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Abstract
Using a combination of genetic algorithms for the unbiased structure optimization and a Gupta many-body potential for the 
calculation of the energetic properties of a given structure, we determine the putative total-energy minima for all Ag

m
Rh

n
 

clusters with a total number of atoms m + n up to 55. Subsequently, we use various descriptors to analyze the obtained 
structural and energetic properties. With the help of a similarity function, we show that the pure Ag and Rh clusters are 
structurally similar for sizes up to around 20 atoms. The same approach gives that the mixed clusters tend to possess a larger 
structural similarity with the pure Rh clusters than with the pure Ag clusters. However, for clusters with m ≃ n ≥ 25 , other 
structures dominate. The effective coordination numbers for the Ag and Rh atoms as well as the radial distributions of those 
atoms indicate that there is a tendency towards segregation with Rh atoms forming an inner part and the Ag atoms forming 
a shell. Only few clusters, all with a fairly large total number of atoms, are found to be particularly stable.

Keywords Bimetallic clusters · Unbiased structure optimization · Energetic properties · Structural properties

1 Introduction

For some few decades, there has been an intense interest in 
the properties of clusters/nanoparticles made up of metal 
atoms. One of the studies that initiated the current inter-
est is due to Knight et al. [1] who studied mass abundance 
spectra of clusters made up of sodium atoms and used a sim-
ple jellium model to explain the unexpected result that the 
abundance showed a marked size dependence. This example 
demonstrates very clearly the reason for the interest in these 
nanoparticles: Their size is below that of the thermodynamic 
limit so that their properties as a function of size do not fol-
low simple scaling laws. Since then there has appeared very 
many experimental and theoretical studies of the properties 
of monatomic, metallic clusters. Also the person to whom 
this paper is devoted, Fernand Spiegelman, has made excel-
lent, theoretical contributions to this field.

Exactly the fact that these nanoparticles have sizes below 
the thermodynamic limit makes it interesting and relevant 

to explore and eventually also exploit their properties. How-
ever, for theoretical studies this is very often connected with 
a serious challenge: in order to study the properties, it is 
most often necessary to know the structure of the nanopar-
ticles which may be (very) different from that of the crystal-
line material. In addition, it is known that for a cluster An 
with n identical atoms, the number of inequivalent, (meta-)
stable structures scales non-polynomial, i.e., exponential 
with n, so that the identification of the structure of the global 
total-energy minimum becomes extremely difficult.

Even further flexibility can be obtained by considering 
bimetallic clusters AmBn (see, e.g., [2]). Here, the existense 
of so-called homotops [3, 4], i.e., isomers with the same 
overall structure but differing in the arrangement of the A 
and B atoms, leads to additional complications from a theo-
retical point of view since the number of (meta-)stable struc-
tures thereby grows by the factor 

(
m+n

m

)
 . On the other hand, 

bimetallic systems of reduced dimensionality may possess 
phase diagrams that differ from those of the solid counter-
parts, as has been shown for, e.g., surface alloys [5]. There-
fore, also bimetallic clusters (nanoalloys) may possess unex-
pected properties that are unmatched by their macroscopic 
counterparts and that may be exploited for applications.

As an example, we shall in the present work study the 
energetic and structural properties of AgmRhn clusters with a 
total number of atoms m + n up to 55. Silver and rhodium are 
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largely immiscible in the bulk. Thus, more than 100 years ago, 
Rossler reported a very small solubility of rhodium in silver 
[6] whereas a larger solubility of silver in rhodium is found 
that, furthermore, increases with temperature from 4.7 atom% 
at room temperature to around 19 atom% at 1200◦ C [7]. This 
makes it very difficult to predict the behavior of the two metals 
when forming nanoalloys and it cannot be excluded that also 
in nanoalloys Ag and Rh are segregated. The purpose of the 
present work is to study this in more detail including whether 
a segregation takes place and, if so, what structures then result 
(e.g., Janus-particles or core-shell particles). In an earlier work 
[8] we studied this system for m + n ≤ 20 and n or m = 0, 1 . 
Here, we shall extend that study to a much larger range of 
stoichiometries, i.e., considering all m + n ≤ 55 . This makes 
it necessary to change the computational approach slightly, as 
will be discussed in the next section. Section 3 contains the 
results and a discussion of those, whereas Sect. 4 summarizes 
our findings.

