Skip to main content
Log in

Ab initio calculation of the excited states of nitropyrenes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ubiquitous presence of nitro-derivatives of polycyclic aromatic hydrocarbons like pyrene in the environment is a source of preoccupation given the fact that many of them have been shown to be toxic, mutagenic and/or carcinogenic. An understanding of their photophysics and photochemistry can provide insight into the potential for their sunlight-induced photodegradation in the environment. In the present work, ab initio quantum chemical methods (MP2/def2-TZVP and ADC(2)/def2-TZVP) were employed to calculate the geometries of the three mononitro pyrenes, three of the dinitropyrenes and a trinitropyrene in the ground state and in the lowest excited singlet and triplet states. Absorption spectra predicted from the vertical excitation energies and oscillator strengths of the first 10 excited singlet states (ADC(2)/def2-TZVP/COSMO acetonitrile) compare favorably with the experimental spectra in acetonitrile and adiabatic triplet energies with values derived from phosphorescence spectra. Except for 2-nitropyrene, which was predicted to be planar in the ground (S0) and lowest excited singlet (S1) and triplet (T1) states, the nitro groups of the other compounds were not in the plane of the ring in S0 or T1, but one of the nitro groups was predicted to become coplanar with the ring in the optimized geometry of S1. The theoretical results are discussed in the context of their overall consistency with the experimentally observed photophysical properties of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bandowe BAM, Meusel H (2017) Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—a review. Sci Total Environ 581–582:237–257. https://doi.org/10.1016/j.scitotenv.2016.12.115

    Article  CAS  PubMed  Google Scholar 

  2. Mulder MD, Dumanoglu Y, Efstathiou C et al (2019) Fast formation of nitro-pahs in the marine atmosphere constrained in a regional-scale lagrangian field experiment. Environ Sci Technol 53:8914–8924. https://doi.org/10.1021/acs.est.9b03090

    Article  CAS  PubMed  Google Scholar 

  3. Wilson J, Octaviani M, Bandowe BAM et al (2020) Modeling the Formation, degradation, and spatiotemporal distribution of 2-nitrofluoranthene and 2-nitropyrene in the global atmosphere. Environ Sci Technol 54:14224–14234. https://doi.org/10.1021/acs.est.0c04319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li S, Huang Y, Zhang M et al (2020) Remediation of 1-nitropyrene in soil: a comparative study with pyrene. Int J Environ Res Public Health 17:1914. https://doi.org/10.3390/ijerph17061914

    Article  CAS  PubMed Central  Google Scholar 

  5. Yan J, Wang X, Gong P, Wang C (2020) Nitrated polycyclic aromatic compounds in the atmospheric environment: a review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1748486

    Article  Google Scholar 

  6. Rickert DE (1985) Toxicity of nitroaromatic compounds, 1st ed. Hemisphere Publ. Co., Washington

  7. Kovacic P, Somanathan R (2014) Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 34:810–824. https://doi.org/10.1002/jat.2980

    Article  CAS  PubMed  Google Scholar 

  8. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692. https://doi.org/10.1021/tx000002x

    Article  CAS  PubMed  Google Scholar 

  9. Gooch A, Sizochenko N, Sviatenko L et al (2017) A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds. SAR QSAR Environ Res. https://doi.org/10.1080/1062936X.2017.1286687

    Article  PubMed  Google Scholar 

  10. Gooch A, Sizochenko N, Rasulev B et al (2017) In vivo toxicity of nitroaromatics: a comprehensive quantitative structure–activity relationship study. Environ Toxicol Chem 36:2227–2233. https://doi.org/10.1002/etc.3761

    Article  CAS  PubMed  Google Scholar 

  11. Li R, Wang X, Wang B et al (2019) Gestational 1-nitropyrene exposure causes gender-specific impairments on postnatal growth and neurobehavioral development in mice. Ecotoxicol Environ Saf 180:123–129. https://doi.org/10.1016/j.ecoenv.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  12. Hu B, Tong B, Xiang Y et al (2020) Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells. Ecotoxicol Environ Saf 189:109977. https://doi.org/10.1016/j.ecoenv.2019.109977

