen bonding I: impact on materials chemistry and life sciences pp. 19–42

  29. Bauza A, Mooibroek TJ, Frontera A (2015) ChemPhysChem 16:2496–2517

    Article  CAS  PubMed  Google Scholar 

  30. Alkorta I, Elguero J, Frontera A (2020) Crystals 10:180

    Article  CAS  Google Scholar 

  31. Murray JS, Politzer P (2020) Crystals 10:76

    Article  Google Scholar 

  32. Metrangolo P, Resnati G (2001) Chem Eur J 7:2511–2519

    Article  CAS  PubMed  Google Scholar 

  33. Fourmigue M (2009) Curr Opin Solid State Mater Sci 13:36–45

    Article  CAS  Google Scholar 

  34. Metrangolo P, Resnati G (2012) Cryst Growth Des 12:5835–5838

    Article  CAS  Google Scholar 

  35. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711–1713

    Article  CAS  Google Scholar 

  37. Xu M, Liang T, Shi M, Chen H (2013) Chem Rev 113:3766–3798

    Article  CAS  PubMed  Google Scholar 

  38. Niu T, Li A (2015) Prog Surf Sci 90:21–45

    Article  CAS  Google Scholar 

  39. Owais C, James A, John C, Dhali R, Swathi RS (2018) J Phys Chem B 122:5127–5146

    Article  CAS  PubMed  Google Scholar 

  40. Yao F, Wang W, Shi H, Xu Z, Zeng M, Hu Y, Liu L, Ji X (2021) ACS Catal 11:14122–14147

    Article  CAS  Google Scholar 

  41. James A, John C, Owais C, Myakala SN, Chandra Shekar S, Choudhuri JR, Swathi RS (2018) RSC Adv 8:22998–23018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baughman RH, Eckhardt H, Kertesz M (1987) J Chem Phys 87:6687–6699

    Article  CAS  Google Scholar 

  43. Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J (2022) Chem Sci 13:3057–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slater AG, Beton PH, Champness NR (2011) Chem Sci 2:1440–1448

    Article  CAS  Google Scholar 

  45. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:1230444

    Article  PubMed  Google Scholar 

  46. Ding SY, Wang W (2013) Chem Soc Rev 42:548–568

    Article  CAS  PubMed  Google Scholar 

  47. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Science 310:1166–1170

    Article  CAS  PubMed  Google Scholar 

  48. Teyssandier J, Mali KS, De Feyter S (2020) ChemistryOpen 9:225–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pang P, Li B, Zeng X, Miao X, Wang Y, Deng W (2021) J Phys Chem C 125:1378–1383

    Article  CAS  Google Scholar 

  50. Yoon JK, Son W-j, Chung K-H, Kim H, Han S, Kahng S-J (2011) J Phys Chem C 115:2297–2301

    Article  CAS  Google Scholar 

  51. Wang D, Lu X, Cai L, Zhang L, Feng S, Zhang W, Yang M, Wu J, Wang Z, Wee ATS (2022) ACS Nano 16:9843–9851

    Article  CAS  PubMed  Google Scholar 

  52. Silly F (2017) J Phys Chem C 121:10413–10418

    Article  CAS  Google Scholar 

  53. Chung K-H, Park J, Kim KY, Yoon JK, Kim H, Han S, Kahng S-J (2011) Chem Commun 47:11492–11494

    Article  CAS  Google Scholar 

  54. Mitchell JBO, Price SL, Leslie M, Buttar D, Roberts RJ (2001) J Phys Chem A 105:9961–9971

    Article  CAS  Google Scholar 

  55. Yang Z, Fromm L, Sander T, Gebhardt J, Schaub TA, Görling A, Kivala M, Maier S (2020) Angew Chem Int Ed 59:9549–9555

    Article  CAS  Google Scholar 

  56. Devore DP, Ellington TL, Shuford KL (2020) J Phys Chem A 124:10817–10825

    Article  CAS  PubMed  Google Scholar 

  57. Zhang S, Lu Y, Zhang Y, Peng C, Liu H (2017) J Phys Chem C 121:4451–4461

    Article  CAS  Google Scholar 

  58. Singhal A, Kancharlapalli S, Ghosh SK (2018) J Mol Model 24:217

    Article  PubMed  Google Scholar 

  59. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  60. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  61. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  62. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  63. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117:587–597

    Article  CAS  Google Scholar 

  64. Riplinger C, Neese F (2013) J Chem Phys 138:034106

    Article  PubMed  Google Scholar 

  65. Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) J Chem Phys 139:134101

    Article  PubMed  Google Scholar 

  66. Neese F (2012) WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  67. Glendening ED, Streitwieser A (1994) J Chem Phys 100:2900–2909

    Article  CAS  Google Scholar 

  68. Glendening ED, J KB, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Karafiloglou P, Landis CR, Weinhold F (2018). Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016), Wallingford, CT

  70. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Chem Commun 46:3256–3258

    Article  CAS  Google Scholar 

  71. Yang Z, Shen X, Wang N, He J, Li X, Wang X, Hou Z, Wang K, Gao J, Jiu T, Huang C (2019) ACS Appl Mater Interfaces 11:2608–2617

    Article  CAS  PubMed  Google Scholar 

  72. Burns LA, Marshall MS, Sherrill CD (2014) J Chem Theory Comput 10:49–57

    Article  CAS  PubMed  Google Scholar 

  73. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  74. Badenhoop JK, Weinhold F (1997) J Chem Phys 107:5406–5421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of the Padmanabha cluster at the Centre for High-performance Computing at IISER TVM. R.S.S. acknowledges the Science and Engineering Research Board (SERB), Government of India for financial support of this work, through the SERB Core Research Grant (CRG/2022/006873). A.J. thanks IISER TVM for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rotti Srinivasamurthy Swathi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

This manuscript is dedicated to Prof. P. K. Chattaraj for his pivotal contributions to theoretical chemistry.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 420 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, A., Swathi, R.S. Halogen bonding: a designer strategy for graphyne-like two-dimensional architectures. Theor Chem Acc 142, 45 (2023). https://doi.org/10.1007/s00214-023-02987-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02987-w

Keywords

Navigation