2  Computational method

In our earlier work on AgmRhn clusters we considered 
m + n ≤ 20 and m or n = 0, 1 giving a total of 80 different 
systems. In the present work, the number of systems is much 
larger (1595) and most of the systems are in addition larger. An 
unbiased structure optimization using a high-level electronic-
structure method is accordingly not possible due to compu-
tational costs. We shall, therefore, use a simpler description 
for the interatomic interactions that we also used partly in our 
earlier work [8].

For the calculation of the cohesive energy for a given struc-
ture and system, we use the Gupta many-body potential [9] as 
given by Rosato et al. [10] and according to which the total 
cohesive energy is given as

where the summation goes over all atoms of the system and 
with Em,i and Er,i being an attractive and a repulsive poten-
tial, respectively, for the ith atom. These are given as

and

In these expressions, rij is the distance between atoms i and 
j, rl is the nearest-neighbor distance in the crystal lattice l, 
and pl , ql , �l , and Al are parameters. For the values of those 

(1)Ecoh =

∑

i

(Em,i + Er,i)

(2)Em,i = −

[
∑

j

�2
l
e−2ql(rij∕rl−1)

]1∕2

(3)Er,i =

∑

j

Ale
−pl(rij∕rl−1).

parameters, we use those given by Cleri and Rosatto [11] for 
Rh–Rh and Ag–Ag interactions and our own ones [8] for the 
Ag–Rh interactions.

As is evident, this approach does not include any explicit 
description of electronic degrees of freedom. In our earlier 
work [8] we combined this approach with a parameterized 
density-functional method that does include electrons explic-
itly. However, the number and sizes of the systems to be treated 
in the present work make such an approach computationally 
too demanding and, therefore, in the present work we have 
used only the Gupta potential.

For the unbiased structure optimization, we used genetic 
algorithms similar to what originally was proposed by 
Deaven and Ho [12] for cluster structure optimization. 
Thus, for each system we initially construct an even number 
of different structures randomly. These (so-called parents) 
are relaxed locally and subsequently separated into pairs. 
For each pair, a cutting and mating procedure is applied, 
whereby the two clusters are cut into two parts that are 
interchanged making sure that stoichiometry and size are 
unchanged. Also these so-called children are relaxed locally 
and out of the total set of parents and children, that half-
part that has the lowest total energy is kept as the parents 
for the next generation. This is continued until the lowest 
total energy stays unchanged for many generations. In these 
calculations, also so-called mutations are included where 
random distortions of various kinds are applied.

3  Results

We shall repeatedly use the concept of a similarity function 
to quantify structural similarity between two clusters (or, 
eventually, also between a cluster and an infinite crystal). 
This function was described in some detail earlier [13] and 
shall, therefore, here be just briefly introduced.

When comparing two clusters, A and B with NA and NB 
atoms, respectively, we shall concentrate on the geometri-
cal arrangement of the atoms and not take atom types into 
account. By scaling the coordinates of cluster B and translat-
ing and rotating the structure (and eventually also inverting 
the cluster in its center of mass), the resulting cluster B is 
placed on top of cluster A so that the quantity

is minimized. Here, for each atom ai in cluster A the clos-
est atom b(ai) in cluster B is identified and d(ai, b(ai)) is 
their distance. Similarly, for every atom bi in B, the closest 
atom a(bi) in cluster A is identified and d(bi, a(bi)) is their 
distance. Moreover, N is the smallest of NA and NB . Finally, 
from the smallest value of q2 , we calculate the similarity 
function

(4)q2 =
1

2N

(
N∑

i=1

d2(ai, b(ai)) +

N∑

i=1

d2(bi, a(bi))

)



Theoretical Chemistry Accounts (2021) 140:39 

1 3

Page 3 of 9 39

where ul is a unit length that is chosen as the average nearest-
neighbor distance in cluster A.

Our experience is that two clusters are structurally similar 
if S > 0.9 and dissimilar if S < 0.8.

Another quantity we shall consider is the average nearest-
neighbor distance. For the determination of this, we use an 
approach due to Hoppe [14]. Thus, for the ith atom in a 
cluster with N atoms, the average bond length is defined as

with dij being the interatomic distance between atoms i and 
j. It is seen that di

av
 has to be determined iteratively. Subse-

quently, the average nearest-neighbor distance is calculated 
as the average of di

av
,

From di
av

 also an effective coordination number ECN of atom 
i can be introduced,

Also in this case, we calculate an average effective coordina-
tion number,

For the mixed AgmRhn clusters, we may consider average 
effective coordination numbers for Ag and Rh, separately, by 
letting the sum in Eq. (9) run only over the Ag or Rh atoms 
and, correspondingly, dividing not with N but with m or n, 
respectively.