    Article  CAS  PubMed  Google Scholar 

  13. Sun C, Qu L, Wu L et al (2020) Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. TrAC—Trends Anal Chem 127:115878. https://doi.org/10.1016/j.trac.2020.115878

    Article  CAS  Google Scholar 

  14. Xia Q, Yin JJ, Zhao Y et al (2013) UVA photoirradiation of nitro-polycyclic aromatic hydrocarbons-induction of reactive oxygen species and formation of lipid peroxides. Int J Environ Res Public Health 10:1062–1084. https://doi.org/10.3390/ijerph10031062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostojic BD, Dordevic DS (2018) Photochemistry of nitrated polycyclic aromatic hydrocarbons under solar radiation. Curr Org Chem 22:973–986. https://doi.org/10.2174/1385272821666171116161755

    Article  CAS  Google Scholar 

  16. Kameda T, Akiyama A, Toriba A et al (2011) Atmospheric formation of hydroxynitropyrenes from a photochemical reaction of particle-associated 1-nitropyrene. Environ Sci Technol 45:3325–3332. https://doi.org/10.1021/es1042172

    Article  CAS  PubMed  Google Scholar 

  17. García-Berríos ZI, Arce R (2012) Photodegradation mechanisms of 1-nitropyrene, an environmental pollutant: the effect of organic solvents, water, oxygen, phenols, and polycyclic aromatics on the destruction and product yields. J Phys Chem A 116:3652–3664. https://doi.org/10.1021/jp2126416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Plaza-Medina EF, Rodríguez-Córdoba W, Peon J (2011) Role of upper triplet states on the photophysics of nitrated polyaromatic compounds: S1 lifetimes of singly nitrated pyrenes. J Phys Chem A 115:9782–9789. https://doi.org/10.1021/jp204321h

    Article  CAS  PubMed  Google Scholar 

  19. Arce R, Pino EF, Valle C et al (2011) A comparative photophysical and photochemical study of nitropyrene isomers occurring in the environment. J Phys Chem A 115:152–160. https://doi.org/10.1021/jp108652p

    Article  CAS  PubMed  Google Scholar 

  20. Arce R, Pino EF, Valle C, Ágreda J (2008) Photophysics and photochemistry of 1-Nitropyrene. J Phys Chem A 112:10294–10304. https://doi.org/10.1021/jp803051x

    Article  CAS  PubMed  Google Scholar 

  21. Crespo-Hernandez CE, Vogt A, Sealey B (2013) On the primary reaction pathways in the photochemistry of nitro-polycyclic aromatic hydrocarbons. Mod Chem Appl 1:1000106. https://doi.org/10.4172/2329-6798.1000106

    Article  CAS  Google Scholar 

  22. Brister MM, Piñero-Santiago LE, Morel M et al (2017) Photochemical relaxation pathways in dinitropyrene isomer pollutants. J Phys Chem A 121:8197–8206. https://doi.org/10.1021/acs.jpca.7b04769

    Article  CAS  PubMed  Google Scholar 

  23. Brister MM, Piñero-Santiago LE, Morel M et al (2016) The photochemical branching ratio in 1,6-dinitropyrene depends on the excitation energy. J Phys Chem Lett 7:5086–5092. https://doi.org/10.1021/acs.jpclett.6b02549

    Article  CAS  PubMed  Google Scholar 

  24. García-Berríos ZI, Arce R, Burgos-Martínez M, Burgos-Polanco ND (2017) Phototransformations of environmental contaminants in models of the aerosol: 2 and 4-Nitropyrene. J Photochem Photobiol A Chem 332:131–140. https://doi.org/10.1016/j.jphotochem.2016.08.018

    Article  CAS  Google Scholar 

  25. Morel M, Alers I, Arce R (2006) Photochemical degradation of 1,6- and 1,8-dinitropyrene in solution. Polycycl Aromat Compd 26:207–219. https://doi.org/10.1080/10406630600760576

    Article  CAS  Google Scholar 

  26. Sugiyama H, Watanabe T, Murahashi T, Hirayama T (2004) Formation of 1,3-, 2,4-, 1,2-, 1,6-, 1,8- and 1,7-dinitropyrenes in metallic oxides as soil components in the presence of indoor air with 1-nitropyrene and sodium chloride under xenon lamp irradiation. J Heal Sci 50:66–74. https://doi.org/10.1248/jhs.50.66

