Skip to main content
Log in

Temperature effects on the friction-like mode of graphite

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Since the anharmonicity of the vibrational mode related to the relative rigid motion of graphene layers plays a decisive role in the friction behavior of graphite, a quantitative account of the temperature dependence of the frequency of this \(E_{2{\rm g}}\)(1) mode is worth to be investigated. Starting with the solution of the Morse quantum-mechanical oscillator, a relationship between the populated averaged vibrational quantum number and temperature is proposed. This expression is applied to our previous computed Morse fittings describing the anharmonic potential of this mode (Menéndez et al. in Phys Rev B 93:144112-1–144112-9, 2016) with the aim at providing the available vibrational energy at different pressures and temperatures. We show that the average vibrational quantum number decreases under pressure but the available vibrational energy is almost independent on pressure at a given temperature. As a result, the calculated temperature coefficient shows that inter-layer friction in graphite lowers as temperature increases with a similar trend regardless the pressure applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Errea I, Calandra M, Pickard CJ, Nelson JR, Needs RJ, Li Y, Liu H, Zhang Y, Ma Y, Maur F (2016) Nature 532:81

    Article  CAS  Google Scholar 

  2. Lucazeu G (2003) J Raman Spectrosc 34:478

    Article  Google Scholar 

  3. Mate CM, McClelland MG, Erlandsson CS (1987) Phys Rev Lett 59:1942

    Article  CAS  Google Scholar 

  4. Tan PH, Han WP, Zhao WJ, Wu ZH, Chang K, Wang H, Wang FY, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari AC (2012) Nat Mater 11:294

    Article  CAS  Google Scholar 

  5. Menéndez C, Lobato A, Abbasi-Pérez D, Fernández-Núñez J, Baonza VG, Recio JM (2016) Phys Rev B 93:144112-1–144112-9

    Article  Google Scholar 

  6. Hanfland M, Beister H, Syassen K (1989) Phys Rev B 39:12598

    Article  CAS  Google Scholar 

  7. Koukaras EN, Kalosakas G, Galiotis C, Papagelis K (2015) Sci Rep 5:12923

    Article  CAS  Google Scholar 

  8. Abbasi-Pérez D, Menéndez JM, Recio JM, Otero-de-la-Roza A, del Corro E, Taravillo M, Baonza VG, Marqués M (2014) Phys Rev B 90:054105

    Article  Google Scholar 

  9. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  10. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  11. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  12. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  13. Cohen-Tannoudji C, Diu B, Lalou F (1977) Quantum mechanics, vol 2, 1st edn. Wiley, London

    Google Scholar 

  14. Dahl JP, Springborg JM (1988) Chem Phys 88:4535

    CAS  Google Scholar 

  15. Kittel c (2004) Introduction to solid state physics, 8th edn. Wiley, London

    Google Scholar 

  16. Bonini N, Lazzeri M, Mauri F (2007) Phys Rev Lett 99:176802

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Principado de Asturias (GRUPIN14-049) and the Spanish MINECO project (CTQ2015-67755-C2-R and MAT2015-71070-REDC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Recio.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menéndez, C., Lobato, A., Baonza, V.G. et al. Temperature effects on the friction-like mode of graphite. Theor Chem Acc 136, 40 (2017). https://doi.org/10.1007/s00214-017-2072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2072-4

Keywords

Navigation