3.1  Pure clusters

We start the discussion of our results by considering the pure 
Ag and Rh clusters, also because these results shall be used 
as reference for the analysis of the mixed AgmRhn clusters.

At first, we show in Fig. 1 the similarity function S for 
the comparison of the pure Agn and Rhn clusters. It is seen 
that Agn and Rhn are structurally very similar for n ≤ 20 , but 
that for larger values of n they become quite different with 
n = 33, 36, 38, 39, 42, 43, 54 and 55 being exceptions. The 
different structures are often found when they are fragments 
of the 38- or 55-atomic icosahedra that are either differently 

(5)S =
1

1 +
q

ul

(6)di
av
=

∑N

j=1
dije

[1−(dij∕d
i
av
)
6
]

∑N

j=1
e[1−(dij∕d

i
av
)6]

(7)dav =
1

N

N∑

i=1

di
av
.

(8)ECN(i) =

N∑

j=1

e[1−(dij∕d
i
av
)
6
].

(9)ECN =
1

N

N∑

i=1

ECN(i).

distorted (n = 21, 25) or result as different fragments (n 
= 29, 45, 47, 50, 51, 52, 53). In some cases, also different 
structural motifs are found for the clusters of the same size. 
Thus, for Rhn but not for Agn for n = 31, 34, and 35 as well 
as for Agn but not for Rhn for n = 41, 48, and 49, structures 
based on the decahedron are found. In some few cases ( Ag33 , 
Ag37 , Rh33 , and Rh38 ), we find a fragment of an octahedron 
as the most stable structure, in agreement with other studies.

Next, we show in Fig. 2 the average bond length as cal-
culated using Eqs. (6) and (7). A convergence behavior can 
be identified, but even for the largest clusters the nearest-
neighbor bond lengths of 2.89 Å and 2.75 Å for crystalline 
Ag and Rh, respectively, are not reached. This may not sur-
prise when remembering that even for the largest clusters 
of the present study, most of the atoms are placed in lower-
coordinated surface positions.

This can also be identified in Fig. 3 that shows the average 
effective coordination number according to Eqs. (8) and (9). 
It is interesting that the two curves lie so close to each other, 
but also that the number, 12, for the crystalline phases is far 
from being reached for the clusters of the size range of the 
present study.

Finally, we show in Fig. 4 the so-called stability function,

Fig. 1  The similarity function for the comparison of the pure Ag
n
 

clusters with the pure Rh
n
 clusters

Fig. 2  The average bond length according to Eqs. (6) and (7) of the 
pure Ag

n
 (red curve) and Rh

n
 (black curve) clusters
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that compares the total energy of a given cluster size with 
those of the two neighboring sizes. Here, Etot(k) is the total 
energy of the cluster with k atoms. Maxima in Δ2(n) cor-
respond to particularly stable clusters and are often called 
magic clusters. In Fig. 4, we see that the present approach 
gives very similar stability functions for the two elements. 
This might be due to the simple form for the description of 
the interatomic interactions that is provided by the Gupta 
potential. Such approaches tend to predict that particularly 
compact, high-symmetric structures are particularly stable 
which indeed is the case for the magic sizes found here and 
that are marked in the figure.

3.2  Mixed clusters

When passing to the mixed AgmRhn clusters with m, n ≠ 0 , 
some of the questions we shall address include whether 
the two types of atoms will mix or segregate, whether the 
clusters resemble more the pure Ag or the pure Rh clusters, 
whether also in this case particularly stable clusters can be 
identified, and whether these are related to those of the pure 
clusters.

(10)Δ2(n) = Etot(n + 1) + Etot(n − 1) − 2Etot(n),

At first we use the concept of similarity function to com-
pare the structures of the mixed AgmRhn clusters with those 
of the pure Agm+n (Fig. 5) and pure Rhm+n clusters (Fig. 6). 
It is seen that for m + n ≤ 20 , the mixed and the pure clus-
ters are very similar, which partly is related to the fact that 
already the pure clusters are very similar (cf. Fig. 1). How-
ever, overall the mixed clusters of larger sizes tend to resem-
ble more the pure Rh clusters than the pure Ag clusters. It 
is surprising that even the Ag-rich clusters have structures 
more similar to the pure Rh than to the pure Ag clusters. 
Thus, very few Rh atoms are required to make the overall 
structure similar to that of the pure Rh clusters.