    Article  CAS  Google Scholar 

  27. Onduka T, Ojima D, Ito K et al (2017) Photo-induced toxicity and oxidative stress responses in Tigriopus japonicus exposed to nitro-polycyclic aromatic hydrocarbons and artificial light. Chemosphere 169:596–603. https://doi.org/10.1016/j.chemosphere.2016.11.113

    Article  CAS  PubMed  Google Scholar 

  28. Crespo-Hernández CE, Burdzinski G, Arce R (2008) Environmental photochemistry of nitro-PAHs: direct observation of ultrafast intersystem crossing in 1-nitropyrene. J Phys Chem A 112:6313–6319. https://doi.org/10.1021/jp803847q

    Article  CAS  PubMed  Google Scholar 

  29. Murudkar S, Mora AK, Singh PK, Nath S (2011) Origin of ultrafast excited state dynamics of 1-nitropyrene. J Phys Chem A 115:10762–10766. https://doi.org/10.1021/jp205946c

    Article  CAS  PubMed  Google Scholar 

  30. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  CAS  Google Scholar 

  31. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152. https://doi.org/10.1016/S0009-2614(98)00862-8

    Article  CAS  Google Scholar 

  32. Hättig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv Quantum Chem 50:37–60. https://doi.org/10.1016/S0065-3276(05)50003-0

    Article  CAS  Google Scholar 

  33. Klamt A, Jonas V (1996) Treatment of the outlying charge in continuum solvation models. J Chem Phys 105:9972–9981. https://doi.org/10.1063/1.472829

    Article  CAS  Google Scholar 

  34. Ahlrichs R, Bär M, Häser M et al (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169. https://doi.org/10.1016/0009-2614(89)85118-8

    Article  CAS  Google Scholar 

  35. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

  36. Plasser F, Lischka H (2012) Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J Chem Theory Comput 8:2777–2789. https://doi.org/10.1021/ct300307c

    Article  CAS  PubMed  Google Scholar 

  37. Plasser F, Wormit M, Dreuw A (2014) New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J Chem Phys 141:024106. https://doi.org/10.1063/1.4885819

    Article  CAS  PubMed  Google Scholar 

  38. Gorelsky SI, Lever ABP (2001) Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 635:187–196. https://doi.org/10.1016/S0022-328X(01)01079-8

    Article  CAS  Google Scholar 

  39. Takahashi K, Asanoma M, Yoshida S et al (2006) Genes Environ 28:160–166. https://doi.org/10.3123/jemsge.28.160

    Article  CAS  Google Scholar 

  40. Rohatgi A. WebPlotDigitizer. https://automeris.io/WebPlotDigitizer/index.html. Accessed 30 Mar 2021

  41. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd ed. CRC Press, Boca Raton, FL, p 256

  42. Kozin IS, Gooijer C, Velthorst NH (1996) Shpol’skii spectroscopy as a tool in environmental analysis for amino- and nitro-substituted polycyclic aromatic hydrocarbons: a critical evaluation. Anal Chim Acta 333:193–204. https://doi.org/10.1016/0003-2670(96)00253-X

    Article  Google Scholar 

  43. El-Sayed MA (1968) The triplet state: its radiative and nonradiative properties. Acc Chem Res 1:8–16. https://doi.org/10.1021/ar50001a002

    Article  CAS  Google Scholar 

  44. Engelman R, Jortner J (1970) Energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164. https://doi.org/10.1080/00268977000100171

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for generous support by the School of Pharmaceutical Science and Technology, Tianjin University, China, including computer time on the SPST computer cluster Arran. The authors in Brazil thank INCT-Catálise (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq 465454/2014-3; 444061/2018-5) and NAP-PhotoTech for support, the CNPq for a research productivity fellowship (F.H.Q.) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001—for a post-doctoral fellowship (G.T.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank H. Quina or Adelia J. A. Aquino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Siddique, F., Silva, G.T.M. et al. Ab initio calculation of the excited states of nitropyrenes. Theor Chem Acc 140, 97 (2021). https://doi.org/10.1007/s00214-021-02791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02791-4

Keywords

Navigation