From the average effective coordination numbers for 
the Ag and Rh atoms, separately, shown in Fig. 7, we see 
that Rh atoms are higher coordinated than Ag. As we shall 

Fig. 3  The average effective coordination number according to Eqs. 
(8) and (9) of the pure Ag

n
 (red curve) and Rh

n
 clusters (black curve)

Fig. 4  The stability function according to Eq. (10) of the pure Ag
n
 

(red curve) and Rh
n
 (black curve) clusters

Fig. 5  The similarity function for the comparison of the mixed 
Ag

m
Rh

n
 clusters with the pure Ag

m+n
 clusters

Fig. 6  The similarity function for the comparison of the mixed 
Ag

m
Rh

n
 clusters with the pure Rh

m+n
 clusters
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see further below, the mixed clusters show some tendency 
towards segregation so that the Rh atoms form an inner part 
and the Ag atoms an outer part. Thereby, it is obvious that 
Rh atoms have a higher coordination than Ag atoms.

A visual analysis of the structures of the mixed clusters 
suggests that many of those are based on the icosahedral 
structural motif. We can use the concept of similarity func-
tions to quantify this further. Thus, we calculated the simi-
larity function for the comparison of the structures of the 
mixed AgmRhn clusters with that of a 55-atom icosahedron, 
giving the results shown in Fig. 8. Indeed, it is seen that very 
many of the clusters have structures resembling a (part of an) 
icosahedron. Exceptions are clusters with m ≃ n ≥ 20 and 
those with 15 ≤ n ≤ 25 and simultaneously m ≤ 10.

Other structural motifs that are found for the mixed clus-
ters include the octahedron that also was found for the pure 
clusters. In addition, we find many clusters with double- and 

polyicosahedral structures, in particular, for the clusters with 
m ≃ n ≥ 20 and those with 15 ≤ n ≤ 25 and simultaneously 
m ≤ 10 that were mentioned above.

For the pure clusters, the stability function of Eq. (10) 
was very useful to identify sizes of particularly stable clus-
ters. However, for the bimetallic clusters, it is less obvious 
how to define a similar function that is based on comparing 
the total energy of a given cluster size with those of neigh-
boring sizes. We shall here consider the function

with Etot(p, q) being the total energy of the AgpRhq cluster.
This function is shown in Fig. 9. Only few particularly 

stable clusters are identified, in particularly such with a 
fairly large total number of atoms, m + n . Some interesting 
structures are found for clusters with m + n = 34 , for which 
Ag27Rh7 , Ag21Rh13 , Ag16Rh18 , and Ag9Rh25 are particularly 
stable clusters. It turns out that these clusters have a fairly 
high symmetry and mainly Rh atoms in an inner part and Ag 
atoms on the surface of the clusters (Fig. 11).

Another quantity that can give information on stability of 
a given cluster is the excess energy. Thereby, the total energy 
of the mixed AgmRhn cluster is compared with those of the 
pure Ag and Rh systems. Here, however, the choice of the 
pure reference systems is not obvious and one may suggest 
using the isolated atoms, the pure crystals, or finite clusters. 
We will here consider the two last suggestion. When com-
paring with the finite clusters, we shall consider clusters 
with the same total number of atoms in order to reduce the 
effects of having different surfaces. Accordingly, we define 
one excess energy according to

(11)Δ2(m, n) =
1

8

1∑

k,l=−1

[
Etot(m + k, n + l) − Etot(m, n)

]

Fig. 7  The average effective coordination number according to Eqs. 
(8) and (9) for the (upper part) Rh atoms and (lower part) Ag atoms 
in the mixed Ag

m
Rh

n
 clusters

Fig. 8  The similarity function for the comparison of the mixed 
Ag

m
Rh

n
 clusters with an icosahedron with 55 atoms
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and another one according to

with Ētot(∞, 0) and Ētot(0,∞) being the total energy per 
atom of the pure Ag and Rh crystals, respectively. Since the 
area of the surface for the clusters scale as (n + m)2∕3 , we 
divide by this number in Eq. (13) in order to remove the size 
dependence of the surface contributions.

The resulting excess energies are shown in Fig. 10. The 
excess energy according to Eq. (13) is always positive, 
implying that the crystalline materials are more stable than 
the finite clusters, which can be related to the surface ener-
gies. The importance of the surface energies decreases with 
increasing cluster size. Moreover, Eex,2(m, n) is most positive 
for Rh-rich clusters. The fact that the cohesive energy of 
crystalline Rh is much larger than that of crystalline Ag [16] 
is most likely the explanation for this finding.

Also Eex,1(m, n) is in most case positive, suggesting that 
the pure clusters are more stable than the mixed ones. An 
exception is found for some Ag-rich and Rh-poor clusters. 
Thus, the admixture of a smaller part of Rh to Ag clus-
ters seems to stabilize the mixed clusters. Those clusters 
that according to Eex,1(m, n) are most stable (i.e., have most 
negative values) are listed in Table 1. It is seen that these 
are all having structural motifs derived from the icosahedra. 
Moreover, the largest ones listed in the table have an Rh-
containing isocahedron as a core with a shell of Ag atoms.

In order to illustrate the different structures that have 
been obtained in the present study for the mixed AgmRhn 
clusters, we shall discuss the case of m + n = 34 . When the 

(12)
Eex,1(m, n) = Etot(m, n) −

m

m + n
Etot(m + n, 0) −

n

m + n
Etot(0,m + n)

(13)
Eex,2(m, n) =

[
Etot(m, n) − mĒtot(∞, 0) − nĒtot(0,∞)

]
∕(n + m)2∕3

total number of atoms is constant, as in this case, one may 
consider the stability function of Eq. (11) or, alternatively

For m + n = 34 , Δ2(n,m) of Eq. (11) has maxima for n = 7 , 
13, and 25, whereas Δ�

2
(n,m) of Eq. (14) has maxima for 

n = 7 , 13, and 18. Thus, both similarities and differences 
are seen, implying that the concept of stability is not very 
easily defined for clusters with more than one type of atoms.

The four clusters with 34 atoms in total and of particu-
larly high stability are shown in Fig. 11. Ag27Rh7 contains 
a pentagonal bipyramid of Rh atoms covered by Ag atoms 
that have an anti-Mackay arrangement. The latter is also 
the case for Ag21Rh13 although in this case, the Rh atoms 
form a pIh structure with a single Rh atom in the center. In 

(14)
Δ

�

2
(n,m) = Etot(m + 1, n − 1) + Etot(m − 1, n + 1) − 2Etot(m, n).

Fig. 9  The stability function (in eV) according to Eq. (11) of the 
mixed Ag

m
Rh

n
 clusters

Fig. 10  The excess energy according to Eqs. (12) and (13) for the 
mixed Ag

m
Rh

n
 clusters when comparing with (upper part) the pure 

clusters and (lower part) the crystalline elements
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all cases, also for Ag16Rh18 and Ag9Rh25 , the Ag atoms are 
found in the outer regions of the cluster. For Ag16Rh18 , the 
Rh atoms form a pIh structure, but for Ag9Rh25 they form a 
part of the Ih55 structure.

We finally mention that structures like Ag27Rh7 and 
Ag9Rh25 also were found by Rapallo et al. as particularly 
stable clusters in their theoretical study on other bimetallic 
clusters with a total of 34 or 38 atoms [15].

Next, we shall return to the structural properties of the 
mixed clusters and in particular focus on whether segrega-
tion or mixing is observed. A parameter that can quantify 
this is the so-called bond-order parameter that in our cases 
becomes

with NA-B being the number of A-B bonds. In our case, we 
consider two atoms as being bonded if their interatomic 
distance is below 3.1 Å. � approaches +1 ( −1 ) in case of 
complete segregation (mixing). This function is shown in 
Fig. 12. It is seen that it is almost always positive, indicating 
some tendency towards segregation.

Finally, we shall study the segregation in more details. 
To this end, we define at first the center of a mixed AgmRhn 
cluster,

(15)� =

NAg-Ag + NRh-Rh − NAg-Rh

NAg-Ag + NRh-Rh + NAg-Rh

Table 1  The most stable mixed 
Ag

m
Rh

n
 clusters with Eex,1(m, n) 

less than −0.02 eV/atom

The structural motifs are the 13- 
and 55-atomic icosahedra ( Ih13 
and Ih55 , respectively, partly 
only fragments of them (f). aM 
marks anti-Mackay icosahedra, 
and pIh

k
 marks polyicosahedra

m + n (m, n) Motif

12 (11, 1) Ih13 (f)
13 (12, 1) Ih13

14 (13, 1) Ih13 + Ag
19 (17, 2) pIh2

23 (20, 3) pIh3

24 (21, 3) pIh3

26 (22, 4) pIh4

27 (22, 5) pIh5

29 (24, 5) pIh5

33 (20, 13) pIh1 aM
34 (21, 13) pIh2 aM
50 (37, 13) Ih55 (f)
51 (38, 13) Ih55 (f)
52 (39, 13) Ih55 (f)
53 (40, 13) Ih55 (f)
54 (41, 13) Ih55 (f)
55 (42, 13) Ih55

Fig. 11  Schematic representa-
tion of some selected Ag

m
Rh

n
 

clusters for m + n = 34 . Pink 
and orange spheres represent Ag 
and Rh atoms, respectively
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where R⃗i is the position of the ith atom in the cluster. Sub-
sequently, we define an averaged radial distance for the Ag 
and Rh atoms in the mixed cluster,

where the two summations run over only the Ag or Rh 
atoms, respectively. The ratio

is close to 1 if the two elements are mixed and > 1 ( < 1 ) if 
the Rh atoms are mainly in the outer (inner) region.

This ratio is shown in Fig. 13. It is clear that it is con-
stantly < 1 , implying that Rh forms a core with Ag atoms 
forming a shell. That this is the case is in agreement with 
the general criteria for such structures [2]: the larger cohe-
sive energy [16] and surface energy [17] together with the 
smaller size of the Rh atoms (cf. Fig. 2) make Rh prefer to 
occupy the inner part of the clusters with Ag forming a shell.

4  Conclusions

In the present work, we have studied the properties of mixed 
Ag–Rh nanoalloys. In the macroscopic case, the solubilities 
of Ag in Rh and of Rh in Ag are very different, which makes 
it very difficult to predict the properties of the nanoalloys 

(16)R⃗0 =
1

m + n

∑

i

R⃗i

(17)

⟨rAg⟩ =
1

m

�

i

� �R⃗i − R⃗0�

⟨rRh⟩ =
1

n

�

i

� �R⃗i − R⃗0�

(18)xseg =
⟨rRh⟩
⟨rAg⟩

who have sizes below that of the thermodynamic limit and 
for which surface effects are expected to be dominating.

We studied all stoichiometries with up to 55 atoms giving 
in total more than 1500 different mixed clusters. An unbi-
ased structure optimization for all these systems using accu-
rate electronic-structure methods is not possible. Instead, 
we used an approximate method to describe the interatomic 
interactions, i.e., the many-body Gupta potential, in com-
bination with genetic algorithms for the unbiased structure 
optimization.

An obvious outcome of the calculations is the struc-
tures and energies of the more than 1500 clusters. A next 
challenge is, therefore, to extract useful information from 
this large amount of data. To this end, we applied various 
descriptors, most notably a similarity function that can quan-
tify structural similarity between two objects. With this, 
we found that the structures of the pure clusters are quite 
similar for clusters with up to around 20 atoms. Moreover, 
there was some tendency for the mixed clusters to show a 
higher similarity with the pure Rh clusters of the same size 
than with the pure Ag clusters. Moreover, we could also 
use this concept to demonstrate a strong similarity with the 
55-atomic icosahedron for most clusters with the exception 
of those with m ≃ n or m + n ≃ 20 − 30 . Other descriptors, 
i.e., the average effective coordination number, the bond 
order parameter, and a segregation parameter all indicate 
some degree of segregation with Rh atoms forming a core 
and Ag atoms forming a shell.

An excess energy based on comparing the energies of 
the clusters with those of the crystalline systems suggests 
that the clusters are less stable than the crystalline systems, 
a finding that can be explained through the large surface 

Fig. 12  The bond order parameter according to Eq. (15) for the mixed 
Ag

m
Rh

n
 clusters

Fig. 13  The segregation parameter of Eq. (18) for the mixed Ag
m
Rh

n
 

clusters
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effects for the clusters. This excess energy is, moreover, 
most positive for the Rh-rich and Ag-poor systems since 
the cohesive and surface energies of Rh are much larger than 
those of Ag. A stability function for identifying particularly 
stable cluster sizes when comparing with neighboring sizes 
predicts that in particular four clusters, all with 34 atoms in 
total, are particularly stable. These clusters have high sym-
metry, which is a part of the explanation for this finding.

We hope that we have demonstrated that bimetallic clus-
ters indeed have their own properties and not just some kind 
of average of those of the pure monatomic clusters. Moreo-
ver, by comparing with our earlier studies on NimAgn and 
CumAgn clusters [18, 19] we can also see that different bime-
tallic nanoalloys have different properties. For instance, even 
though we find similar structural elements for the different 
bimetallic nanoalloys, AmBn , for different metals (A,B) the 
same stoichiometries (m, n) have in most cases different 
structures.
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